Silurus Glanis in Its Native and Introduced Ranges*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback
ARTICLE IN PRESS Hook, Line and Infection: A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback Alexander Stewart*, Joseph Jacksonx, Iain Barber{, Christophe Eizaguirrejj, Rachel Paterson*, Pieter van West#, Chris Williams** and Joanne Cable*,1 *Cardiff University, Cardiff, United Kingdom x University of Salford, Salford, United Kingdom { University of Leicester, Leicester, United Kingdom jj Queen Mary University of London, London, United Kingdom #Institute of Medical Sciences, Aberdeen, United Kingdom **National Fisheries Service, Cambridgeshire, United Kingdom 1Corresponding author: E-mail: [email protected] Contents 1. Introduction 3 2. Stickleback Husbandry 7 2.1 Ethics 7 2.2 Collection 7 2.3 Maintenance 9 2.4 Breeding sticklebacks in vivo and in vitro 10 2.5 Hatchery 15 3. Common Stickleback Parasite Cultures 16 3.1 Argulus foliaceus 17 3.1.1 Introduction 17 3.1.2 Source, culture and infection 18 3.1.3 Immunology 22 3.2 Camallanus lacustris 22 3.2.1 Introduction 22 3.2.2 Source, culture and infection 23 3.2.3 Immunology 25 3.3 Diplostomum Species 26 3.3.1 Introduction 26 3.3.2 Source, culture and infection 27 3.3.3 Immunology 28 Advances in Parasitology, Volume 98 ISSN 0065-308X © 2017 Elsevier Ltd. http://dx.doi.org/10.1016/bs.apar.2017.07.001 All rights reserved. 1 j ARTICLE IN PRESS 2 Alexander Stewart et al. 3.4 Glugea anomala 30 3.4.1 Introduction 30 3.4.2 Source, culture and infection 30 3.4.3 Immunology 31 3.5 Gyrodactylus Species 31 3.5.1 Introduction 31 3.5.2 Source, culture and infection 32 3.5.3 Immunology 34 3.6 Saprolegnia parasitica 35 3.6.1 Introduction 35 3.6.2 Source, culture and infection 36 3.6.3 Immunology 37 3.7 Schistocephalus solidus 38 3.7.1 Introduction 38 3.7.2 Source, culture and infection 39 3.7.3 Immunology 43 4. -
STUDY on “FISH Mums Or LAKE MANITGU, MICHIGAN 9 .. F "
rwsés' - ' . on... .09”.~. ‘09”- . ‘ . '.'.'.'-'-’ .°.‘/ ch'.‘ o'c’ - o to. o a u ' 0-0~.. 3‘. OI .' .‘? - ' ..‘_.‘ ..'. .‘ - STUDY ON “FISH Mums or LAKE MANITGU, MICHIGAN 9 .. f " “ff."‘h‘ WITH SPECIAL REFERENCE- TO INFESTATION op. - ' "1-1? SMALLMOUTH ”BASS, BY THE; BASS TAPEWORM, "1' PROTEIOCEW. AMBLOPLITIS (LEIbY‘). f Thesis for the Degree of M. S. MICHIGAN STATE UNIVERSITY Pram Shankar Prasad 1963 ~“- w IIUL 1.1 3 8 02 2832 )\ ‘II Lh" Us F' ABSTRACT STUDY ON FISH PARASITE OF LAKE MANITOU, MICHIGAN WITH SPECIAL REFERENCE TO INFESTATION OF SMALLMOUTH BASS BY THE BASS TAPEWORM, PROTEOCEPHALUS AMBLOPLITIS (LEIDY) by Prem Shankar Prasad This is a report of an investigation of the degree of infestation of smallmouth bass of Lake Manitou, Michigan, by the bass tapeworm, Proteocephalus amblgplitis, and the extent of host tissue damage. A sample of 42 fishes was examined in this study Which was represented by 36 small- mouth bass, five yellow perch, and one green sunfish. Al- together, nine different species of helminth parasites from the three phyla were recovered. The larval stage of the bass tapeworm (plerocercoids) were present in all the 42 fishes examined and were found to be most damaging. The extent of damage is greater in the females than in the males of the same age group. A study on larval lengths revealed that gonads, especially the ovaries, are better suited for the growth of these larvae. As the fish advance in age the larvae in the gonads also increase in length. The rate of growth of larvae is approximately three times greater in Prem Shankar Prasad the females than in the males. -
Chondrostoma Nasus) Ecological Risk Screening Summary
