Pharmacology – Antimicrobials -Sulfonamides

Total Page:16

File Type:pdf, Size:1020Kb

Pharmacology – Antimicrobials -Sulfonamides Drug Drug Class Mechanism of Action Indications Adverse Effects Specific Uses Sulfamethoxazole + Trimethoprim (Cotrimoxazole): PCP in AIDS Patients (DoC) Sulfadoxine + Pyrimethamine: Malaria Sulfadiazine + Pyrimethamine: Toxoplasmosis Sulfasalazine: PABA Analog Bacteriostatic Agents Against: (Sulfapyridine + 5-Aminosalicylic Acid): Bacteria Use PABA to Synthesize Folic Acid Gram + and Gram - Bacteria: Ulcerative Colitis and Rheumatoid Arthritis Crystalluria: Folic Acid is Essential for Purine/Pyrimidine Synthesis S. Pyogenes ------------------------------------------------- Hematuria and Renal Failure (Tx: Sodium Bicarbonate) ------------------------------------------------------ E. Coli Sulfacetamide: Hypersensitivity: Inhibit Dihydropteroate Synthase Enterobacter Spp. Eye Infections Skin Rashes Conjuctivitis or Adjuvant for Trachoma --> Folic Acid Synthesis Inhibition Toxoplasma Folic Acid Synthesis Inhibitors Fever Mafenide: Sulfonamides ---------------------- P. Jiroveci Bacteriostatic Exfoliative Dermatitis Used in Burn Dressing Well Absorbed from GIT Vibrio Cholera Stevens Johnson Syndrome Causes Burning/Pain/Metabolic Acidosis Cross BBB Nocardia Phototoxicity Silver Sulfadiazine: Metabolized by Acetylation and Glucuronidation in the Chlamydia Hemolysis in G6PD Deficiency Active Against Bacteria/Fungi Liver ---------- Kernicterus (In Newborns) Used in Burn Dressings and Ulcers Acetylated Derivative is Insoluble in Urine POOR Anaerobe Activity (Less Toxicity than Mafenide) Causes Crystalluria Pseudomonas is Intrinsically Resistant ------------------------------ Resistance: Overproduction of PABA Production of Folic-Acid Synthesizing Enzyme (Dihydropteroate Synthase) that has LOW AFFINITY For Sulfonamides Impair Permeability to Sulfonamides Inhibits Dehydrofolate Reductase Patients Allergic to Sulfa Drugs Results from Reduced Cell Permeability, Prevents Dihydrofolate --> Tetrahydrofolate Concentrates in Prostatic Fluid and Folic Acid Synthesis Inhibitors Bone Marrow Suppression Overproduction of Dyhydrofolate Trimethoprim Prevents Synthesis of Purine and DNA Vaginal Fluid Acute Bacteriostatic Enterocolitis Reductase, or Production of an Altered ------------------------------------------------------------------------- UTI Reductase with Reduced Drug Binding Drug is Weak Base and Attracked to Acidic Fluids Prostatitis Methicillin Resistant Strains Combination of Trimethoprim + Sulfamethoxazole NOT NOSOCOMIAL INFECTION Fixed Dose Ratio: 5:1 (S:T) E. Coli (UTI) Plasma Concentration: 20:1 (Maximum Synergy) Salmonella (Typhoid Fever) ---------------- Shigella (Bacterial Diarrhea) Folic Acid Synthesis Inhibitors Cotrimoxazole Sulfamethoxazole: Respiratory Tract Infections Decreases Resistance Bacteriocidal Inhibits Dihydropteroate Synthase (No Mycoplasma) Trimethoprim: Toxoplasma Inhibits Dyhydrofolate Reductase Pneumocystic Carinii Causes the Sequential Blockage of Folate Metabolism DoC: Nocardia DoC: P. Jiroveci Gram - Bacteria: E. Coli Proteus Klebsiella Limited Use: Shigella Rapid Resistance Quinolones Bactericidal Does not Achieve Systemic Limited Therapeutic Utility Nalidixic Acid Direct Acting Nulceic Acid Inhibits DNA Gyrase (Topoisomerase II) Anti-Bacterial Levels Adverse Effects: Synthesis Inhibitors Inhibits DNA Synthesis High Concentration in Urine Seizures -- Hemolysis in G6PD Deficiency Lethal to Urinary Pathogens (Urinary Antiseptic) Useful in LOWER UTIs Bacteriocidal Concentration-Dependent Killing Post-Antibiotic Effect ---------------------------------------------------------- Topoisomerases: Change the Configuration of DNA by Nicking and Re- Both Gram + and - Antacids Impair Absorption Sealing Mechanisms. FQs Chelate Cations NSAIDs Enhance the CNS Toxicity of FQs Contraindicated: Fluroquinolones INHIBIT the RE-SEALING STEP. Delay Activity Seizures are Reported Pregnancy and Children ------------------------------------------ (Take 2 hours Before/4 Hours After ------------------------------------------------------------------------ (Inhibition of Chondrogenesis) Inhibit Topoisomerase II/IV Meal) GI Distress Resistance: Inhibits DNA Synthesis ------------------- Fluoroquinolones Cartilage Damage, Tendonitis Mutations in DNA Gyrase and Topoisomerase II (DNA Gyrase): Typhoid Fever Direct Acting Nulceic Acid Rupture of the Achilles' Tendon Topoisomerase IV Prevents the Relaxation of Positively Supercoiled DNA UTIs (Not Moxifoxacin) Synthesis Inhibitors Phototoxicity ----- that is Required for Normal Transcription and Replication Gasteroenteritis CNS: Drug Interactions: Topoisomerase IV: Skin, Soft Tissue, Bone Infections Insomnia Dizziness P450 Inhibitors Interferes with Separation of Replicated Chromosomal (Not Norfloxicin) Headache Seizures (Increased Concentrations of DNA into the Respective Daughter Cells during Cell Anthrax (DoC: Ciprofloxacin) Liver Failure (Trovafloxacin, Pefloxacin) Theophylline, Warfarin) Division Chlamydia Prolonged QT ------------------------ Urethritis Cervicitis Oral, Well Absorbed Metabolized in Liver High Tissue Penetration --------------------------- Inhibited by Probenecid Excellent: Gram - Moderate: Gram + Fluoroquinolones E. Coli Drug Interactions: Resistance: Ciprofloxacin Direct Acting Nulceic Acid Same as Above Salmonella Typhi Inhibition of Metabolism of: Aminoglycoside Acetyltrasnferase Synthesis Inhibitors H. Influenzar Neisseria Vibrio Cholera Theophylline and Warfarin Can Inactive Drug Most Potent: Pseudomonas DoC: Anthrax Fluoroquinolones Least Active Norfloxacin Direct Acting Nulceic Acid Same as Above Used in Complicated/Uncomplicated Synthesis Inhibitors UTIs Prostatitis Enhanced Gram + Activity Excellent Against Anaerobes Trovafloxacin: Fluoroquinolones Trovafloxacin Moxifloxacin: Can be used normally in renal patients (B. Fragilis) Not Used - Liver Toxicity Direct Acting Nulceic Acid Moxifloxacin (Other FQs: Reduce Dose) Levo, Gemi, Moxi: Moxifloxacin: Synthesis Inhibitors Respiratory FQ's: Poor Activity Against Peusomonas Gram + and Atypical RTIs FQs: Ciprofloxacin: Co-Trimoxazole Most Common Classs of Antibiotics Acute Nitrofurantoin: Nitrofuraontoin, Amoxicillin, or a Cephalosporin: (Trimethoprim and Fosfomycin: Prescribed for UTI, but They SHOULD NOT Uncomplicatted 5 Days Nitrofurantoin: Do not Give during 3rd trimester or later Seulfamethoxazole): Single Dose for Pregnancy Women be used as First-Line Agents or Empiric Cystitis Alternative with Lower Rate of Resistance for E. Coli Only due to risk of hemolytic anemia in the newborn 3 Days Treatment of Acute Uncomplication Cystitis (Due to Resistance) Ceftriaxone: Acute Ciproflocazin Cotrimoxazole: Single IV Injection Uncomplicated or Anterative if Uropathogens are Suscepible Followed by: Pyelonephritis 5 Days of Levofloxavin 7-14 Days of Oral Anti-Microbial In Patients with Indwelling Urinary Catheters or Anatomic/Function Abnormalities Alternatives: of the Urinary Tract Fluoroquinolones: (First Choice) Cotrimoxazole Complicated UTIs: --------------- Ciprofoxacin Amoxicillin + Clavulanac Acid Caused by: Alternative: Levofoxacin 3rd Gen Cephalosporins Antibiotic-Resistant Gram - Bacilli (Cefdinir Ceftibuten) MRSA Vancyomycin-Resistant Strains.
