Institute of Freshwater 0 Ecology

Tidal water heights at Bunny Meadows salt marsh, , Warsash,

F.H. Dawson, PhD MIWEM CBiol FIBiol P. Henville

Natural Environment Research Council INSTITUTE OF FRESHWATER ECOLOGY River Laboratory, East Stoke, Wareham, Dorset BH20 6BB

Tel: 0929 462314 Fax: 0929 462180

Tidal water heights at Bunny Meadows salt marsh, River Hamble, Warsash, Hampshire.

EH. Dawson PhD MIWEM CBiol FIBiol P. Henville

Project leader: F.H.Dawson Report date: December 1992 Report to: Institute of Terrestrial Ecology (Energy Tidal Study Unit, Harwell, for Department of Energy) Contract No: T08059q1 IFE Report Ref: RL/1-08059q1/1 TFS Project No: TFS/08059q1

This is an unpublished report and should not be cited without permission, which should be sought through the Director of the Institute of Freshwater Ecology in the first instance.

The Institute of Freshwater Ecology is part of the Terrestrial and Freshwater Sciences Directorate of the Natural Environment Research Council. CONTENTS Page SUMMARY

INTRODUCTION 1

METHODS 2

RESULTS 3

ACKNOWLEDGEMENTS 9

APPENDICES 10

APPENDIX 1 Water depth calibration.

APPENDIX 2. Map and local information on lower Hamble River and Bunny Meadows, Warsash, Southampton.

APPENDIX 3. Program listing SUMMARY

Sea water levels were monitored inside and outside the sea wall separating the salt marsh from the estuary during summer and autumn 1992.

The culvert restricted the water flow to the salt marsh and mud flat and reduced the tidal range by about a half inside the sea wall but this varied a little between spring and neap tides The upper limit was reduced by about 0.6 m on average whereas the lower limit was restricted by the level of the bed of the culvert.

Complex variation and interactions were monitored for other environmental variables in the water supplying and draining the mud flats such as daytime heating and nighttime cooling of the water, possible variations in oxygen related to irradiance, variations in optical density and small changes conductivity. Further analysis could be undertaken of such data or tidal water heights could be corrected to standard pressure.

1. INTRODUCTION

1.1 Background

Concern has been expressed about the possible extent of changes in the vegetation resulting from the construction of tidal barrages on estuaries. Such changes could include invasion or decline of vegetated areas with the associated direct effects on mud deposition or erosion but also consequential effects on biota such as feeding areas for wading birds. Such effects are thought likely to occur as a result of the asymmetrical changes to the tidal cycle primarily within the barrage in order to optimise power generation.

A site was identified on the River Hamble at Bunny Meadows, Warsash, during a survey of the Solent Estuary, which had the criteria both of typical vegetation and an altered tidal inundation regime (Appendix 2.). Sea water exchange was modified by construction of a bank to reclaim this area. The bank was breached, probably during the 1939-45 war, and reinstated in the mid 1980's with four openings of three single and one double culverts of 1.9 m wide by 1.5 m high, set approximately about the middle of the mean sea water level. A public path lies on top of the reinstated bank.

Vegetation has probably changed with a general decrease in Spartina townsendii more recently although there is a relatively large stand of Phragmites australis to the south-eastern end of the area; there is no discrete freshwater inflow in this area. S. townsendii may have extended it range down the tidal range but there is a general erosion mud from the flats to the channels (excavated?) and they are being filled except near the culverts where high erosive velocities and considerable scouring of bed and banks occur. There is no bed or bank protection near the culverts either to the seaward or marshward side except at one site where a incomplete low dam with little power dissipation and the absence of castellations, has been constructed.

1.2 Objective

Continuous monitoring of seawater level inside the wall to allow water depth or inundation and exposure, to be deduced for the salt marsh. Water temperature and water turbidity together with light intensity were also measured in part to allow for correction of the effects of variation in temperature of the height sensor and in part to give the opportunity for a fuller picture of the changes that occur during a lunar tidal cycle in a salt marsh. Seawater conductivity and dissolved oxygen changes were also measured for a short period.

1 2. METHODS

2.1 Monitoring of seawater level.

Levels were monitored using a multi-channel computerized field data collection system installed in agreement with Alan Grey of The Institute of Terrestrial Ecology, Furzebrook, at the northernmost culvert; in addition an extra sensor was installed to the seaward side of this culvert. The data collection system (Convertor 6) was fitted with sensors for water level, water temperature( using a thermistor mounted in a dissolved oxygen sensor, water turbidity.

Water depth was recorded using strain gauge pressure transducers (Sandhurst Scientific Instrument Company) mounted firmly just below the culvert level inside the wall and below mean low water springs to the seaward side of the wall. The transducer measures gauge pressure in the form of differential pressure using atmospheric pressure as a reference. This is achieved by venting the rear of the sensor through a tube within the cable. The sensors were calibrated in a 4 m water column in the laboratory before use and on return (Appendix 1). Water levels were corrected to Chart Datum using data supplied by Alan Gray. Barometric pressure was measured using a sealed differential pressure transducer (Penny & Giles D5148/8) with a range of 950 - 1050 mb, powered by a standard voltage reference cell.

The water turbidity and water temperature/dissolved oxygen sensors were suspended in a shallow pool excavated within 3 m of the culvert and at a depth to ensure they were always covered with water. The temperature was measured using a Mackereth-type oxygen sensor.

Water turbidity (expressed as optical density; the logarithm of the ratio of the intensity of incident to transmitted light) was measured using single gap turbidity sensors operating in the infra red region so as to reduce problems associated with algal fouling of optical surfaces.

Mean surface irradiance was measured in an unshaded area using energy irradiance sensors (Skye Instruments).

1.2 Site visits

Periodic site visits were made to download data from the micro-computer and the following tasks were performed when visiting the monitoring sites:

Water level was recorded from the monitoring system and compared to that measured to the top edge of the north side of the culvert from the water surface

Any extraneous matter, eg. floating aquatic weed, was removed from the sensors and their surfaces carefully cleaned using a damp tissue or soft clean cloth.

Batteries were replaced by fully charged ones and recorded data downloaded to a portable computer for processing at the laboratory (Appendix 3.).

Any relevant environmental observations were recorded.

