192435859.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

192435859.Pdf European Journal of Pharmacology 691 (2012) 275–282 Contents lists available at SciVerse ScienceDirect European Journal of Pharmacology journal homepage: www.elsevier.com/locate/ejphar Endocrine pharmacology Egonol gentiobioside and egonol gentiotrioside from Styrax perkinsiae promote the biosynthesis of estrogen by aromatase Danfeng Lu, Lijuan Yang, Qilin Li, Xiaoping Gao, Fei Wang n, Guolin Zhang nn Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China article info abstract Article history: Estrogen deficiency is associated with a variety of diseases, including osteoporosis, atherosclerosis, and Received 11 May 2012 Alzheimer’s disease. Aromatase cytochrome P450 is the only enzyme in vertebrates known to catalyze Received in revised form the biosynthesis of estrogens from androgens. Inhibitors of aromatase have been developed for the 2 July 2012 treatment of estrogen-dependent breast cancer. However, small molecular agonists of aromatase, Accepted 2 July 2012 which would be useful to locally promote estrogen biosynthesis for the prevention of estrogen Available online 13 July 2012 deficiency-induced diseases, are rarely reported. In this study, we established a nonradioactive assay Keywords: for measuring aromatase activity by using human ovarian granulosa KGN cells and identified two Egonol estrogen biosynthesis-promoting compounds, egonol gentiobioside and egonol gentiotrioside from Estrogen Styrax perkinsiae. The compounds also promoted estrogen biosynthesis in 3T3-L1 preadipocyte cells. Aromatase Further study showed that neither compound affected the transcriptional and translational expression Styrax perkinsiae KGN cell line of aromatase in KGN cells, but that both significantly promoted the in vitro enzyme activity of recombinant expressed aromatase. Egonol gentiotrioside was also found to increase the serum estrogen level in ovariectomized rats. These results suggest that these two compounds may promote estrogen biosynthesis through the allosterical regulation of aromatase activity. Egonol gentiobioside and egonol gentiotrioside are, therefore, valuable targets for structural modification and warrant further investiga- tion for their potential as novel pharmaceutical tools for the prevention of estrogen deficiency-induced diseases. & 2012 Elsevier B.V. All rights reserved. 1. Introduction et al., 1995). In adipose cells and osteoblasts, aromatase expression is driven by promoter I.4, which is regulated by class I cytokines (Zhao Estrogens are steroid hormones that regulate growth, differentia- et al., 1995; Shozu and Simpson, 1998). Thus, the regulation of tion, and function in a broad range of target tissues in the body. The estrogen biosynthesis in each tissue site of expression is unique, actions of estrogen are mediated by the estrogen receptors, which are and switches in promoter usage have been found to be associated expressed in a variety of cells and function through genomic or with the incidence of breast cancer (Simpson et al., 1997). nongenomic actions on target genes (Heldring et al., 2007). Estrogen Aromatase inhibitors, such as anastrozole, letrozole, and exe- biosynthesis is catalyzed by aromatase (CYP19A1), which is respon- mestane, have been developed for the treatment of hormone- sible for binding of the C19 androgenic steroid substrate and dependent breast cancer in postmenopausal women since they catalyzing the necessary reactions to form the phenolic A ring show superiority over conventional anti-estrogen receptor drugs characteristic of estrogens (Simpson et al., 2002). In humans, the such as tamoxifen (Johnston and Dowsett, 2003). In comparison expression of aromatase at the various sites is regulated by tissue- with the extensive number of studies dedicated to discovering specific promoters through the use of alternative splicing mechan- new aromatase inhibitors, the search for small molecular aroma- isms (Simpson, 2004). In the ovary and testes, aromatase expression tase agonists that promote estrogen biosynthesis has been small. is mediated by promoter II, which binds the transcription factors Although some herbicides, fungicides, and insecticides have been cAMP-response element binding protein (CREB) and steroidogenic found to promote aromatase expression in a cAMP-dependent or - factor-1. Aromatase expression inthegonadsisthusregulatedby independent manner (Sanderson et al., 2000; You et al., 2001; gonadotropins through the stimulation of cAMP generation (Michael Morinaga et al., 2004), more work is needed to find potent aromatase agonists that produce less side effects. Epidemiological studies have suggested the involvement of