Recommended publications
  • Comparable Bioavailability and Disposition of Pefloxacin in Patients
    pharmaceutics Article Comparable Bioavailability and Disposition of Pefloxacin in Patients with Cystic Fibrosis and Healthy Volunteers Assessed via Population Pharmacokinetics Jürgen B. Bulitta 1,* , Yuanyuan Jiao 1, Cornelia B. Landersdorfer 2 , Dhruvitkumar S. Sutaria 1, 1 1 3 4 5,6, Xun Tao , Eunjeong Shin , Rainer Höhl , Ulrike Holzgrabe , Ulrich Stephan y and Fritz Sörgel 5,6,* 1 Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, FL 32827, USA 2 Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville VIC 3052, Australia 3 Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, 90419 Nürnberg, Germany 4 Institute for Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany 5 IBMP—Institute for Biomedical and Pharmaceutical Research, 90562 Nürnberg-Heroldsberg, Germany 6 Department of Pharmacology, University of Duisburg, 47057 Essen, Germany * Correspondence: [email protected]fl.edu (J.B.B.); [email protected] (F.S.); Tel.: +1-407-313-7010 (J.B.B.); +49-911-518-290 (F.S.) Deceased. y Received: 17 May 2019; Accepted: 4 July 2019; Published: 10 July 2019 Abstract: Quinolone antibiotics present an attractive oral treatment option in patients with cystic fibrosis (CF). Prior studies have reported comparable clearances and volumes of distribution in patients with CF and healthy volunteers for primarily renally cleared quinolones. We aimed to provide the first pharmacokinetic comparison for pefloxacin as a predominantly nonrenally cleared quinolone and its two metabolites between both subject groups. Eight patients with CF (fat-free mass [FFM]: 36.3 6.9 kg, average SD) and ten healthy volunteers (FFM: 51.7 9.9 kg) received 400 mg ± ± ± pefloxacin as a 30 min intravenous infusion and orally in a randomized, two-way crossover study.
    [Show full text]
  • Fluoroquinolones in the Management of Acute Lower Respiratory Infection
    Thorax 2000;55:83–85 83 Occasional review Thorax: first published as 10.1136/thorax.55.1.83 on 1 January 2000. Downloaded from The next generation: fluoroquinolones in the management of acute lower respiratory infection in adults Peter J Moss, Roger G Finch Lower respiratory tract infections (LRTI) are ing for up to 40% of isolates in Spain19 and 33% the leading infectious cause of death in most in the United States.20 In England and Wales developed countries; community acquired the prevalence is lower; in the first quarter of pneumonia (CAP) and acute exacerbations of 1999 6.5% of blood/cerebrospinal fluid isolates chronic bronchitis (AECB) are responsible for were reported to the Public Health Laboratory the bulk of the adult morbidity. Until recently Service as showing intermediate sensitivity or quinolone antibiotics were not recommended resistance (D Livermore, personal communi- for the routine treatment of these infections.1–3 cation). Pneumococcal resistance to penicillin Neither ciprofloxacin nor ofloxacin have ad- is not specifically linked to quinolone resist- equate activity against Streptococcus pneumoniae ance and, in general, penicillin resistant in vitro, and life threatening invasive pneumo- pneumococci are sensitive to the newer coccal disease has been reported in patients fluoroquinolones.11 21 treated for respiratory tract infections with Resistance to ciprofloxacin develops rela- these drugs.4–6 The development of new fluoro- tively easily in both S pneumoniae and H influ- quinolone agents with increased activity enzae, requiring only a single mutation in the against Gram positive organisms, combined parC gene.22 23 Other quinolones such as with concerns about increasing microbial sparfloxacin and clinafloxacin require two resistance to â-lactam agents, has prompted a mutations in the parC and gyrA genes.11 23 re-evaluation of the use of quinolones in LRTI.