Common Nase (Chondrostoma nasus) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, April 2020 Revised, April 2020 Web Version, 2/8/2021 Organism Type: Fish Overall Risk Assessment Category: High Photo: André Karwath. Licensed under CC BY-SA 2.5. Available: https://commons.wikimedia.org/wiki/File:Chondrostoma_nasus_(aka).jpg#file. (April 2020). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2021): “Europe: Basins of Black (Danube, Dniestr, South Bug and Dniepr drainages), southern Baltic (Nieman, Odra, Vistula) and southern North Seas (westward to Meuse). […] Asia: Turkey.” Status in the United States No information on occurrence, status, sale or trade in the United States was found. Chondrostoma nasus falls within Group I of New Mexico’s Department of Game and Fish Director’s Species Importation List (New Mexico Department of Game and Fish 2010). Group I species “are designated semi-domesticated animals and do not require an importation permit.” With the added restriction of “Not to be used as bait fish.” 1 Means of Introductions in the United States No introductions have been reported in the United States. Remarks Although the accepted and most used common name for Chondrostoma nasus is “Common Nase”, it appears that the simple name “Nase” is sometimes used to refer to C. nasus (Zbinden and Maier 1996; Jirsa et al. 2010). The name “Sneep” also occasionally appears in the literature (Irz et al. 2006). 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From Fricke et al. (2020): -
Qrno. 1 2 3 4 5 6 7 1 CP 2903 77 100 0 Cfcl3
QRNo. General description of Type of Tariff line code(s) affected, based on Detailed Product Description WTO Justification (e.g. National legal basis and entry into Administration, modification of previously the restriction restriction HS(2012) Article XX(g) of the GATT, etc.) force (i.e. Law, regulation or notified measures, and other comments (Symbol in and Grounds for Restriction, administrative decision) Annex 2 of e.g., Other International the Decision) Commitments (e.g. Montreal Protocol, CITES, etc) 12 3 4 5 6 7 1 Prohibition to CP 2903 77 100 0 CFCl3 (CFC-11) Trichlorofluoromethane Article XX(h) GATT Board of Eurasian Economic Import/export of these ozone destroying import/export ozone CP-X Commission substances from/to the customs territory of the destroying substances 2903 77 200 0 CF2Cl2 (CFC-12) Dichlorodifluoromethane Article 46 of the EAEU Treaty DECISION on August 16, 2012 N Eurasian Economic Union is permitted only in (excluding goods in dated 29 may 2014 and paragraphs 134 the following cases: transit) (all EAEU 2903 77 300 0 C2F3Cl3 (CFC-113) 1,1,2- 4 and 37 of the Protocol on non- On legal acts in the field of non- _to be used solely as a raw material for the countries) Trichlorotrifluoroethane tariff regulation measures against tariff regulation (as last amended at 2 production of other chemicals; third countries Annex No. 7 to the June 2016) EAEU of 29 May 2014 Annex 1 to the Decision N 134 dated 16 August 2012 Unit list of goods subject to prohibitions or restrictions on import or export by countries- members of the -
Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus Idus
REVIEWS IN FISHERIES SCIENCE & AQUACULTURE https://doi.org/10.1080/23308249.2020.1822280 REVIEW Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus idus Mehis Rohtlaa,b, Lorenzo Vilizzic, Vladimır Kovacd, David Almeidae, Bernice Brewsterf, J. Robert Brittong, Łukasz Głowackic, Michael J. Godardh,i, Ruth Kirkf, Sarah Nienhuisj, Karin H. Olssonh,k, Jan Simonsenl, Michał E. Skora m, Saulius Stakenas_ n, Ali Serhan Tarkanc,o, Nildeniz Topo, Hugo Verreyckenp, Grzegorz ZieRbac, and Gordon H. Coppc,h,q aEstonian Marine Institute, University of Tartu, Tartu, Estonia; bInstitute of Marine Research, Austevoll Research Station, Storebø, Norway; cDepartment of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łod z, Poland; dDepartment of Ecology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; eDepartment of Basic Medical Sciences, USP-CEU University, Madrid, Spain; fMolecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames, Surrey, UK; gDepartment of Life and Environmental Sciences, Bournemouth University, Dorset, UK; hCentre for Environment, Fisheries & Aquaculture Science, Lowestoft, Suffolk, UK; iAECOM, Kitchener, Ontario, Canada; jOntario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada; kDepartment of Zoology, Tel Aviv University and Inter-University Institute for Marine Sciences in Eilat, Tel Aviv, -