estrogen insufficiency in n osteoporosis, neurodegenerative diseases, and cardiovascular dis- Corresponding author. Tel./fax: þ86 28 85256758. nn Corresponding author. Tel./fax: þ86 28 85229901. eases (Deroo and Korach, 2006). Estrogen therapy is an established E-mail addresses: [email protected] (F. Wang), [email protected] (G. Zhang). regimen for the prevention of these diseases, but recent evidence 0014-2999/$ - see front matter & 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.ejphar.2012.07.005 276 D. Lu et al. / European Journal of Pharmacology 691 (2012) 275–282 indicates that its long-term use is accompanied by side effects such 2.4. Cell-based estrogen biosynthesis assay as increased risks of breast, ovarian, and endometrial cancer (Davison and Davis, 2003). Thus, alternative methods that improve KGN cells or 3T3-L1 cells were seeded in 24-well plates the therapeutic efficacy and safety by locally promoting estrogen overnight. The following day, the cells were replaced with biosynthesis should be developed for the prevention and treatment serum-free DMEM/F-12 medium and pretreated with the test of these diseases caused by estrogen deficiency. chemicals for 24 h. Testosterone (10 nM) was then added to each In this study, we established a nonradioactive assay for well, and the cells were incubated for a further 24 h. The culture measuring aromatase activity by using human ovarian granulosa medium and cell lysate were collected and stored at À20 1C. The KGN cells. Two natural products, egonol gentiobioside and egonol 17b-estradiol in the culture medium was quantified using a 17b- gentiotrioside from Styrax perkinsiae, were identified to signifi- estradiol magnetic particle-based ELISA according to the manu- cantly promote estrogen biosynthesis, and their effects on aro- facturer’s instructions. The OD was measured at 550 nm with the matase activity in vitro and in vivo were examined. Verioskan Flash Multimode Reader (Thermo Scientific, Waltham, MA, USA). The results, normalized to the total cellular protein content, were expressed as percentages of the control. Protein determination was carried out with the bicinchoninic acid (BCA) 2. Materials and methods protein assay kit (Bestbio, Shanghai, China). 2.1. Materials 2.5. Recombinant expressed aromatase activity assay Testosterone, formestane, forskolin, dibenzylfluorescein, and An in vitro recombinant expressed aromatase activity assay nilestriol were purchased from Sigma (Shanghai, China), dissolved was conducted as described previously with minor modifications in DMSO to a concentration of 100 mM, and stored at À20 1C. (Stresser et al., 2000; Maiti et al., 2007). In brief, the test The NADPH regenerating system was purchased from Promega compounds (5 l) were preincubated with an NADPH regenerat- (Madison, WI, USA). The recombinant expressed human aroma- m ing system (45 l of 2.6 mM NADPþ , 7.6 mM glucose-6-phos- tase plus reductase was purchased from BD Biosciences (San Jose, m phate, 0.8 U/ml glucose-6-phosphate dehydrogenase, and 1 mg/ml CA, USA). The magnetic particle-based 17b-estradiol enzyme- albumin, in 50 mM potassium phosphate, pH 7.4) for 10 min at linked immunosorbent assay (ELISA) kit was purchased from 37 1Cbefore50 l of the enzyme and substrate mixture (40 pM Bio-Ekon Biotechnology (Beijing, China). Seeds of S. perkinsiae m recombinant aromatase and 0.4 M dibenzylfluorescein in 50 mM were collected from Yongde County within the Yunnan Province m potassium phosphate, pH 7.4) were added. The reaction mixture of China, in August 2003. The seeds were identified by Prof. Xin-fen was then incubated for 2 h at 37 1C to allow the aromatase to Gao of the Chengdu Institute of Biology, Chinese Academy of generate the product and quenched with 37.5 l of 2 N NaOH. The Sciences, based on the Flora Reipublicae Popularis Sinicae, in which m mixture was then shaken for 5 min and incubated for 2 h at 37 1Cto the Engeler system was used for the definition of the plant names. enhance the noise/background ratio. The fluorescence intensity was A voucher specimen (A-157) was deposited in the Herbarium of measured at 485 nm (excitation) and 530 nm (emission). Three the Chengdu Institute of Biology, Chinese Academy of Sciences. independent experiments were performed in duplicate. 2.2. Plant extraction and isolation 2.6. Quantitative real-time RT-PCR The air-dried seeds of S. perkinsiae (1 kg) were extracted with Total cellular RNA was isolated using TRIzol reagent according 75% ethanol (3 Â 8 l) for 1.5 h under reflux. The ethanol solution to the manufacturer’s instructions (Invitrogen). Total RNA (2 mg) was concentrated under reduced pressure. The resulting extract was reverse-transcribed using SuperScript III Reverse Transcrip- (250 g) was suspended in warm H2O (2 l), and then the solution tase (Invitrogen) with oligo(dT)18 primers. Equal amounts (1 ml) was extracted with petroleum
