Deficiency of GABARAP but Not Its Paralogs Causes Enhanced EGF-Induced EGFR Degradation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Effects of Induced Production of Reactive Oxygen Species in Organelles on Endoplasmic Reticulum Stress and on the Unfolded P
Lit Lunch 6_26_15 Indu: 1: Melé M, Ferreira PG, Reverter F, DeLuca DS, Monlong J, Sammeth M, Young TR, Goldmann JM, Pervouchine DD, Sullivan TJ, Johnson R, Segrè AV, Djebali S, Niarchou A; GTEx Consortium, Wright FA, Lappalainen T, Calvo M, Getz G, Dermitzakis ET, Ardlie KG, Guigó R. Human genomics. The human transcriptome across tissues and individuals. Science. 2015 May 8;348(6235):660-5. doi: 10.1126/science.aaa0355. PubMed PMID: 25954002. 2: Rivas MA, Pirinen M, Conrad DF, Lek M, Tsang EK, Karczewski KJ, Maller JB, Kukurba KR, DeLuca DS, Fromer M, Ferreira PG, Smith KS, Zhang R, Zhao F, Banks E, Poplin R, Ruderfer DM, Purcell SM, Tukiainen T, Minikel EV, Stenson PD, Cooper DN, Huang KH, Sullivan TJ, Nedzel J; GTEx Consortium; Geuvadis Consortium, Bustamante CD, Li JB, Daly MJ, Guigo R, Donnelly P, Ardlie K, Sammeth M, Dermitzakis ET, McCarthy MI, Montgomery SB, Lappalainen T, MacArthur DG. Human genomics. Effect of predicted protein-truncating genetic variants on the human transcriptome. Science. 2015 May 8;348(6235):666-9. doi: 10.1126/science.1261877. PubMed PMID: 25954003. 3: Bartesaghi A, Merk A, Banerjee S, Matthies D, Wu X, Milne JL, Subramaniam S. Electron microscopy. 2.2 Å resolution cryo-EM structure of ?-galactosidase in complex with a cell-permeant inhibitor. Science. 2015 Jun 5;348(6239):1147-51. doi: 10.1126/science.aab1576. Epub 2015 May 7. PubMed PMID: 25953817. 4: Qin X, Suga M, Kuang T, Shen JR. Photosynthesis. Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science. 2015 May 29;348(6238):989-95. -
Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement. -
Exploring Autophagy with Gene Ontology
Autophagy ISSN: 1554-8627 (Print) 1554-8635 (Online) Journal homepage: https://www.tandfonline.com/loi/kaup20 Exploring autophagy with Gene Ontology Paul Denny, Marc Feuermann, David P. Hill, Ruth C. Lovering, Helene Plun- Favreau & Paola Roncaglia To cite this article: Paul Denny, Marc Feuermann, David P. Hill, Ruth C. Lovering, Helene Plun- Favreau & Paola Roncaglia (2018) Exploring autophagy with Gene Ontology, Autophagy, 14:3, 419-436, DOI: 10.1080/15548627.2017.1415189 To link to this article: https://doi.org/10.1080/15548627.2017.1415189 © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. View supplementary material Published online: 17 Feb 2018. Submit your article to this journal Article views: 1097 View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=kaup20 AUTOPHAGY, 2018 VOL. 14, NO. 3, 419–436 https://doi.org/10.1080/15548627.2017.1415189 RESEARCH PAPER - BASIC SCIENCE Exploring autophagy with Gene Ontology Paul Denny a,†,§, Marc Feuermann b,§, David P. Hill c,f,§, Ruth C. Lovering a,§, Helene Plun-Favreau d and Paola Roncaglia e,f,§ aFunctional Gene Annotation, Institute of Cardiovascular Science, University College London, London, UK; bSIB Swiss Institute of Bioinformatics, Geneva, Switzerland; cThe Jackson Laboratory, Bar Harbor, ME, USA; dDepartment of Molecular Neuroscience, UCL Institute of Neurology, London, UK; eEuropean Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, UK; fThe Gene Ontology Consortium ABSTRACT ARTICLE HISTORY Autophagy is a fundamental cellular process that is well conserved among eukaryotes. It is one of the Received 18 May 2017 strategies that cells use to catabolize substances in a controlled way. -
On ATG4B As Drug Target for Treatment of Solid Tumours—The Knowns and the Unknowns
cells Review On ATG4B as Drug Target for Treatment of Solid Tumours—The Knowns and the Unknowns Alexander Agrotis and Robin Ketteler * MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-(0)20-7679-4063 Received: 3 December 2019; Accepted: 19 December 2019; Published: 24 December 2019 Abstract: Autophagy is an evolutionary conserved stress survival pathway that has been shown to play an important role in the initiation, progression, and metastasis of multiple cancers; however, little progress has been made to date in translation of basic research to clinical application. This is partially due to an incomplete understanding of the role of autophagy in the different stages of cancer, and also to an incomplete assessment of potential drug targets in the autophagy pathway. While drug discovery efforts are on-going to target enzymes involved in the initiation phase of the autophagosome, e.g., unc51-like autophagy activating kinase (ULK)1/2, vacuolar protein sorting 34 (Vps34), and autophagy-related (ATG)7, we propose that the cysteine protease ATG4B is a bona fide drug target for the development of anti-cancer treatments. In this review, we highlight some of the recent advances in our understanding of the role of ATG4B in autophagy and its relevance to cancer, and perform a critical evaluation of ATG4B as a druggable cancer target. Keywords: autophagy; ATG4; pancreatic ductal adenocarcinoma (PDAC); drug screening; small molecule compound; screening assay; biomarker 1. Introduction Autophagy is a cellular stress response that has been identified as a target pathway for intervention in various diseases such as neuro-degenerative disorders, pathogen infection, and various types of cancer [1]. -