Growth Parameters of a Threatened Species Chondrostoma Holmwoodii (Boulenger, 1896) from Tahtalı Reservoir, İzmir, Turkey
LIMNOFISH-Journal of Limnology and Freshwater Fisheries Research 3(3): 137-142 (2017) Main Growth Parameters of a Threatened Species Chondrostoma holmwoodii (Boulenger, 1896) from Tahtalı Reservoir, İzmir, Turkey Mustafa KORKMAZ* , Fatih MANGIT , Sedat Vahdet YERLİ Hacettepe University, Science Faculty, Departmant of Biology, SAL, Ankara, Turkey ABSTRACT ARTICLE INFO A diverse genus of the Cyprinidae family, genus Chondrostoma Agassiz, 1832 RESEARCH ARTICLE has a wide distribution. More than half of the species distributes in Turkey, however there is little biological information about them. The aim of this study is Received : 19.07.2017 to investigate the population parameters of Eastern Aegean Nase Chondrostoma Revised : 15.09.2017 holmwoodii and to evaluate the risks for the species in Tahtalı Reservoir. Fish sampling was carried out at 8 different sampling points at Tahtalı Reservoir in Accepted : 18.09.2017 2014 with multimesh gillnets. Population parameters such as age and sex Published : 29.12.2017 composition, length frequence analysis and von Bertalanffy growth function were investigated. A total of 215 specimens of C. holmwoodii was sampled. Total DOI: 10.17216/LimnoFish.329521 length of the specimens varies between 4.3 - 28.2 cm and total weight 1.05 - 271 * g. Age composition of the sampled specimens varies between 0 to V and most of CORRESPONDING AUTHOR the specimens were age-III. The von Bertalanffy growth parameters for C. [email protected] holmwoodii was estimated as; L = 395.30 mm (SD=63.80), K=0.17 (SD=0.05) ∞ Tel : +90 312 297 67 85 and L0=46.45 mm (SD=9.41). -
Chondrostoma Soetta Region: 1 Taxonomic Authority: Bonaparte, 1840 Synonyms: Common Names: Savetta Italian Order: Cypriniformes Family: Cyprinidae Notes on Taxonomy
Chondrostoma soetta Region: 1 Taxonomic Authority: Bonaparte, 1840 Synonyms: Common Names: Savetta Italian Order: Cypriniformes Family: Cyprinidae Notes on taxonomy: General Information Biome Terrestrial Freshwater Marine Geographic Range of species: Habitat and Ecology Information: Restricted to northern Italy, the southern part of Switzerland. It has A deepwater lacustrine species that also inhabits large rivers. It been introduced in some Italian lakes. It is locally extinct in Slovenia migrates from the lake to its tributaries for spawning in spring. and the Isonzo river basin in Italy due to the introduction of Chondrostoma nasus, a practice still implemented. Introductions in rivers of central Italy was often a misidentification for C. genei. Several present records for C. soetta are probably a misidentification for C. nasus, due to similarity between these two species. As an example of how the alien species are spread now in Italy, in rivers from the Rovigo Province in eastern Italy, were C. soetta is still reported, the biomass of all native species was found to be about 22% of whole ichthyofauna. Conservation Measures: Threats: Listed in Annex II of the Habitats Directive of EU and in the Appendix III Dams, water pollution and extraction, and introduction of alien species of the Bern Convention. as Rutilus rutilus, Silurus glanis and Chondrostoma nasus. The reduction in suitable spawning places due to pollution (agriculture) and to water extraction is of major concern. Other threats to the species are predation by cormorants, where in several places of Italy have become a serious pest and destroyed a large amount of fishes, especially in torrents or small river were the fishes migrate to for reproduction. -
Factors Affecting Parasite Assemblages in Fish Hosts Is Presented