    [Show full text]
  • FLUOROQUINOLONES: from Structure to Activity and Toxicity
    FLUOROQUINOLONES: from structure to activity and toxicity F. Van Bambeke, Pharm. D. & P. M. Tulkens, MD, PhD Unité de Pharmacologie Cellulaire et Moléculaire Université Catholique de Louvain, Brussels, Belgium SBIMC / BVIKM www.sbimc.org - www.bvikm.org www.md.ucl.ac.be/facm www.isap.org soon... Mechanism of action of fluoroquinolones: the basics... PORIN DNA Topo DNA gyrase isomerase Gram (-) Gram (+) 2 key enzymes in DNA replication: DNA gyrase topoisomerase IV bacterial DNA is supercoiled Ternary complex DNA - enzyme - fluoroquinolone DNA GYRASE catalytic subunits COVALENTLY CLOSED CIRCULAR DNA FLUOROQUINOLONES: DNA GYRASE ATP binding subunits 4 stacked molecules (Shen, in Quinolone Antimicrobial Agents, 1993) Resistance to fluoroquinolones: the basics decreased efflux pump permeability DNA mutation of DNA gyrase Topo isomerase the enzymes Gram (-) Gram (+) Fluoroquinolones are the first entirely man-made antibiotics: do we understand our molecule ? R5 O R COOH 6 R7 X8 N R1 Don’t panic, we will travel together…. Chemistry and Activity This is where all begins... The pharmacophore common to all fluoroquinolones BINDING TO DNA R5 O O R C 6 - BINDING TO O BINDING TO THE ENZYME THE ENZYME R7 X8 N R1 AUTO-ASSEMBLING DOMAIN (for stacking) From chloroquine to nalidixic acid... nalidixic acid N CH3 O O HN CH 3 C - O chloroquine CH N N Cl N 3 C2H5 1939 O O C O- 1962 Cl N 1958 C2H5 7-chloroquinoline (synthesis intermediate found to display antibacterial activity) Nalidixic acid * a • typical chemical features of O O fluoroquinolones (a, b, c) BUT a naphthridone C - O- b (N at position 8: ) H C N N 3 • limited usefulness as drug C H 2 5 • narrow antibacterial spectrum c (Enterobacteriaceae only) • short half-life (1.5h) • high protein binding (90%) * Belg.
    [Show full text]
  • Paper I and II)
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1335 Constraints on up-regulation of drug efflux in the evolution of ciprofloxacin resistance LISA PRASKI ALZRIGAT ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-554-9923-5 UPPSALA urn:nbn:se:uu:diva-320580 2017 Dissertation presented at Uppsala University to be publicly examined in B22, BMC, Husargatan 3, Uppsala, Friday, 9 June 2017 at 09:00 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Faculty examiner: Professor Fernando Baquero (Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain). Abstract Praski Alzrigat, L. 2017. Constraints on up-regulation of drug efflux in the evolution of ciprofloxacin resistance. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1335. 48 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9923-5. The crucial role of antibiotics in modern medicine, in curing infections and enabling advanced medical procedures, is being threatened by the increasing frequency of resistant bacteria. Better understanding of the forces selecting resistance mutations could help develop strategies to optimize the use of antibiotics and slow the spread of resistance. Resistance to ciprofloxacin, a clinically important antibiotic, almost always involves target mutations in DNA gyrase and Topoisomerase IV. Because ciprofloxacin is a substrate of the AcrAB-TolC efflux pump, mutations causing pump up-regulation are also common. Studying the role of efflux pump-regulatory mutations in the development of ciprofloxacin resistance, we found a strong bias against gene-inactivating mutations in marR and acrR in clinical isolates.