2 3. RESULTS

Sea water levels were monitored on the inside of the sea wall separating the salt marsh from the estuary during periods from June to November (Figure 1), but only outside the sea wall during June. Repeated attempts to monitor sea water levels failed due to damage to sensors and to cables; more substantial sensors and supports would be need to be installed if records were to be made in the future.

Comparison of water levels inside and outside the sea wall show that the tidal range was reduced by about a half inside the sea wall but this varied a little between spring and neap tides (Figure 2). The upper limit was reduced by about 0.6 m on average because the culvert restricted the water flow to the large open areas of mudflat inside the wall which failed to fill before the tide ebbed outside the wall (figure 3). The reverse situation occurred to some extent but the lower limit was restricted by the level of the bed of the culvert (Figure 4).

Complex variation and interactions were monitored between water level and other environmental variables which could be investigated further (Figure 5). Interaction noted in the water supplying and draining the mud fiats at Bunny Meadows during several tidal cycles in June 1992 included:

daytime heating and nighttime cooling of the water depending upon the tidal cycle relative to the time of day or night probable variation in oxygen (or local effects in the water surrounding the sensor) correlation of 'oxygen' effect with irradiance extreme and variable ranges of optical density small but significant variation in conductivity.

3 M•rsh D•plh. •

0 0 121 122 123 124 123 125 La 121 I2S 30 035 I I I 2 1 3 1 4 1Th 1 7 1 B 1 9 110 131 112113 114 11.1a 10 05 19 laO ILl 122123 2 71201291301 11 21 31 Dr.tob•r &Myst 1.292

Figure 1. Water levels, corrected to Chart Datum, on the salt marsh side of the wall at Bunny Meadows, Warsash, on the River Hamble, from late August to early October during several tidal cycles.

4 Hersh Depth, River Depth, • .

4 — 4

2—

5161 i I El I 9 I 10 I is

June 1992

Figure 2. Comparison of water levels corrected to Chart Datum, on the salt marsh side (solid line) and on the estuary side of the sea wall on the River Hamble, Bunny Meadows, Warsash, from spring to neap tides during June 1992.

5 Harsh Depth, m River Depth, re

" Ii

4 — 4

i I I I I I I 1 I I r 1 i r I I 2 — r —2 V

7 a

Juno 1992

Figure 3. Detail of comparison of water levels, corrected to Chart Datum, on the salt marsh side (solid line) and on the estuary side of the sea wall on the River Hamble, Bunny Meadows, Warsash, near the neap tides during June 1992.

6 SOUTHAMPTON MEAN SPRING AND NEAP CURVES Springs octur 2 days afier New and Full Moon

* `,...... 11. . I I • 0 , z .c..... < , . cc = ,, c ,> .

, Faclor

> o 0 0a o66 a

&)

-M.H.l I.S. t

, '

M.L.W.N.

0 Mt W.S. ‘...^ i CHA T Dr\ TUM §

Figure 4. Spring and neap water level standardcurves for Southampton (from Practical Boat Owner Cruising Almanac for 1992, data from Admiralty Tide Tables).

7

10 I ii I

Oupth. fATELAAT

1-0-

010 17u u1111-1 11 --I

20 - Dolor No0101:100 10 - 10

- 11?"\ a I ii I n

T;;LPoro tura. 'G 2_7; 20 10 10 -

O 200 -dxygon ino-; soo

2.0 - Opticul 0onolty 1.5 - 1.0 - 0.3- 0.0-

Cunductl v xtry 100

— 1 7 I a I u I to-1-

PilEDLIFIE

-w‘r-\jr NNrie t 0 1 7 C Ii I a 7 10

Figure 5. Variation in environmental variables of water supplying and draining Bunny Meadows, Warsash, on the River Hamble, during several tidal cycles, June 1992 .

8 4. ACKNOWLEDGEMENTS

Thanks are due to Richard Levett, area warden (office 0329-662145, home 0489-582503) and to Barry Duffin, both of Hampshire County Council (0329-662145); to the Harbour Master Capt. C.J. Nicholl (0489-576387 for arranging vehicle access for transport of the monitoring equipment to the northern end of the Bunny Meadows;

9 APPENDICES

10 APPENDIX 1 Water depth calibration.

1800 —

1200 —

600 —

0 —

0 70 140 210 280 350 Depth in cm.

Figure Al. Relationship between sensor output and water depth. (for equation see program, Appendix 4).

11 . APPENDIX 2. Map, tidal, and local information on lower Hamble River and Bunny Meadows, Warsash, Southampton.

Mercury rIN Yacht Harbour

'Mercury' Scrubbing Piles (no shore access)

Harnble Yachl Services

Pod Humble a O I Je lwecn Piles o . e ,11,4,41- 9- I G MAHN HAMBLE -

4 t- 3'?- Scrubbing PI les 4

2 r 124 WARSASH LOCAL HARBOURS lc,;lone pier yard o HARBOUR HARBOUR MASTER TELEPHONE Porlsmouth (0.H.M.) 10/05)022351 Ent 23654 COi 0 Beaulieu River (05901 616200/616234 Scrubbing Piles Soul honoree 107031330022 Hamble Poole (02021 60526 Point et , yiningion 10590) 672014 Yannoulh 103631 760321 Cowes 0 14Gm, 100531 293052 Gospurl- See Portwoulli W I LIml•Ic Chichester. 07431517301 Brig:non- (0273) 693636 Warsasli Bomb/ idge 10983)1172020 Newport (0903)525994 .Ielly No in ilk / f ill/n 5: Ouaranline LOCAL FNFORMATION a Buoy NAVIGATION • CI Os AI night the outer leading line or lighls (345" 30) is duo ly visible. All eneanne piles dvii except No.4 aretil. The inner transit Mc (026- 091in lens Obvious and keeps la Me starboard side ol Me channel, Mariners ai e advised to be carelul nor lo stray lo the Easl or Inc rena ii MM shoal waler. Tides ore as Mr Soulhamplon • 0 minutes. Spring range 4.501. There is a double high waler.