Network Organization of the Human Autophagy System
Vol 466 | 1 July 2010 | doi:10.1038/nature09204 ARTICLES Network organization of the human autophagy system Christian Behrends1, Mathew E. Sowa1, Steven P. Gygi2 & J. Wade Harper1 Autophagy, the process by which proteins and organelles are sequestered in autophagosomal vesicles and delivered to the lysosome/vacuole for degradation, provides a primary route for turnover of stable and defective cellular proteins. Defects in this system are linked with numerous human diseases. Although conserved protein kinase, lipid kinase and ubiquitin-like protein conjugation subnetworks controlling autophagosome formation and cargo recruitment have been defined, our understanding of the global organization of this system is limited. Here we report a proteomic analysis of the autophagy interaction network in human cells under conditions of ongoing (basal) autophagy, revealing a network of 751 interactions among 409 candidate interacting proteins with extensive connectivity among subnetworks. Many new autophagy interaction network components have roles in vesicle trafficking, protein or lipid phosphorylation and protein ubiquitination, and affect autophagosome number or flux when depleted by RNA interference. The six ATG8 orthologues in humans (MAP1LC3/GABARAP proteins) interact with a cohort of 67 proteins, with extensive binding partner overlap between family members, and frequent involvement of a conserved surface on ATG8 proteins known to interact with LC3-interacting regions in partner proteins. These studies provide a global view of the mammalian autophagy interaction landscape and a resource for mechanistic analysis of this critical protein homeostasis pathway. Protein homeostasis in eukaryotes is controlled by proteasomal turn- promote incorporation of Atg8p--PE into autophagosomes, allowing over of unstable proteins via the ubiquitin system and lysosomal turn- Atg8p to promote autophagosome closure and cargo recruitment. -
The Life of Proteins: the Good, the Mostly Good and the Ugly
MEETING REPORT The life of proteins: the good, the mostly good and the ugly Richard I Morimoto, Arnold J M Driessen, Ramanujan S Hegde & Thomas Langer The health of the proteome in the face of multiple and diverse challenges directly influences the health of the cell and the lifespan of the organism. A recent meeting held in Nara, Japan, provided an exciting platform for scientific exchange and provocative discussions on the biology of proteins and protein homeostasis across multiple scales of analysis and model systems. The International Conference on Protein Community brought together nearly 300 scientists in Japan to exchange ideas on how proteins in healthy humans are expressed, folded, translocated, assembled and disassembled, and on how such events can go awry, leading to a myriad of protein conformational diseases. The meeting, held in Nara, Japan, in September 2010, coincided with the 1,300th birthday of Nara, Japan’s ancient capital, and provided a meditative setting for reflecting on the impact of advances in Nature America, Inc. All rights reserved. All rights Inc. America, Nature protein community research on biology and 1 1 medicine. It also provided an opportunity to consider the success of the protein community © 20 program in Japan since meetings on the stress response (Kyoto, 1989) and on the life of proteins (Awaji Island, 2005). The highlights and poster presentations. During these socials, and accessory factors. Considerable effort has of the Nara meeting were, without question, graduate and postdoctoral students and all of been and continues to be devoted toward the social periods held after long days of talks the speakers sat together on tatami mats at low understanding the mechanistic basis of protein tables replete with refreshments and enjoyed maturation and chaperone function. -
Ejhg2009157.Pdf