    [Show full text]
  • TROVAN® Tablets(Trovafloxacin Mesylate)
    TROVAN- trovafloxacin mesylate tablet, film coated TROVAN- trovafloxacin mesylate injection, solution, concentrate Roerig ---------- TROVAN® Tablets (trovafloxacin mesylate) TROVAN® I.V. (alatrofloxacin mesylate injection) For Intravenous Infusion TROVAN® HAS BEEN ASSOCIATED WITH SERIOUS LIVER INJURY LEADING TO LIVER TRANSPLANTATION AND/OR DEATH. TROVAN-ASSOCIATED LIVER INJURY HAS BEEN REPORTED WITH BOTH SHORT-TERM AND LONG-TERM DRUG EXPOSURE. TROVAN USE EXCEEDING 2 WEEKS IN DURATION IS ASSOCIATED WITH A SIGNIFICANTLY INCREASED RISK OF SERIOUS LIVER INJURY. LIVER INJURY HAS ALSO BEEN REPORTED FOLLOWING TROVAN RE- EXPOSURE. TROVAN SHOULD BE RESERVED FOR USE IN PATIENTS WITH SERIOUS, LIFE- OR LIMB-THREATENING INFECTIONS WHO RECEIVE THEIR INITIAL THERAPY IN AN IN-PATIENT HEALTH CARE FACILITY (I.E., HOSPITAL OR LONG-TERM NURSING CARE FACILITY). TROVAN SHOULD NOT BE USED WHEN SAFER, ALTERNATIVE ANTIMICROBIAL THERAPY WILL BE EFFECTIVE. (SEE WARNINGS.) TROVAN is available as TROVAN Tablets (trovafloxacin mesylate) for oral administration and as TROVAN I.V. (alatrofloxacin mesylate injection), a prodrug of trovafloxacin, for intravenous administration. DESCRIPTION TROVAN Tablets TROVAN Tablets contain trovafloxacin mesylate, a synthetic broad-spectrum antibacterial agent for oral administration. Chemically, trovafloxacin mesylate, a fluoronaphthyridone related to the fluoroquinolone antibacterials, is (1α, 5α, 6α)-7-(6-amino-3-azabicyclo[3.1.0]hex-3-yl)-1-(2,4- difluorophenyl)-6-fluoro-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acid, monomethanesulfonate. Trovafloxacin mesylate differs from other quinolone derivatives by having a 1,8-naphthyridine nucleus. The chemical structure is: Its empirical formula is C20H15F3N4O3•CH3SO3H and its molecular weight is 512.46. Trovafloxacin mesylate is a white to off-white powder.
    [Show full text]
  • WHO Report on Surveillance of Antibiotic Consumption: 2016-2018 Early Implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some Rights Reserved
    WHO Report on Surveillance of Antibiotic Consumption 2016-2018 Early implementation WHO Report on Surveillance of Antibiotic Consumption 2016 - 2018 Early implementation WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons. org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non- commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • Current Use for Old Antibacterial Agents: Polymyxins, Rifamycins, and Aminoglycosides
    Current Use for Old Antibacterial Agents: Polymyxins, Rifamycins, and Aminoglycosides a, b,c Luke F. Chen, MBBS (Hons), MPH, CIC, FRACP *, Donald Kaye, MD KEYWORDS Rifaximin Pharmacokinetics Pharmacodynamics Toxicity Polymyxins Aminoglycoside Rifampin The polymyxins, rifamycins, and the aminoglycosides may be considered special use antibacterial agents. They are all old agents and are rarely considered the drugs of choice for common bacterial infections. The polymyxins are increasingly important because of the continued emergence of multidrug resistant (MDR) gram-negative organisms, such as strains of Pseudomonas aeruginosa or carbapenemase-producing Enterobacteriaceae that are susceptible to few remaining drugs. Rifampin is only considered in the context of nonmycobacterial infections where its role is limited and sometimes controversial. Rifaximin is a new enteric rifamycin that is increasingly used for gastrointestinal infections such as trav- eler’s diarrhea and Clostridium difficile infections (CDIs). This article will also review the current role of aminoglycosides in nonmycobacterial systemic infections, with an emphasis on the use of single daily administration. POLYMYXINS The polymyxins were discovered in 1947. Although there are five known polymyxin molecules, sequentially named polymyxin A through polymyxin E, only two polymyxins are available for therapeutic use: polymyxin B and polymyxin E (colistin) (Table 1). Both polymyxin B and polymyxin E are large cyclic cationic polypeptide detergents A version of this article appeared in the 23:4 issue of the Infectious Disease Clinics of North America. a Division of Infectious Diseases and International Health, Department of Medicine, Duke University Medical Center, Box 102359, Hanes House, Durham, NC 27710, USA b Department of Medicine, Drexel University College of Medicine, Philadelphia, PA 19102, USA c 1535 Sweet Briar Road, Gladwyne, PA 19035, USA * Corresponding author.