VISITORS MOORINGS • Oc(2)R.12s4m2M *rt.i Visiting pails thould be moored so II ml olher crall secured 1nside can Cas1 oll r , G without difficulty. Use separate lines lore and all nol one continuous rope. For safely pul our springs and plenty ol lenders. II nor seen by the Harbour Mosier on patrol , trc: r11:0G.10.; call al lhe Harbour Olbce lo Pay dues. trr' Nr SCRUBBING PILES/FRESH WATER There arc scrubbing piles al WarsosItHamble. belween Pori Hamble and Mercury Yachl Harbour and Lands End Hard (Oursledon). Use is on a litsi come lust served basis. There is no charge Mr the first 45 hours,

01:1)lOr.3 4 Water is available al the Harbour Masler's Jelly al Warsash. A meter dispenses apurox 25 gallons Mr 10p.

SAILING IN THE SOLENT. Yachtsmen are reminded of the regulations concerning Ille use or the main channels in Me Soren Deep dr:mg/lied vessels do nol have room lo manoeuvre. Small call arc required lo keep clear or Mese channels. Avoid close (Wader 12 siluations with Mtge ships. KEY 0 100 200 300 400 500Melre5 BOTLEY IIIIIII 0 Visitor s Berth 05001000 1500 lee1

Water Tap

Fuel .

Cusloms Posiboy

-1 Public Telephone

Ei• PublicCar Park

Natur e Ilesenre

Post 011ice

(1f,r Harbour Masters

C., Public Landing

PublicHard

Yncli: Manna

Yacht or Sailing Club

Warsash Sailing Club Horrible River Sailing Club Royal Southern Yachl Club RAY. Yacht Club UPPER HAMBLE COUNTRY PARK a Public House or Inn

Rising Sun Jolly Sailor Norse & Jockey Bugle Inn

Hoe Moor Creek

Easllands Boatyard

Rivelside Boalyard M27

Cabin j Boalyard Bridge Clearances A27 M27 - M.H.W.S. 4.3m Bridge Deacons Boatyard M.H W.S. 4m Hamble River Boa lyard M.L.w.S. Dm In K. Mance)

BURSLEDON Burslodun El cr. Bridge Elephanl Boatyard t (.1) A. H. Moody& Son 2 n,/ Boatyard

Scrubbing Piles

SWANWICK

Sallerns Boatyard & 9 Universal Shipyards

13 LOCAL INI–OliMAI ION Electrics/Electronics — Sales, repairs Harbour Master's Oflice Ci eenham Marine Ltd. Shoro Road. Warsash. 0409 576307 POR Ramble 0703 455014 Harbour Master Hudson Marine Electronics Captain C. J. NichoIL OBE., Residence: 0409 502406 Ramble Point 0703 454610 Assistant Harbour Master Mercury Yacht Harbour 0703 455129 . Mr. D. Walker Residence: 0329 203511 Visitors Moorings Sailmakers Piles 94 lo 07 oll Warsash, and 9 to 16 oll Port Ramble Bruce Banks Ltd, Park Gale 0409 502444 Richardson Sails, Elephant Doolyard 0703 403914 Coastguards/Customs etc. Shore Sails, Slone Picr Yard 0409 509450 H.M. Coastguards 0705 552100 Sobslad Sailmaker (UK) Ltd. H.M. Customs 0703 027350 Mercury Yacht Harbour 0703 456205 Southampton Port Health Authority 0703 226631 Technique Soils. Deacons Boatyard 0703 405022 Ullman Sails (UK) Ltd., Porl Hamblo 0703 454254 Yacht and Sailing Clubs J. R. Williams Ltd., Hamble 0703 453109 Hamble River Sailing Club. Hamble. 0703 452070 Royal Alr Force Yacht Club, Ramble. 0703 452200 Yacht Chandlers Royal Southern Yacht Club,l-lnmble.. 07113 453271 Warsash Sailing Club, Warsash. (Hon. Secretary) 0.109 514702 Aladdins Cave, Deacons lloalyaril 0703 402102 Compass Point, Flamblo 0703 452300 Marinas and Boatyards Sca Fever, Warsosh 0409 502004 Cabin Boatyard (Slipway. pontoon. repairs, crane) 11703 402510 nrc Solent Trading Co. Crableck Boatyard (Pontoons, waler) 0109 J cJ Mercury Yacht Harbour 0703 454049 Deacons Boatyard Warsanh Nautical Bookshop, Warsash 0409 572304 (Pontoon. cranage. repairs. water) 0703 402253 Yachlinail Co. Ltd. Eastiands Boatyard (Hauling out. repairs) 0703 403556 Hambic Point Manna 0703 455050 Elephant Boatyard Ltd. (Ponloon. slipway. repairs) 0703 403260 Purl Horrible 0703 454050 Ramble Point Marina (M.D.L. Marinas) Ltd. (Repairs, fuel. wainr, chandlery, lmal siorage) 0703 452464 Moorings, Mooring Maintenance, Divers, Ramble Point Quay (Pontoon. slipway, Salvage, Towing dry boot storage, cranage. repairs, Itml. water) 0/03 452464 Andark Diving, Lowcr Swanwick Hamble River Boatyard, R.K. Marine LW. IMO 501755 Out ol hours 0409 706006 (Pontoons, slipway, marine engineers) 0409 5035721503505 Bayline Marine, (diving) Hamble Yachl Services, Pori Hamble 0409 502605 Woe Star Doals, Ramble (lowing) 0703 453542 (Pontoons, boat hoist, building, repairs, laying-up, etc.) 0703 454111 Mercury Yachl Harbour OA D.L. Marinas) LW. Oul of hours 0409 572040 Etheridge, Hylhe 0703 043710 (Marina, boal hoist chandlery) 0703 155034 Foulkes & Sons, Riverside Boatyard 0703 406349 Port Hamble Marina (m.aL. Marinas) Lid. Maytrec Marine, (moorings) 0703 454757 (Marina. chandlery) 0703 452741 0. Sedgwick, (moorings) 0703 454512 Riverside Boatyard. Foulkes & Son. Tricker & Monday, Mercury Yacht Harbour 0703 453124 (Pontoon, repairs. salvage, diving, lowing) 0703 405349 Warsash Divers 03291322397 Sallerns Boatyard 0703 403911 Slone Pier Yard (Victoria Rampart Lid.) (Yachl building. refits, repairs, ponloons. luel) 0409 005400 Boat Trips/Charter Boats/River Taxi Swanwlck Marina, A. H. Moody & Son Ltd. (Marina, Blue Star Boots (based al Hamble lore:311010 0703 453542 cranage, building, repairs. fuel, waler, chandlery) 0109 005000 Oul ol hours 0109 572040 Universal Shipyard (Soleni) Ltd. 0409 574272 (Pontoons, boat hoist. repairs. waler) Transport - Fcrry: Delween HambIn and Warsash. Based al Hamble, from Marine Engineers Warsash go lo 'Ferry Ha and wave. Alpha Marine, (slerndrives) (Yamalm Again() Doses: From Dursledon. Hamble, Swanwick and Warsash to Farchom, 0409 502777 Easllands Boatyard Portsmouth and Soulhamplon. Cougar Marine, Hamble 0703 453513 Trains: From Burslcdon and Hamble stations lo all doslinations. Marine Power Lid. (Engine repairs), Cabin Boatyard Oflice: 0703 403910. Alter hours: onns 573591, M.R. Yachl Engineers (Evinrude Agent) 0703 456175 Places of Worship J. Pouliot Marine Services, (Outboards) Hamble: St. Andrews, High Send. C. of E. Easliands Boatyard 0109 502777 Warsash: St. Mary's. I•look with Warsash, C. ol E. R.K. Marine Ltd. (Volvo Agent) SI. Margaret Mary, Park Gale. Hamble River Boatyard 0409 533572/503505