Bio-Research, 7(2): 561 – 570 561 Parasite Assemblages in Fish Hosts 1Iyaji, F. O., 2Etim. L. and 1Eyo, J. E. 1Department of Zoology, University of Nigeria, Nsukka, Enugu State, Nigeria 2Department of Fisheries, University of Uyo, Uyo, Akwa Ibom State, Nigeria Corresponding Author: Iyaji, F. O. Department of Zoology, University of Nigeria, Nsukka. Email: [email protected] Abstract A review of various factors affecting parasite assemblages in fish hosts is presented. These factors are broadly divided into two: Biotic and abiotic factors. Biotic factors such as host age and size, host size and parasites size, host specificity, host diet and host sex and their influence on the abundance and distribution of parasites are considered and highlighted. Equally, seasonality and other environmental factors that may facilitate the establishment and proliferations of parasites in host populations are also highlighted. Keywords: Parasite, Factors, Assemblages, Fish hosts Introduction Results and Discussion There are numerous biotic and abiotic factors that affect parasite assemblages (Bauer, 1959; Esch, Host age and size: Generally, standard length of 1982; Kennedy, 1995). The term assemblages is fish is directly related to age (Shotter, 1973) and used here to refer to all microhabitat, in fish body size. Age has often been found to be (gastrointestinal) or on (external surfaces) the fish positively associated with the prevalence and/or hosts (Poulin, 2004). These factors include the intensity of parasitic infection (Betterton, 1974; following: physiological condition of the fish host, Madhavi and Rukmini, 1991; Chandler et al., 1995) host diet, host size, evolutionary history and (Table 1). Poulin (2000) stated that in fish environmental factors, such as season of the year, population, parasitic infection tends to increase with size and type of water body, altitude, temperature, increasing host age and size. -
Platydoras Costatus (Raphael Catfish) Ecological Risk Screening Summary
Raphael Catfish (Platydoras costatus) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, February 2011 Revised, July 2018 Web Version, 9/20/2019 Photo: Erling Holm, via FishWise Professional. Licensed under Creative Commons BY-NC-SA. Available: http://eol.org/data_objects/24181426. (July 2018). 1 Native Range and Status in the United States Native Range From Nico et al. (2018): “South America, from Venezuela and the Guianas to Argentina (Robins et al. 1991), including the Amazon, Tocantins, Parnaíba, Orinoco, and Essequibo River basins and coastal drainages in French Guiana and Suriname.” From Piorski et al. (2008): “[…] coastal drainages of Suriname and French Guiana […]” 1 From Eschmeyer et al. (2018): “Distribution: Amazon, Tocantins, Parnaíba, Orinoco and Essequibo River basins and coastal drainages in French Guiana and Suriname: Bolivia, Brazil, Ecuador, ?Colombia, French Guiana, Guyana, Peru, Suriname and Venezuela. But perhaps only coastal drainages of Suriname and French Guiana.” Conflicting descriptions of the distribution of P. costatus are apparent in the quotations above. In this ERSS, the broader definition is used because most information available refers to this definition of the species range. Status in the United States From Nico et al. (2018): “Reported from Florida and Texas. Likely failed introduction: there have been no additional specimens or reports since initial sightings.” Nico et al. (2018) report that the record from Florida dates to 1984 and the record from Texas dates to 1999. VertNet (2018) reports an occurrence in May 2002 in New Mexico: “Caught 15 May 2002 by Frank Jimenez of Tesuque […] at Santa Cruz Lake, Santa Fe Co. with a net as it was swimming near shoreline.” The frequency of this species in trade is unclear (see Remarks). -
Biodiversity Profile of Afghanistan