    [Show full text]
  • Intracellular Penetration and Effects of Antibiotics On
    antibiotics Review Intracellular Penetration and Effects of Antibiotics on Staphylococcus aureus Inside Human Neutrophils: A Comprehensive Review Suzanne Bongers 1 , Pien Hellebrekers 1,2 , Luke P.H. Leenen 1, Leo Koenderman 2,3 and Falco Hietbrink 1,* 1 Department of Surgery, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; [email protected] (S.B.); [email protected] (P.H.); [email protected] (L.P.H.L.) 2 Laboratory of Translational Immunology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; [email protected] 3 Department of Pulmonology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands * Correspondence: [email protected] Received: 6 April 2019; Accepted: 2 May 2019; Published: 4 May 2019 Abstract: Neutrophils are important assets in defense against invading bacteria like staphylococci. However, (dysfunctioning) neutrophils can also serve as reservoir for pathogens that are able to survive inside the cellular environment. Staphylococcus aureus is a notorious facultative intracellular pathogen. Most vulnerable for neutrophil dysfunction and intracellular infection are immune-deficient patients or, as has recently been described, severely injured patients. These dysfunctional neutrophils can become hide-out spots or “Trojan horses” for S. aureus. This location offers protection to bacteria from most antibiotics and allows transportation of bacteria throughout the body inside moving neutrophils. When neutrophils die, these bacteria are released at different locations. In this review, we therefore focus on the capacity of several groups of antibiotics to enter human neutrophils, kill intracellular S. aureus and affect neutrophil function. We provide an overview of intracellular capacity of available antibiotics to aid in clinical decision making.
    [Show full text]
  • Multidrug Therapy
    Chapter 6 The role of WHO including TDR ___________________________________________________ 6.1 The WHO Leprosy unit Overview S.K. Noordeen The World Health Organization was chiefly responsible for developing and promoting – and to an extent implementing – MDT. The WHO Leprosy unit played a key role in promoting acceptance of the recommendations of the 1981 Study Group by WHO regional structures, Member States, NGOs, donor agencies, and technical persons responsible for leprosy control. The Organization’s promotional efforts were carried out through global, regional, and national meetings and discussions. The support provided by WHO to countries through extrabudgetary funding, mainly from The Nippon Foundation, facilitated the process of implementing treatment with MDT greatly; significant support (including technical guidelines, training, logistics, and limited procurement of MDT drugs) was also provided to countries directly by international NGOs and other funding agencies. As long as countries had sufficient political commitment and reasonable health infrastructure, it was not difficult to mobilize funds for MDT drugs and related leprosy control activities. Implementation of MDT was also discussed in very positive terms at many of the scientific meetings held outside WHO, such as the International Leprosy Congresses. Member associations of ILEP were also able to increase MDT coverage in the projects they supported. In terms of developments in different WHO regions, the situation in the Eastern Mediterranean and in the Western Pacific, where the leprosy problem was relatively limited and support from NGOs and donor agencies quite strong, were relatively favourable. The African region also received good support from NGOs, and in several African countries there was a downward trend in leprosy prevalence.
    [Show full text]
  • Diversity and Resistance Profiles of Human Non-Typhoidal Salmonella
    antibiotics Article Diversity and Resistance Profiles of Human Non-typhoidal Salmonella spp. in Greece, 2003–2020 Kassiani Mellou 1 , Mary Gkova 1, Emily Panagiotidou 2, Myrsini Tzani 3, Theologia Sideroglou 1 and Georgia Mandilara 2,* 1 National Public Health Organization, 15123 Maroussi, Greece; [email protected] (K.M.); [email protected] (M.G.); [email protected] (T.S.) 2 National Reference Centre for Salmonella, School of Public Health, University of West Attica, 11521 Athens, Greece; [email protected] 3 General Veterinary Directorate, Hellenic Ministry of Rural Development and Food, 10176 Athens, Greece; [email protected] * Correspondence: [email protected]; Tel.: +30-210-2132010353 Abstract: Salmonella spp. is one of the most common foodborne pathogens in humans. Here, we summarize the laboratory surveillance data of human non-typhoidal salmonellosis in Greece for 2003–2020. The total number of samples declined over the study period (p < 0.001). Of the 193 identi- fied serotypes, S. Enteritidis was the most common (52.8%), followed by S. Typhimurium (11.5%), monophasic S. Typhimurium 1,4,[5],12:i:- (4.4%), S. Bovismorbificans (3.4%) and S. Oranienburg (2.4%). The isolation rate of S. Enteritidis declined (p < 0.001), followed by an increase of the less common serotypes. Monophasic S. Typhimurium has been among the five most frequently identified serotypes every year since it was first identified in 2007. Overall, Salmonella isolates were resistant to penicillins (11%); aminoglycosides (15%); tetracyclines (12%); miscellaneous agents (sulphonamides, Citation: Mellou, K.; Gkova, M.; trimethoprim, chloramphenicol and streptomycin) (12%) and third-generation cephalosporins (2%).