14

ENGLAND, SOUTH COAST - SOUTHAMPTON LA7 50544 LONG 0'24'6 ZONE U7(GM" 726E 7:1115OC 71:21575OF 0236 001 LOD INAUFS YEAR 1992

JUNE JULT 403U51 "KERBER 01701E2 7Imem71re m "re "re m "re 140621/2691 7:me w "Me r 7:re m 71rm m 7:re m 71me m 0.7 4 0441 0 : c 0003 4 7 1 0107 0130 4 2 c 0057 4.3 1 0252 3.9 c 0229 4,2 4.2 1119 (21451 4.6 I U 0546 0.7 6 ;111 ; 11:11 I 1:06 01 16 21:10.; 1 0727 0 EI U 0640 0 9 I 0624 ID 1 U 0607 1.3 0.9 W 1707 0.6 TM 1728 1.0 SA :628 0.3 7.5 :2:0 4 4 7U 2:75 4.6 W 1:57 4 4 74 2251 4.3 F :213 4.3 SU 2500 3.8 m :443 4.1 4.2 2220 4.5 2:57 4.2 26" 8 °'°14521:25 0.5 1042 0 8 "23 0.9 2E09 0 9 2022 1.6 2031 1.2 10474.311370.3 4.6 41 02:3 4.3 e) 0215 1 0222 16300.7"7U230.24.2 ?:12512 17 ""0646 OA 1 / 0617 4.6 2 11111:12 07 I2300Z. 0744 g'2617 111;11.1;0765 41; 17 C0:17.; 2 2111::7017g; 1.5 2540IM 74 1757 0.5 F 2600 2.0 SU 2310 4 6 w :256 0. 1421 4,4 74 2:34 4 3 A 24:9 4 0 SA 2257 4.2 m :602 3 6 7U 2550 4.0 • 0.4 2636 4.42.;166 2003 0 1520 1.: 2014 2.3 2541 1 2 2124 1.9 2136 1.4 4.4150016 4 3 s 0320 '33:7180.7w2748J 0619 :1 18 2.1 111;g::3 :2;1g.;18g;21El CJ:31( 7 ;18 ;118 • 23434 2 F 6 SA :212 4 2 m 2405 4 6 3 1211" 2111::13 21111::18 21111 6 4.51254 73 :::0 05621 4 3 im 1E:4 1 F 1417 4.1 ;14Te; 3.7 SU :415 4.0 7U :716 3.5 IV 1706 3.9 1.1 :644 0.5 1E20 1.0 1552 0 6 "06 7;";1.0 2045 1.3 1954 1.4 2107 1_7 2027 1 5 2254 2 0 2252 1.5 4.2 2;71:w:6063.9 In 1246 3.9 4 1 0.7TM1253::119 4 121'; :1210.6 4 121: : 19 7 ; 4 ,0„g2161W0624 4.1 SA 2242 4.6 Su I:" 4 2 7V 1455 4.4 A :47'6 4.2 F 2(17 1.: 4 211; 19 1.6 4 ;:61191tC2.11.5 2::5 8 EA :512 4.0 SU 2E51 3 5 :0,4g 2606 3.9 1623 3.5 TM 1024 2.2 16:0 0.6 :932 1.1 2034 0.8 :E39 2.2 Pi 4.0 3'186212:45 1.7 20401.7 2227 2 0 2154 1.7 4 2 c 0:18 4On 1222 4 0 IR22064.4F2:291 0 /CV 1750 3 1_3 J 0113 1 1.15 211gg::20:12: 1.9 4 2 :6I30.7"644 0 60 2434 4.5 m :408 6.1 h 1151 4 2 IA :450 4 1 5 21111:12011212.15 12111.120;11;2.95 1;111.2202121 1 SA :725 2 6 SU 1025 3.8 V 2E:9 5.5 7U 2713 3.6 14 2249 I 9 F 1246 1.3 1.3 2025 0.7 2925 1 2 2:21 : 2 2:20 1 5 2./0713ODCV07064161:gc0):74.4mn0:299 2:39 2 0 2221 1.9 2:24 1.7 IS:B 3.7 19:2 4 7 7 9 4.0 F35574.4IA•4171 01121.1 : 6 :112g: 21 121 6 21212::21{:i115 2.7,,6 1 7 0E26 2.; "04 1929MO16263.9 V "28 4 4 73 :445 4,0 75 2116 4 0 2:45 3 ;21 2 21:4214" 6 0"7 '' 21 ? M :705 75 7D :242 2.1 6 2E65 4 0 F 1:43 1 6 54 :247 1.0 / 4 2:03 MP 2122 1.3 2:14 : 5 2:26 . "" 2147 1 6 1527 3 6 2017 2.6 2025 OM0.7LI07412 8 03007.9 7 001" 2.9 -7 :2:6 1 561454SU:4491.4 S sn 0.9 (525 / 2:00 31 7 21;25g:122 22111:: E22 1 I :525 2.6 44 0740 4.5 20301.021"3.9 7 3 "26 17 :12:1.'1222111 4 7 20:5 : 9 F :El: 25 54 "14 : 8 .421 2 0 IV ":7 h 2:45 1 9 7.-2:29 1 3 SA :425 Di SU 1440 0 8 7m"..21 6 2:18 1 2 2:01 1 6 2:471 7 21:5 1S 4.42:74 2 7 6ICDOB0E520.6C6232221 3 6 207 4 2 2507 4 0 1117 SU10554.0M1E:63.7m0 0229 14 0.7 1.: 8 a St.) 0E244 2 208 g:7:1123 21272.22:555.6 6 17:4 4 1 7, "22 3 9 37 11%4 6 :421 : n 526 i 7 232211 1 4 2:59 27 ::442 :425 0 9 SU 2534 1 0 N 1 0.6 1.22209.292:64: 9 2:79 4 2 2247 4 4 2143 4 2 2207 4.5 :2120530 m170227010297 15 3220 I.: 7,2 0:11 0 6 2:29 21" ; 124 2131aa22023 5 74 "42 4.0 • :7:9 3 5 6 24:12411;112 2012 4.4 1.'t :036 4 5 3 . 7 : 7,2 14" 0 1.7 2:24 S 21:2 : m :641 0.0 73 2624 0 5 4 5 823""24: : 217 4 4 2 2:22 4 5 2226 4.4 I 1:47 4 '4S 4 C 7c Ctel 7U2E"4.2A:7301.2L:1 "16 : :0c: n C:07 Enc 1427 0 6 0 10 1125Eii!3 ! LJ 1101 21":3:2E5:2 4.2 75 :El 3 6 F :245 1.5 .2:1 4I LJ 06:7 4 7 1.125 2:7 V 12:4 4.6 4.6 .14 9 : 1 F :0:7 C 5 : 0 1 9 DJ 2049 0.4 70 26" 0 7 n 1658 0.5 2647 4.0 4 1 4 2 921211:2242111212 4 2 2251 4 .6 1:4 4 3 I 1.35 4.6 0 2213 4.4 2:20 4.5 1112211.126.., 11111.126 :11 262,., ? 4 1 0."5 0 9 n n 2242 0 421 0 ? 0405 0.7 76 1:232.2F 2271.5IA :1021.5SU 217.2 :45 4 E 99 262";::t2 ..s 1 7 70 :117 1 1•° F 21:0 0 9 SA "25 0 2 Su 2015 . 2 620 2 1 2044 4.12:55 0 2232 : 1:16 521 1.7 :600 c 0 74 17:7 0.6 " 2241 4.3 • 22:3 4.7 2 243 4 4 203 4 7 :2:8 4.5 12 .7ni 0114 4 2,1 211:1::271:11141221111:227111;1:112111:1127 2::12 n 2.,LI F :4:2 1.1 SA 1320 1.4 SU 2451 1.4 M :4:0 25" 1 1 14 11460.6 56 2:227ig1;2112212:2::2711112:';122211 C156 0.2 , % ,up 0.7 SU "50 0.2 g :E« C 6 7 3 :7:7 0.3 74 1736 0.6 F :222 4.4 2057 4.3 2023 4.1 2130 4.: 2111 4 2 2225 2 22114.6 0 4.4 2217 4.8 27:44 5 2.424.6 "13 0.7