NEPA Biodiversity Profile of Afghanistan An Output of the National Capacity Needs Self-Assessment for Global Environment Management (NCSA) for Afghanistan June 2008 United Nations Environment Programme Post-Conflict and Disaster Management Branch First published in Kabul in 2008 by the United Nations Environment Programme. Copyright © 2008, United Nations Environment Programme. This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. United Nations Environment Programme Darulaman Kabul, Afghanistan Tel: +93 (0)799 382 571 E-mail: [email protected] Web: http://www.unep.org DISCLAIMER The contents of this volume do not necessarily reflect the views of UNEP, or contributory organizations. The designations employed and the presentations do not imply the expressions of any opinion whatsoever on the part of UNEP or contributory organizations concerning the legal status of any country, territory, city or area or its authority, or concerning the delimitation of its frontiers or boundaries. Unless otherwise credited, all the photos in this publication have been taken by the UNEP staff. Design and Layout: Rachel Dolores -
THE LARGER ANIMAL PARASITES of the FRESH-WATER FISHES of MAINE MARVIN C. MEYER Associate Professor of Zoology University of Main
THE LARGER ANIMAL PARASITES OF THE FRESH-WATER FISHES OF MAINE MARVIN C. MEYER Associate Professor of Zoology University of Maine PUBLISHED BY Maine Department of Inland Fisheries and Game ROLAND H. COBB, Commissioner Augusta, Maine 1954 THE LARGER ANIMAL PARASITES OF THE FRESH-WATER FISHES OF MAINE PART ONE Page I. Introduction 3 II. Materials 8 III. Biology of Parasites 11 1. How Parasites are Acquired 11 2. Effects of Parasites Upon the Host 12 3. Transmission of Parasites to Man as a Result of Eating Infected Fish 21 4. Control Measures 23 IV. Remarks and Recommendations 27 V. Acknowledgments 30 PART TWO VI. Groups Involved, Life Cycles and Species En- countered 32 1. Copepoda 33 2. Pelecypoda 36 3. Hirudinea 36 4. Acanthocephala 37 5. Trematoda 42 6. Cestoda 53 7. Nematoda 64 8. Key, Based Upon External Characters, to the Adults of the Different Groups Found Parasitizing Fresh-water Fishes in Maine 69 VII. Literature on Fish Parasites 70 VIII. Methods Employed 73 1. Examination of Hosts 73 2. Killing and Preserving 74 3. Staining and Mounting 75 IX. References 77 X. Glossary 83 XI. Index 89 THE LARGER ANIMAL PARASITES OF THE FRESH-WATER FISHES OF MAINE PART ONE I. INTRODUCTION Animals which obtain their livelihood at the expense of other animals, usually without killing the latter, are known as para- sites. During recent years the general public has taken more notice of and concern in the parasites, particularly those occur- ring externally, free or encysted upon or under the skin, or inter- nally, in the flesh, and in the body cavity, of the more important fresh-water fish of the State. -
Review of Freshwater Fish
CMS Distribution: General CONVENTION ON MIGRATORY UNEP/CMS/Inf.10.33 1 November 2011 SPECIES Original: English TENTH MEETING OF THE CONFERENCE OF THE PARTIES Bergen, 20-25 November 2011 Agenda Item 19 REVIEW OF FRESHWATER FISH (Prepared by Dr. Zeb Hogan, COP Appointed Councillor for Fish) Pursuant to the Strategic Plan 2006-2011 mandating a review of the conservation status for Appendix I and II species at regular intervals, the 15 th Meeting of the Scientific Council (Rome, 2008) tasked the COP Appointed Councillor for Fish, Mr. Zeb Hogan, with preparing a report on the conservation status of CMS-listed freshwater fish. The report, which reviews available population assessments and provides guidance for including further freshwater fish on the CMS Appendices, is presented in this Information Document in the original form in which it was delivered to the Secretariat. Preliminary results were discussed at the 16 th Meeting of the Scientific Council (Bonn, 2010). An executive summary is provided as document UNEP/CMS/Conf.10.31 and a Resolution as document UNEP/CMS/Resolution 10.12. For reasons of economy, documents are printed in a limited number, and will not be distributed at the meeting. Delegates are kindly requested to bring their copy to the meeting and not to request additional copies. Review of Migratory Freshwater Fish Prepared by Dr. Zeb Hogan, CMS Scientific Councilor for Fish on behalf of the CMS Secretariat 1 Table of Contents Acknowledgements .................................................................................................................................3