European Journal of Human Genetics (2010) 18, 342–347 & 2010 Macmillan Publishers Limited All rights reserved 1018-4813/10 $32.00 www.nature.com/ejhg ARTICLE Fine mapping and association studies of a high-density lipoprotein cholesterol linkage region on chromosome 16 in French-Canadian subjects Zari Dastani1,2,Pa¨ivi Pajukanta3, Michel Marcil1, Nicholas Rudzicz4, Isabelle Ruel1, Swneke D Bailey2, Jenny C Lee3, Mathieu Lemire5,9, Janet Faith5, Jill Platko6,10, John Rioux6,11, Thomas J Hudson2,5,7,9, Daniel Gaudet8, James C Engert*,2,7, Jacques Genest1,2,7 Low levels of high-density lipoprotein cholesterol (HDL-C) are an independent risk factor for cardiovascular disease. To identify novel genetic variants that contribute to HDL-C, we performed genome-wide scans and quantitative association studies in two study samples: a Quebec-wide study consisting of 11 multigenerational families and a study of 61 families from the Saguenay– Lac St-Jean (SLSJ) region of Quebec. The heritability of HDL-C in these study samples was 0.73 and 0.49, respectively. Variance components linkage methods identified a LOD score of 2.61 at 98 cM near the marker D16S515 in Quebec-wide families and an LOD score of 2.96 at 86 cM near the marker D16S2624 in SLSJ families. In the Quebec-wide sample, four families showed segregation over a 25.5-cM (18 Mb) region, which was further reduced to 6.6 Mb with additional markers. The coding regions of all genes within this region were sequenced. A missense variant in CHST6 segregated in four families and, with additional families, we observed a P value of 0.015 for this variant. -
The Autophagy Machinery in Human-Parasitic Protists; Diverse Functions for Universally Conserved Proteins
cells Review The Autophagy Machinery in Human-Parasitic Protists; Diverse Functions for Universally Conserved Proteins Hirokazu Sakamoto 1,2,* , Kumiko Nakada-Tsukui 3 and Sébastien Besteiro 4,* 1 Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan 2 Department of Biomedical Chemistry, The University of Tokyo, Tokyo 113-8654, Japan 3 Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; [email protected] 4 LPHI, Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France * Correspondence: [email protected] (H.S.); [email protected] (S.B.) Abstract: Autophagy is a eukaryotic cellular machinery that is able to degrade large intracellular components, including organelles, and plays a pivotal role in cellular homeostasis. Target materials are enclosed by a double membrane vesicle called autophagosome, whose formation is coordinated by autophagy-related proteins (ATGs). Studies of yeast and Metazoa have identified approximately 40 ATGs. Genome projects for unicellular eukaryotes revealed that some ATGs are conserved in all eukaryotic supergroups but others have arisen or were lost during evolution in some specific lineages. In spite of an apparent reduction in the ATG molecular machinery found in parasitic protists, it has become clear that ATGs play an important role in stage differentiation or organelle maintenance, sometimes with an original function that is unrelated to canonical degradative autophagy. In this review, we aim to briefly summarize the current state of knowledge in parasitic protists, in the light of the latest important findings from more canonical model organisms. Determining the roles of ATGs Citation: Sakamoto, H.; Nakada-Tsukui, K.; Besteiro, S. -
Super-Assembly of ER-Phagy Receptor Atg40 Induces Local ER Remodeling at Contacts with Forming Autophagosomal Membranes
ARTICLE https://doi.org/10.1038/s41467-020-17163-y OPEN Super-assembly of ER-phagy receptor Atg40 induces local ER remodeling at contacts with forming autophagosomal membranes ✉ Keisuke Mochida1,4, Akinori Yamasaki 2,3,4, Kazuaki Matoba 2, Hiromi Kirisako1, Nobuo N. Noda 2 & ✉ Hitoshi Nakatogawa 1 1234567890():,; The endoplasmic reticulum (ER) is selectively degraded by autophagy (ER-phagy) through proteins called ER-phagy receptors. In Saccharomyces cerevisiae, Atg40 acts as an ER-phagy receptor to sequester ER fragments into autophagosomes by binding Atg8 on forming autophagosomal membranes. During ER-phagy, parts of the ER are morphologically rear- ranged, fragmented, and loaded into autophagosomes, but the mechanism remains poorly understood. Here we find that Atg40 molecules assemble in the ER membrane concurrently with autophagosome formation via multivalent interaction with Atg8. Atg8-mediated super- assembly of Atg40 generates highly-curved ER regions, depending on its reticulon-like domain, and supports packing of these regions into autophagosomes. Moreover, tight binding of Atg40 to Atg8 is achieved by a short helix C-terminal to the Atg8-family interacting motif, and this feature is also observed for mammalian ER-phagy receptors. Thus, this study sig- nificantly advances our understanding of the mechanisms of ER-phagy and also provides insights into organelle fragmentation in selective autophagy of other organelles. 1 School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan. 2 Institute of Microbial -
PEBP Regulates Balance Between Apoptosis and Autophagy, Enabling Coexistence of Arbovirus and Insect Vector