13 gt7:2::2811221::1311111:28coo 4:.2t13(:7::2::1 2.528"" 4M 28 2::1327:3 96 1503 1.0 50 1420 1.2 M :529 1,2 70 1510 1.0 TM 06:6 :.0 0 :076 o.4 cu 2710 2:1282;122:113 ;12:2.;28;2112::13 191:10.6 00:4 1 0 2141 4.3 21:2 4.2 2213 4.2 2:42 4,3 0 2305 4 3 6 2254 4.7 2230 0.7 14 1741 0_2 73 17:2 C 6 w 1758 0.4 F 1229 4.5 SA 1201 4.2 ' :246 5 2E1 0.6 1647 0.9

4_tnn 0328 4.2 14221;21::2921::2114 ::2: CZ2:14 :4J22:: 2::292221 29 '4,17,2:1 "" SU 355101AI 15221,0 13 1619 1.1 W 1523 0.7 F 1715 0.9 SA 1722 0.2 m 14 2129 14 ft,:2:7,29 :1 14 211014U 0709 1.2 0.6 7 1223 4.0 W :751 0.6 74 :240 22224.322"4.3 0 2149 4.2 • 2228 4 5 2324 4.3 2258 4.7 3 4.4 SA 1300 4.4 SU 1341 4.0 1622 0.3 "23 0.6 153 0.0 1621 1.2 1 5 111:2::3021 1 5 21212::30c:'7g2::15 T: 2::30 Pi:::2:: 15 "07 :130 m 16340.97D 16350.8 W 1655 2-0 74 1554 0_5 SA 1736 0.8 SU :606 0.2 0154 0.5 15:1 30 gi1,1,1 5 g1:477::30 :;!:7:: 0 23014.3• 2244 4.4 2224 4.2 1713 4.6 70 1226 4.5W 1306 4.6 74 :224 e.5F 1323 4.2 SU 1348 4.3II 2426 3.9 1612 0.71E56 0.51E24 0.71911 0.91237 1.01558 1.4 0.2 14 0022 4.7 31;11;4.7 J 1 0626 0.11 ..1 0.4 31211;2.3 F 1741 M 1249 A.6 : 5414094.0 2259 16470.3 16461.7

6164 WATERS - 05670917A6714076.DINIBLE m204 WEBS DOCUR AT 501011AMP704. 7616 PREDICTIONS ARE FDR 74E FIRST NIGH MAIER.

15 APPENDIX 3.

Listing of Fortran 77c program for conversion of voltage outputs to oxygen saturation, optical density, temperature, water depth and solar irradiance.