    [Show full text]
  • Surveillance of Antimicrobial Consumption in Europe 2013-2014 SURVEILLANCE REPORT
    SURVEILLANCE REPORT SURVEILLANCE REPORT Surveillance of antimicrobial consumption in Europe in Europe consumption of antimicrobial Surveillance Surveillance of antimicrobial consumption in Europe 2013-2014 2012 www.ecdc.europa.eu ECDC SURVEILLANCE REPORT Surveillance of antimicrobial consumption in Europe 2013–2014 This report of the European Centre for Disease Prevention and Control (ECDC) was coordinated by Klaus Weist. Contributing authors Klaus Weist, Arno Muller, Ana Hoxha, Vera Vlahović-Palčevski, Christelle Elias, Dominique Monnet and Ole Heuer. Data analysis: Klaus Weist, Arno Muller and Ana Hoxha. Acknowledgements The authors would like to thank the ESAC-Net Disease Network Coordination Committee members (Marcel Bruch, Philippe Cavalié, Herman Goossens, Jenny Hellman, Susan Hopkins, Stephanie Natsch, Anna Olczak-Pienkowska, Ajay Oza, Arjana Tambić Andrasevic, Peter Zarb) and observers (Jane Robertson, Arno Muller, Mike Sharland, Theo Verheij) for providing valuable comments and scientific advice during the production of the report. All ESAC-Net participants and National Coordinators are acknowledged for providing data and valuable comments on this report. The authors also acknowledge Gaetan Guyodo, Catalin Albu and Anna Renau-Rosell for managing the data and providing technical support to the participating countries. Suggested citation: European Centre for Disease Prevention and Control. Surveillance of antimicrobial consumption in Europe, 2013‒2014. Stockholm: ECDC; 2018. Stockholm, May 2018 ISBN 978-92-9498-187-5 ISSN 2315-0955
    [Show full text]
  • Spectrophotometric Determination of Pefloxacin Through Ion-Pair Complexin Pharmaceuticals
    International Journal of Academic Scientific Research ISSN: 2272-6446 Volume 5, Issue 4 (November - December2017), PP 67- 76 www.ijasrjournal.org Spectrophotometric determination of Pefloxacin through ion-pair complexin pharmaceuticals Rana M. W. Kazan1,*Hassan Seddik2, Mahmoud Aboudane3 1Postgraduate student (PhD), Faculty of Science, Aleppo University, Syria 2(Department of Chemistry, Faculty of Science, Aleppo University, Syria) 3(Department of Chemistry, Faculty of Science, Aleppo University, Syria) * Corresponding Author, Kazan [email protected] Abstract :A Simple, rapid, accurate, and sensitive spectrophotometric method was developed for the determination of Pefloxacin (PEF), in pure forms and pharmaceutical formulations. This method is based on the formation of ion-pair complex between the basic drug (PEF), and acid dye; bromocresol green (BCG). The formed complex was measured at 432 nm by using chloroform as solvent. The analytical parameters and their effects are investigated. Beer’s law was obeyed in the rangeof2.000 – 14.668 µg/mL, with correlation coefficient R2 = 0.9999. The average recovery of Pefloxacin was between 98.50and 101.65%. The limit of detection was 17.84ng/mL and limit of quantification was 54.07ng/mL. The proposed method has been successfully applied to the analysis of PEF in pure forms and pharmaceutical formulations. Keywords: Pefloxacin; bromocresol green; Spectrophotometer; pure forms; pharmaceutical formulations. INTRODUCTION Pefloxacin mesylate is described chemically as 1-ethyl-6-fluoro-7-(4-methylpiperazinyl-1)-4-oxo-1, 4- dihydro quinoline-3-carboxylic acid methane sulphonate was introduced in 1985 as a new chemical entity. It is a broad spectrum third generation fluoroquinolone antibiotic active against both gram positive and gram negative bacteria [1-3].
    [Show full text]