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.19.427364; this version posted January 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 PEBP regulates balance between apoptosis and autophagy, enabling 2 coexistence of arbovirus and insect vector 3 Shifan Wanga,b, Huijuan Guoa,b, Keyan Zhu-Salzmanc, Feng Gea,b,1, Yucheng Suna,b,1 4 aState Key Laboratory of Integrated Pest Management and Rodents, Institute of Zoology, Chinese 5 Academy of Sciences, Beijing 100101, China 6 bCAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 7 Beijing 100049, China 8 cDepartment of Entomology, Texas A&M University, College Station, TX 77843, USA 9 1Correspondence: [email protected], [email protected] 10 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.19.427364; this version posted January 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 11 Graphical abstract 12 13 14 Highlights 15 Interaction between whitefly PEBP4 and TYLCV CP suppresses phosphorylation of MAPK 16 cascade, activating apoptosis 17 TYLCV CP liberates PEBP4-bound ATG8, resulting in lipidation of ATG8 and initiation of 18 autophagy. 19 PEBP4 balances apoptosis and autophagy in viruliferous whitefly to optimize virus loading 20 without obvious fitness cost. 21 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.19.427364; this version posted January 20, 2021. -
Human Leucine-Rich Repeat Proteins: a Genome-Wide Bioinformatic Categorization and Functional Analysis in Innate Immunity
Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity Aylwin C. Y. Nga,b,1, Jason M. Eisenberga,b,1, Robert J. W. Heatha, Alan Huetta, Cory M. Robinsonc, Gerard J. Nauc, and Ramnik J. Xaviera,b,2 aCenter for Computational and Integrative Biology, and Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; bThe Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142; and cMicrobiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 Edited by Jeffrey I. Gordon, Washington University School of Medicine, St. Louis, MO, and approved June 11, 2010 (received for review February 17, 2010) In innate immune sensing, the detection of pathogen-associated proteins have been implicated in human diseases to date, notably molecular patterns by recognition receptors typically involve polymorphisms in NOD2 in Crohn disease (8, 9), CIITA in leucine-rich repeats (LRRs). We provide a categorization of 375 rheumatoid arthritis and multiple sclerosis (10), and TLR5 in human LRR-containing proteins, almost half of which lack other Legionnaire disease (11). identifiable functional domains. We clustered human LRR proteins Most LRR domains consist of a chain of between 2 and 45 by first assigning LRRs to LRR classes and then grouping the proteins LRRs (12). Each repeat in turn is typically 20 to 30 residues long based on these class assignments, revealing several of the resulting and can be divided into a highly conserved segment (HCS) fol- protein groups containing a large number of proteins with certain lowed by a variable segment (VS). -
Noncanonical ATG8–ABS3 Interaction Controls Senescence in Plants
ARTICLES https://doi.org/10.1038/s41477-018-0348-x Noncanonical ATG8–ABS3 interaction controls senescence in plants Min Jia1,5, Xiayan Liu1,5, Hui Xue1, Yue Wu2,3, Lin Shi2,3, Rui Wang1,4, Yu Chen1, Ni Xu1, Jun Zhao1, Jingxia Shao1, Yafei Qi1, Lijun An1, Jen Sheen2,3 and Fei Yu 1* Protein homeostasis is essential for cellular functions and longevity, and the loss of proteostasis is one of the hallmarks of senescence. Autophagy is an evolutionarily conserved cellular degradation pathway that is critical for the maintenance of proteostasis. Paradoxically, autophagy deficiency leads to accelerated protein loss by unknown mechanisms. We discover that the ABNORMAL SHOOT3 (ABS3) subfamily of multidrug and toxic compound extrusion transporters promote senescence under natural and carbon-deprivation conditions in Arabidopsis thaliana. The senescence-promoting ABS3 pathway functions in parallel with the longevity-promoting autophagy to balance plant senescence and survival. Surprisingly, ABS3 subfam- ily multidrug and toxic compound extrusion proteins interact with AUTOPHAGY-RELATED PROTEIN 8 (ATG8) at the late endosome to promote senescence and protein degradation without canonical cleavage and lipidation of ATG8. This non- autophagic ATG8–ABS3 interaction paradigm is probably conserved among dicots and monocots. Our findings uncover a previously unknown non-autophagic function of ATG8 and an unrecognized senescence regulatory pathway controlled by ATG8–ABS3-mediated proteostasis. rom ancient tonics to modern molecular interventions, the plant atg mutants suggests that additional catabolic pathway(s) are quest for longevity has always been part of human nature. operating in the absence of autophagy. Nutrient availability is closely tied with growth and longevity Multidrug and toxic compound extrusion (MATE) family trans- F 1 in many organisms .