DIMENSION YO(12),Y9(12),YMIN(12),YMAX(12),YNAME(12),Z(12) DIMENSION N(12,2) DIMENSION YRANGE(10),YTICK(10),NTICK(10) DIMENSION YPO(12),YP9(12),IPLIM(12) DIMENSION TIME(6000),Y(6000,12),YC(6000) DIMENSION MDAYS(12),CMON(12) CHARAC1ERFNAME*17,GNAME*17,YNAME*20,CMON*9,TNAME*20,ALINE*80 DATA CMON/'January ','February ','March ','April &'May VJune ','July ','August ','September', &'October ','November ','December '/ DATA MDAYS/31,28,31,30,31,30,31,31,30,31,30,31/ DATA YMIN/0,0,0,0,0,0,0,0,0,0,0,0/ DATA YMAX/30,5.50,200,20,2.0,32.0,5.50,99,20.00,99,99,20.0/ C Plot Tick limits follow : DATA YRANGE/2.0,5,14,30,50,100,300,1000,3000,10000/ DATA Y1'ICK/0.5,1,02,05,10,020,050,0100,0500,01000/ DATA NTICK/5,2,1,5,2,2,5,2,5,2/ J=0 WRITE(6,100) 100 FORMAT(/' Program LOGGERPLOT2.NWP :'/ &' Plots out Logger data for NW Pipeline Study :') WRITE(6,210) 210 FORMAT(' Input Name of Logger Data File :') READ(5,'(A17)') FNAME OPEN(UNIT=7,FILE=FNAME,STATUS&OLD') WRITE(6,220) 220 FORMAT(' Input Name for Output Calibrated Data File :') READ(5,'(A17)') GNAME OPEN(UNIT=8,FILE=GNAME,STATUS.'UNKNOWN') WRITE(6,222) 222 FORMAT(' Year of Data (eg 1992) :') READ(5,*) IYEARO WRITE(6,225) 225 FORMAT(' Logger Calibration to be used (1-8) :') WRITE(6,226) 226 FORMAT(' ENTER THE NUMBER CORRESPONDING TO THE CHOSEN LOGGER:'/ &' (1) = LOGGER 1; RVX 116, 104, 8(UPSTREAM)'/ &' (2) = LOGGER 2; RVX 4, 8, 14, 6, 110, 101'/ &' (3) = LOGGER 3; RVX 63, 107,milstream'/ &' (4) = LOGGER 4; RVX 140, 130 (A), 8'/ &' (5) = LOGGER 5; RVX 1, 24 '/

16 &' (6) = LOGGER 6; RVX 116,HAMBLE'/ Sc' (7) = LOGGER 7; RVX 130 (B- )'/ &' (8) = LOGGER 8; OLD CONVERTOR, RVX 140, '/ &") READ(5,*) LOGGER WRITE(6,232) 232 FORMAT(' Print out each Time Point Line of Input on Screen &'(No=0;Yes=1) :') READ(5,*) IPRIN C KVAR8 = Maximum no. of variables recorded in a logger file : KVAR8=12

C Name the Variables in Microchannel screen order : C ie in array Z order. YNAME(1).'Temperature, C ' YNAME(2)='Marsh Depth, m YNAME(3)='% Oxygen' YNAME(4).'Solar Radiation YNAME(5)='Optical density YNAME(6).'Conductivity ' YNAME(7)='River Depth, m' YNAME(8)='NOT USED' YNAME(9)='Barometric Pressure' YNAME(10)='NOT USED' YNAME(11)='NOT USED' YNAME(12)='Battery Power'

WRITE(6,235) (K,YNAME(K),K=1,KVAR8) 235 FORMAT(' Original Order of Variables in Logger ='/, &OS,' = ',A20)) WRITE(6,237) 237 FORMAT(/' No. of graphs required on the page (1-12) :') READ(5,*) KVAR9 WRITE(6,238) 238 FORMAT(/' Each graph contains a continuous line plot of the first', Se selected variable'? and optionally a dotted line plot of the ', &'second selected variable.'/' (Enter -1 for the second variable ', &' if not required for that particular plot)'/ 8c!eg to plot Depth as a solid line, and %Oxygen dotted,', &' enter 2,3'/ az! to only plot say Conductivity on a graph, enter 6,-1') DO 241 K=1,KVAR9 WRITE(6,240) K 240 FORMAT(' Enter First,Second variable to be plotted on graph ',I2) READ(5,*) N(K,1),N(K,2) 241 CONTINUE C KPROB = Missing value used where required for 'problem values' : KPROB=-999999

17 WRITE(6,246) KPROB 246 FORMAT(' What to do with problems values as defined in the', &' logger calibration section of this program :'/ &' (1) = Leave Problem values unaltered'/ &' (2) = Set Problems value to previous valid value'/ &' (3) = Set Problem values to a missing value : ',I8) READ(5,*) IPROB C Set CONDUCT and POWER to missing values in case they were not recorded C on the selected logger : CONDUCT=KPROB POWER=KPROB C Read in Data calculating the range of each Variable :

DAY0=999999 DAY=-999999 DO 250 K=1,KVAR8 Y0(K)=999999 Y9(K)=-999999 250 CONTINUE

300 CONTINUE DO 305 K=1,KVAR8 305 Z(K)=-999

IF (LOGGER.EQ.1) THEN C Logger Calibration 1 : READ(7,*,END=500) IDAY,IMON,IHOUR,IMIN,TMV,DEPTH,DOMV, &AKIPP,CONDUCT,TURBID,POWER TEMP=11.4+0.000666*TMV DOST=EXP((3.3654+0.028505*TEMP)*2.303) OXYGEN=-((DOMV/DOST)*100.0) AKIPP=-AKIPP/1000 DEPTH=(+0.00199*-DEPTH)+0.41

TURBID=1.12+0.000036*TURBID ENDIF

IF (LOGGER.EQ.2) THEN C Logger Calibration 2 : READ(7,*,END=500) IDAY,IMON,IHOUR,IMIN,TMV,DEPTH,DOMV, &AKIPP,CONDUCT,TURBID,POWER TEMP=(10.7+0.000631*TMV) DOST=EXP((3.3802+0.0198*TEMP)*2.303) OXYGEN=(DOMV/DOST)*100.0-35 AKIPP=-AKIPP/1000*5+0.4 DEPTH=-0.00203*DEPTH+0.20