Recommended publications
  • Treatment Effect of Bushen Huayu Extract on Postmenopausal Osteoporosis in Vivo
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 7: 1687-1690, 2014 Treatment effect of Bushen Huayu extract on postmenopausal osteoporosis in vivo LU OUYANG1,2, QIUFANG ZHANG1,2,3, XUZHI RUAN3, YIBIN FENG4 and XUANBIN WANG1,2 1Laboratory of Chinese Herbal Pharmacology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000; 2School of Pharmacy; 3Basic School of Medicine, Hubei University of Medicine, Shiyan, Hubei 442000; 4School of Chinese Medicine, LKS Faculty, The University of Hong Kong, Hong Kong, SAR, P.R. China Received December 2, 2013; Accepted March 25, 2014 DOI: 10.3892/etm.2014.1661 Abstract. Bushen Huayu extract (BSHY), a traditional Chinese model group (14.75±2.38; P<0.05), and decrease the number medicine, has been demonstrated to treat postmenopausal of osteoclasts in the BSHY-L, BSHY-M and BSHY-H groups osteoporosis, however, the underlying mechanism remains (4.00±1.85, 4.25±1.39 and 5.75±1.49, respectively) compared to be fully elucidated. The aim of the present study was to with 9.50±1.60 observed in the model group (P<0.05). These investigate the therapeutic effect of BSHY and the mecha- results suggest that BSHY is a potential therapeutic drug for nisms underlying this effect in an in vivo postmenopausal the treatment of osteoporosis in vivo. Furthermore, these results osteoporosis animal model. A total of 1 g BSHY containing suggest that the mechanism by which BSHY decreases the 7.12 µg icariin was prepared. Low-dose BSHY (BSHY-L; serum levels of IL-6 may be by regulating E2. 11.1 g/kg), medium-dose BSHY (BSHY-M; 22.2 g/kg) and high-dose BSHY (BSHY-H; 44.4 g/kg) was administered to Introduction oophorectomized rats using intragastric infusion.
    [Show full text]
  • View of Our Data Collection Tool
    University of Alberta Pharmacists’ Beliefs about Bioidentical Hormone Therapy by Tasneem Siyam A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Pharmacy practice Faculty of Pharmacy and Pharmaceutical Sciences © Tasneem Siyam Spring 2012 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. ABSTRACT OBJECTIVE: To identify pharmacists’ beliefs about bioidentical hormone therapy (BHT) and determine factors influencing these beliefs. METHODS: This was a cross-sectional survey targeting practicing pharmacists in Alberta. Participants completed a 54-item, online questionnaire, designed to capture their demographics, as well as their beliefs about BHT. Summary statistics and multivariate regression were used for analyses. Qualitative components were analyzed using phenomenological approach. RESULTS: Over half of respondents believed BHT had equal efficacy and risks as non-bioidentical hormones. Beliefs on estriol, natural progesterone, and saliva testing however, were more diverse with many do not know responses (40%). In multivariate analysis, BHT compounding practice was associated with beliefs about BHT.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.498,431 B2 Xu Et Al
    USOO9498431B2 (12) United States Patent (10) Patent No.: US 9.498,431 B2 Xu et al. (45) Date of Patent: Nov. 22, 2016 (54) CONTROLLED RELEASING COMPOSITION 7,053,134 B2 * 5/2006 Baldwin et al. .............. 522,154 2004/0058056 A1 3/2004 Osaki et al. ................... 427.2.1 (76) Inventors: Jianjian Xu, Hefei (CN); Shiliang 2005/0037047 A1 2/2005 Song Wang, Hefei (CN); Manzhi Ding 2007/0055364 A1* 3/2007 Hossainy .................. A61F 2/82 s: s s 623, 1.38 Hefei (CN) 2008/0274194 A1* 11/2008 Miller .................... A61K 9.146 424/489 (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS U.S.C. 154(b) by 0 days. CN 1208.610 A 2, 1999 (21) Appl. No.: 13/133,656 EP O251680 A2 1, 1988 JP S63-22516. A 1, 1988 JP H1O-310518 A 11, 1998 (22) PCT Filed: Dec. 10, 2009 WO 96,10395 A1 4f1996 WO WO 2005.000277 A1 * 1, 2005 (86). PCT No.: PCT/CN2009/075468 WO 2007 115045 A2 10, 2007 WO 2008/OO2657 A2 1, 2008 S 371 (c)(1), WO 2008OO2657 A2 1, 2008 (2), (4) Date: Jun. 9, 2011 WO 2008041246 A2 4/2008 (87) PCT Pub. No.: WO2010/066203 OTHER PUBLICATIONS PCT Pub. Date: Jun. 17, 2010 Crowley and Zhang, Pharmaceutical Application of Hot Melt Extru (65) Prior Publication Data sion: Part I, Drug Development and Industrial Pharmacy, 2007. 33:909-926.* US 2011/024.4043 A1 Oct. 6, 2011 The Use of Poly (L-Lactide) and RGD Modified Microspheres as Cell Carriers in a Flow Intermittency Bioreactor for Tissue Engi (30) Foreign Application Priority Data neering Cartilage.
    [Show full text]
  • Long-Term Menopausal Treatment Using an Ultra-High Dosage of Tibolone in an Elderly Chinese Patient – Case Report
    Long-term menopausal treatment using an ultra-high dosage of tibolone in an elderly Chinese patient – Case report Lingyan Zhang 1, Xiangyan Ruan 1,2*, Muqing Gu 1, Alfred O. Mueck 1,2 1 Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China; 2 Department of Women’s Health, University Women’s Hospital and Research Centre for Women’s Health, University of Tuebingen, Tuebingen D-72076, Germany) ABSTRACT This report describes the special case of a Chinese woman with severe vasomotor symptoms (VSMs), depressed mood, low energy and genitourinary syndrome of menopause, including problems of sexual dysfunction, who was treated with tibolone. The aim of the report is to highlight the value of individualizing menopausal hormone therapy (MHT) type and dosage. Since 16 years of previous treatment with various other forms of MHT had not provided satisfactory efficacy in this patient, at the age of 71 years she was prescribed tibolone, starting at the usual lowest dosage of 1.25 mg/day. We gradually had to increase the dosage of tibolone up to 7.5 mg/day, which is three-fold the recommended maximum dosage. We added three-monthly sequential dydrogesterone to reduce the risk of breakthrough bleeding and the risk of endometrial cancer. To date, we have observed no side effects and no remarkable abnormal laboratory assessments, with the exception of increased thyroid-stimulating hormone, which we monitor six-monthly. Even though the patient has been informed about potential risks, such as increased risks of stroke, breast cancer and endometrial cancer, as described in the discussion, she has now been willing to accept this ultra-high dosage for seven years, and wishes to continue with this treatment.
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
    WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]
  • Customs Tariff - Schedule
    CUSTOMS TARIFF - SCHEDULE 99 - i Chapter 99 SPECIAL CLASSIFICATION PROVISIONS - COMMERCIAL Notes. 1. The provisions of this Chapter are not subject to the rule of specificity in General Interpretative Rule 3 (a). 2. Goods which may be classified under the provisions of Chapter 99, if also eligible for classification under the provisions of Chapter 98, shall be classified in Chapter 98. 3. Goods may be classified under a tariff item in this Chapter and be entitled to the Most-Favoured-Nation Tariff or a preferential tariff rate of customs duty under this Chapter that applies to those goods according to the tariff treatment applicable to their country of origin only after classification under a tariff item in Chapters 1 to 97 has been determined and the conditions of any Chapter 99 provision and any applicable regulations or orders in relation thereto have been met. 4. The words and expressions used in this Chapter have the same meaning as in Chapters 1 to 97. Issued January 1, 2019 99 - 1 CUSTOMS TARIFF - SCHEDULE Tariff Unit of MFN Applicable SS Description of Goods Item Meas. Tariff Preferential Tariffs 9901.00.00 Articles and materials for use in the manufacture or repair of the Free CCCT, LDCT, GPT, UST, following to be employed in commercial fishing or the commercial MT, MUST, CIAT, CT, harvesting of marine plants: CRT, IT, NT, SLT, PT, COLT, JT, PAT, HNT, Artificial bait; KRT, CEUT, UAT, CPTPT: Free Carapace measures; Cordage, fishing lines (including marlines), rope and twine, of a circumference not exceeding 38 mm; Devices for keeping nets open; Fish hooks; Fishing nets and netting; Jiggers; Line floats; Lobster traps; Lures; Marker buoys of any material excluding wood; Net floats; Scallop drag nets; Spat collectors and collector holders; Swivels.