18 TURBID=0.955+0.000032*TURBID ENDIF

IF (LOGGER.EQ.3) THEN C Logger Calibration 3 : c turb changed was 0.973+(0.000034*turb)on 9692 READ(7,*,END=500) IMON,IDAY,IHOUR,IMIN,TMV,DEPTH,DOMV, &AKIPP,CONDUCT,TURBID,POWER TEMP=10.5+0.000631*TMV DOST=EXP((3.6902+0.0243*TEMP)*2.303) OXYGEN=(DOMV/DOST)*100 DEPTH=0.00187*(-DEPTH)

TURBID=1.2+0.0000382*TURBID AKIPP=-AKIPP/1000+0.037 ENDIF

IF (LOGGER.EQ.4) THEN C Logger Calibration 4 : READ(7,*,END=500) IMON,IDAY,IHOUR,IMIN,TMV,DEPTH,DOMV, &AKIPP,CONDUCT,TURBID,POWER TEMP=10.1+0.000675*TMV DOST=EXP((3.8451+0.0233*TEMP)*2.303) OXYGEN=(DOMV/DOST)*100-10 DEPTH=0.00164*DEPTH-0.10 TURBID=1.05+0.000035*TURBID AKIPP,AKIPP/1000+0.01 ENDIF

IF (LOGGER.EQ.5) THEN READ(7,*,END=500) IDAY,IMON,IHOUR,IMIN,TMV,DEPTH,DOMV, &AKIPP,CONDUCT,TURBID,POWER TEMP=10.2+0.000618*TMV DOST=EXP((3.869+0.0069*TEMP)*2.303) OXYGEN=(DOMV/DOS-1)*100.13+6 AKIPP=-AKIPP/1000 TURBID=0.857+0.000029*TURBID+0.1 DEPTH=0.00186*DEPTH ENDIF

IF (LOGGER.EQ.6) THEN C Logger Calibration 6 : READ(7,*,END=500) IDAY,IMON,IHOUR,IMIN,TMV,DEPTH,DOMV, &AKIPP,CONDUCT,TURBID,RDEPTH,PRESSURE,POWER TEMP=10.1+0.000681*TMV DOST=EXP((3.6902+0.0243*TEMP)*2.303) OXYGEN=(DOMV/DOST)*100.0 AKIPP=-AKIPP/1000

19 count=depth DEPTH=((0.208*depth+ -9.54)/100)+2.21 rcount=rdepth RDEPTH=((0.0349*RCOUNT+6.87)/100.0)+1.26 TURBID=0.973+0.000034*TURBID PRESSURE =PRESSURE/100 ENDIF

IF (LOGGER.EQ.7) THEN C Logger Calibration 7 : READ(7,*,END=500) IMON,IDAY,IHOUR,IMIN,TMV,DEPTH,DOMV, &AKIPP,CONDUCT,TURBID,POWER TEMP=9.98+0.000610*TMV+0.7 DOST=EXP((3.6902+0.0243*TEMP)*2.303) OXYGEN=-DOMV/DOST*100+15 AKIPP,AKIPP/1000+0.1 DEPTH=(((0.207*depth)+12.2)/100)+1.97 TURBID=1.12+0.000036*TURBID-0.1 CONDUCT=CONDUCT/1000.0 POWER=POWER/1000.0 ENDIF

IF (LOGGER.EQ.8) THEN C Logger Calibration 8 : READ(7,*,END=500)IMON,IDAY,IHOURJMIN,TMV,DEPTH,DOMV, &AKIPP,TURBID TEMP=16.4+(0.681*TMV) DOST=EXP((0.4843+0.0244*TEMP)*2.303) OXYGEN,DOMV/DOST*100.0+0.5 AKIPP=-AKIPP+0.23 DEPTH=DEPTH+0.40 TURBID=1.13+0.05*(TURBID*-1.0) ENDIF

C Check use of 'E OF' to Linearise ETU's.

Z(1)=TEMP Z(2)=DEPTH Z(3)=OXYGEN Z(4)=AKIPP Z(5)=TURBID Z(6)=CONDUCT Z(7)=RDEPTH Z(8)=BLANK8 Z(9)=PRESSURE Z(10)=BLANK10 Z(11)=BLANK11

20 Z(12)=POWER

C Set Time features : J=J+1 TIME(J)=IDAY+FLOAT(IHOUR)/24+FLOAT(IMIN)/(24*60) IF (J.EQ.1) THEN IMONO=IMON IDAYO=IDAY ENDIF IF (IMON.NE.IMONO)THEN IMON1=IMONO 410 TIME(J)=TIME(J)+MDAYS(IMON1) IMON1=IMON1+1 IF (IMON1.GT.12) IMON1=1 IF (IMON.NE.IMON1) GOTO 410 ENDIF IF (IPRIN.EQ.1) THEN WRITE(6,315) IDAY,IMONJHOUR,IMIN,TEMP,DEPTH,OXYGEN,AKIPP, &TURBID,RDEPTH,PRESSURE,POWER ENDIF WRITE(8,315) IDAY,IMONJHOUR,IMIN,TEMP,DEPTH,OXYGEN,AKIPP, &TURBID,RDEPTH,PRESSURE,POWER 315 FORMAT(4I4,8F10.3)

DO 370 K=1,KVAR8 YN=Z(IC) IF (YN.LT.Y0(K)) YO(K)=YN IF (YN.GT.Y9(K)) Y9(K)=YN 370 Y(J,K)=YN IF (J.EQ.6000) THEN WRITE(6,*) ' Maximum No. of Time Points = 6000' STOP ENDIF IMON9=IMON IDAY9=IDAY

GOTO 300

500 CONTINUE C End of reading in data. J9=J TIMEO=AINT(TIME(1)) TIME9=AINT(TIME(J9))+1 WRITE(6,502) TIMEO,TIME9 502 FORMAT(/' DATA LIMITS (Min , Max Days) ',2F7.0) WRITE(6,503) 503 FORMAT(' Input Min,Max Day number to be plotted :') READ(5,*) TIMEO,TIME9

21 WRITE(6,504) 504 FORMAT(/10X,' VARIABLE LIMITS :',8X,'STANDARD',12X,'THIS DATA'/ &32X,'Min Max Min Max') DO 508 K=1,KVAR8 IF (Y9(K).LT.999999) THEN WRITE(6,505) KYNAME(K),YMIN(K),YMAX(K),Y0(K),Y9(K) 505 FORMAT(I4,1X,A20,2F10.2,2X,2F10.2) ELSE WRITE(6,506) K,YNAME(K),YMIN(K),YMAX(K),Y0(K),Y9(K) 506 FORMAT(14,1X,A20,2F10.2,2X,2E10.5) ENDIF 508 CONTINUE WRITE(6,510) 510 FORMAT(/' Input Numbers (1-12) of the variables for which data ', &' rather than standard'/' limits are to be used in the plots :7 &' (hit RETURN to use standard limits for all variables) :') DO 512 K=1,KVAR8 YPO(K)=YMIN(K) YP9(K)=YMAX(K) 512 IPLIM(K)=-9 READ(5,'(A80)') ALINE READ(ALINE,*,END=514) (IPLIM(K),K=1,KVAR8) 514 DO 515 K=1,KVAR8 K1=IPLIM(K) IF (K1.GT.0) THEN YPO(K1)=Y0(K1) YP9(K1)=Y9(K1) ENDIF 515 CONTINUE C Initialise Plotting WRITE(6,518) 518 FORMAT(' PLOTTER:7 (1)=HP7475 ; (2)=HP7470 ;', se (3) = Versatec ; (4)=Tektronics 4207 ; (9)=END :') READ(5,*) IPDEV IF (IPDEV.EQ.9) GOTO 9000 IF (IPDEV.EQ.3) IDEV=3436 IF (IPDEV.EQ.4) IDEV=4207 IF (IPDEV.EQ.2) THEN IPSIZE=1 ELSE WRITE(6,520) 520 FORMAt PAPER SIZE: (1)=A4 ; (2)=A3 :') READ(5,*) IPSIZE ENDIF IF (IPDEV.LE.2) THEN WRITE(6,530) 530 FORMAT(' LONG SIDE is : (1)=Vertical ; (2)=Horizontal :') READ(5,*) IPLONG

22 IDEV=747000+(2IPDEV)*500+(5-IPSIZE)*10+IPLONG ENDIF IF (IPSIZE.EQ.1) THEN Z1=275.0 Z2=190.0 ELSE Z1=400.0 Z2=275.0 ENDIF IF (IPL0NGEQ.1) THEN XDAREA=Z2 YDAREA=Z1 ELSE XDAREA=Z1 YDAREA=Z2 ENDIF XDAREA=XDAREA-20 YDAREA=YDAREA-20 XPAGE=XDAREA+40 YPAGE=YDAREA+40 CALL DEVICE(IDEV) CALL PAGMAP(1) CALL PAGE2(XPAGE,YPAGE) CALL PAGBEG

C Set plotting limits to edge of page to get all points/errors drawn : CALL GRASET TLEN=2.4 CALL CHHITS(TLEN) DO 2000 K=1,KVAR9 YS0=15+(1-FLOAT(K)/KVAR9)*YDAREA CALL SHIFTO CALL SHIFT2(25.0,YSO) YDAT=YDAREA/KVAR9-15 CALL GRAFIX(XDAREA,YDAT,0.0)

C Plot axes and data for first(L=1) and then possible the second variable(L=2) C on this graph : DO 1800 L=1,2 K1=N(K,L) IF (K1.EQ.-1) GOTO 1800 CALL DEFLA2(TIMEO,TIME9,YPO(K1),YP9(K1)) CALL POILIM(TIMEO,TIME9,1) CALL POILIM(YPO(K1),YP9(K1),2) YR=ABS(YP9(K1)-YPO(K1))

IF (L.GT.1) GOTO 1000

23 C Section to Draw and Label the Time axis neatly : CALL ANNINT(3) CALL TL2BEG(1) TIME1=TIMEO 900 CALL ANMSEL(1.0,0.0,1.4,0.0) CALL TICLA2(TIME1,0) CALL ANMSEL(0.0,0.0,0.0,0.0) DAY=TIME1 IF (DAY.GT.MDAYS(IMONO))DAY=DAY-MDAYS(IMONO) DAY1=TIME1+0.5 IF (TIME1.LT.TIME9) CALL TICLB2(DAY1,DAY,1) TIME1=TIME1+1 IF (TIME1 LE TIME9) GOTO 900 CALL TL2END IF (K.EQ.KVAR9) THEN TIME1=TIME0+0.1 Y1=YP0(K1)-0.05*YR*KVAR9 WRITE(ALINE,'(A9,I5)') CMON(IMONO),IYEARO CALL TEXLA2(TIME1,Y1,ALINE,1,14,1) IF (IMON9.GT.IMONO)THEN TIME1=TIME9-0.9 CALL TEXLA2(TIMELY1,CMON(IMON9),1,9,1) ENDIF ENDIF

1000 CALL ANMSEL(1.0,0.0,0.5,0.0) JTIC=0 1020 JTIC=JTIC+1 IF (YR.GT.YRANGE(JTIC)) GOTO 1020 IF (YTICK(JTIC).LT.1) THEN CALL ANNFIX(4,1) ELSE CALL ANNINT(4) ENDIF C Draw secondary Y axis if L>1 : IF (L.GT.1) CALL GRISEL(0,3,0) CALL AXILB2(YTICKOTIC),NTICIC(JTIC),2) IF (L.GT.1) CALL GRISEL(3,0,0) Y1=YP9(K1)+YR/30 IF (L.EQ.1) TIME1=TIME0+0.2 IF (L.GT.1) TIME1=TIME0+0.8*(TIME9-TIME0) CALL TEXLA2(TIME1,Y1,YNAME(K1),1,20,1) IF (K1.EQ.1) THEN C Put o in Degrees C : TNAME='. TNAME(13:13)=CHAR(24) CALL CHSETS(3) CALL TEXLA2(TIME1,Y1,TNAME,1,20,1)

24 CALL CHSETS(-1) ENDIF CALL LINSEL(1) CALL MARSEL(0) C Plot second variable N2(K) as dotted line, if requested : DO 1200 J=1,J9 1200 YC(J)=Y(J,K1) IF (L.GT.1) CALL LNSETS(2) CALL PLOLA2(TIME,YC,J9) IF (L.GT.1) CALL LNSETS(1) 1800 CONTINUE C 2000 CONTINUE CALL PAGEND CALL GCLOSE WRITE(6,'(1X,A80)') ALINE 9000 STOP END

25 Environment Research A NaturalCouncil