    [Show full text]
  • Review Article Potential Antiosteoporotic Agents from Plants: Acomprehensivereview
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2012, Article ID 364604, 28 pages doi:10.1155/2012/364604 Review Article Potential Antiosteoporotic Agents from Plants: AComprehensiveReview Min Jia,1 Yan Nie, 1, 2 Da-Peng Cao,1 Yun-Yun Xue, 1 Jie-Si Wang,1 Lu Zhao,1, 2 Khalid Rahman,3 Qiao-Yan Zhang,1 and Lu-Ping Qin1 1 Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China 2 Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China 3 School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK Correspondence should be addressed to Qiao-Yan Zhang, [email protected] and Lu-Ping Qin, [email protected] Received 10 August 2012; Accepted 30 October 2012 Academic Editor: Olumayokun A. Olajide Copyright © 2012 Min Jia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Osteoporosis is a major health hazard and is a disease of old age; it is a silent epidemic affecting more than 200 million people worldwide in recent years. Based on a large number of chemical and pharmacological research many plants and their compounds have been shown to possess antiosteoporosis activity. This paper reviews the medicinal plants displaying antiosteoporosis properties including their origin, active constituents, and pharmacological data. The plants reported here are the ones which are commonly used in traditional medical systems and have demonstrated clinical effectiveness against osteoporosis.
    [Show full text]
  • Pharmaceutical Compoundingand Dispensing, Second
    Pharmaceutical Compounding and Dispensing Pharmaceutical Compounding and Dispensing SECOND EDITION John F Marriott BSc, PhD, MRPharmS, FHEA Professor of Clinical Pharmacy Aston University School of Pharmacy, UK Keith A Wilson BSc, PhD, FRPharmS Head of School Aston University School of Pharmacy, UK Christopher A Langley BSc, PhD, MRPharmS, MRSC, FHEA Senior Lecturer in Pharmacy Practice Aston University School of Pharmacy, UK Dawn Belcher BPharm, MRPharmS, FHEA Teaching Fellow, Pharmacy Practice Aston University School of Pharmacy, UK Published by the Pharmaceutical Press 1 Lambeth High Street, London SE1 7JN, UK 1559 St Paul Avenue, Gurnee, IL 60031, USA Ó Pharmaceutical Press 2010 is a trade mark of Pharmaceutical Press Pharmaceutical Press is the publishing division of the Royal Pharmaceutical Society of Great Britain First edition published 2006 Second edition published 2010 Typeset by Thomson Digital, Noida, India Printed in Great Britain by TJ International, Padstow, Cornwall ISBN 978 0 85369 912 5 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the copyright holder. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made. The right of John F Marriott, Keith A Wilson, Christopher A Langley and Dawn Belcher to be identified as the author of this work has been asserted by them in accordance with the Copyright, Designs and Patents Act, 1988.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,265,147 B1 Mobley Et Al
    USOO6265147B1 (12) United States Patent (10) Patent No.: US 6,265,147 B1 Mobley et al. (45) Date of Patent: Jul. 24, 2001 (54) METHOD OF SCREENING FOR Carmeci, Charles, et al., “Identification of a Gene (GPR30) NEUROPROTECTIVE AGENTS with Homology to the G-Protein-Coupled Receptor Super family ASSociated with Estrogen Receptor Expression in (75) Inventors: William C. Mobley, Palo Alto; Ronald Breast Cancer,” Genomics (1997) vol. 45:607-617. J. Weigel, Woodside; Chengbiao Wu, Owman, Christer, et al., “Cloning of Human cDNA Encod San Jose; Har Hiu Dawn Lam, ing a Novel Hepathelix Receptor Expressed in Burkitt's Stanford, all of CA (US) Lymphoma and Widely Distributed in Brain abd Peripheral Tissues,” Biochemical and Biophysical Research Cimmuni (73) Assignee: The Board of Trustees of the Leland cations (1996) vol. 228:285–292. Stanford Junior University, Palo Alto, Singh, Meharvan, et al., “Estrogen-Induced Activation of CA (US) Mitogen-Activated Protein Kinase in Cerebral Cortical Explants: Convergence of Estrogen and Neurotrophin Sig (*) Notice: Subject to any disclaimer, the term of this naling Pathways,” Journal of Neuroscience (Feb. 15, 1999) patent is extended or adjusted under 35 vol. 19(4): 1179–1188. U.S.C. 154(b) by 0 days. Toran-Allerand, C. Dominique, “The Estrogen/Neurotro phin Connection During Neural Development: Is Co-Lo (21) Appl. No.: 09/452,531 calization of Estrogen Receptors with the Neurotrophins and Their Receptors Biologically Revelant?”, Dev: Neurosci. (22) Filed: Dec. 1, 1999 (1996) vol. 18:36–48. (51) Int. Cl." ................................................... C12O 1/00 Genbank Accession Number Y08162. (52) U.S. Cl. ............................... 435/4; 435/69.1; 514/169 * cited by examiner (58) Field of Search ........................
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]