An Improved Long Life Duration Ceramic Matrix Composite Material for Jet Aircraft Engine Applications

Total Page:16

File Type:pdf, Size:1020Kb

An Improved Long Life Duration Ceramic Matrix Composite Material for Jet Aircraft Engine Applications 24TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES AN IMPROVED LONG LIFE DURATION CERAMIC MATRIX COMPOSITE MATERIAL FOR JET AIRCRAFT ENGINE APPLICATIONS L. Baroumes, E. Bouillon, F. Christin Snecma Propulsion Solide Abstract time evaluation by fatigue testing. This A new concept of Ceramic Matrix Composite characterization program provides a basic (CMC) material, mainly based on the use of a database used for the stress analysis of CMC self–sealing technology for matrix and the use composites through mechanical behavior of a multilayer woven reinforcement, has been models using Continuum Damage Mechanics. A developed by Snecma for achieving high thermomechanical analysis is presented with the performance levels targeted by future jet comparative behavior of two materials. A sub engines. The driving force for this development element testing validate the orthotropic non- has been to increase both lifetime and linear law. temperature capability of previous C/SiC and SiC/SiC composites materials using a 2 Materials for gas turbine engine monolithic SiC CVI matrix and finishing treatment against oxidation. The application of advanced materials has played a vital role in the development of gas turbine engines over the last fifty years. An estimated 50% of the increase in efficiency and 1 INTRODUCTION performance has been directly attributed to In order to meet high performance levels material development. Material developments targeted by future jet engines components [1], come in two forms: Snecma Propulsion Solid (SPS), has developed · the easiest being the study development of a a new concept of self-sealing Ceramic Matrix known material system through iterations of Composites (CMC) materials named material and processing : In this way, the temperature capability of nickel base CERASEP®A410 and SEPCARBINOXâ A500 combining improvements of fiber superalloys has increased by over 350°C since the 1940’s, reinforcement, interphase and matrix [2]. These materials, manufactured by SPS are designed · the other way is the introduction of new for thermo-mechanical applications such as long types of advanced material, tailored to the term parts for gas turbine engine. The specific requirement of gas turbine engines. development of these CMCs has been This approach is more difficult and requires milestoned by steps, which as specified in considerable continuous investment over many different papers [3]. years. The introduction a new materials takes The aim of this paper is to present typically a minimum of fifteen years. The thermomechanical characteristics and analysis necessary levels of safety and reliability dictate validated by sub-element testing of these CMCs. that all risk associated with the introduction of a After reviewing the material development story, new technology are adequately assessed and the CMC's development phases, we focus on the addressed. In gas turbine engines the measured thermomechanical properties and life components are subjected to many potentially 1 L. BAROUMES, E. BOUILLON, F. CHRISTIN, Snecma Propulsion Solide detrimental factors including high temperature C.G. from Nippon Carbon, with pyrocarbon and loads, vibrations and load cycling thermal interphase, and a SiC matrix deposited by shock, oxidation, corrosion, abrasion, erosion, chemical vapor infiltration (CVI). handling and occasional impacts. In this context CERASEPâ A373 (A300 serie) material very new materials, however promising, cannot was characterized by a high specific strength, at instantly be put into engines room temperature, of about 300MPa and a non- The silicon bases ceramics, primarily Silicon brittle behavior, with an enhanced failure strain, Nitride and silicon Carbide have been the focus of about 0.5%. This material, protected by an of much interest and development during the appropriate finishing treatment against last twenty years. These materials retain oxidation was also characterized by a relatively strength at over 1200°C where there has been no good life time capability, in flexural creep, other material available (Fig. 1). under air, at temperature between 873 to 1473K. Nevertheless, testing in more severe conditions, Fig. 1 Usable strength for high temperature materials especially for tensile/tensile fatigue tests for gas turbine engines. performed at a stress level of 120MPa, failure of Specific Ultimate Strength - Mean value the material occurred rapidly, due to a partial 40 oxidation of the interphase. This was illustrated Titanium alloys 35 Maximum temperature for steady-state use up by a life time duration of about 10 to 20 hours at to 400°C (Ti6.2.4.2.) 30 Ceramic Matric Ceramic Matric 873K and less than 1 hour at 1123K. In Composite A 410 Composite A 500 25 conclusion, for these series of SiC/SiC 20 composites life time duration in air, at moderate 15 Nickel base alloys Max temperature for and high temperature was considerably reduced Specific ultimate strength (Ksi) steady-state use 10 between 600°C (Inco718) and beyond the elastic yield point (about 80MPa). A 900°C (Rene77) 5 Cobalt base alloys Maximum temperature for steady- state use up to 950°C (Mar-M 509) first evaluation of the SiC/SiC material series 0 100 350 600 850 1100 1350 1600 1850 2100 A300 behavior was established in real temperature (F) However monolithic ceramic technology was conditions by the design, manufacturing and considered unsuitable for structural components bench testing of Rafale engine M88-2 inner : in an environment when catastrophic failure is nozzles flaps in 1992. This highlighted early to be avoided at all cost. The very low defect cracking of some components which resulted tolerance and low failure strain of this material from local stresses. These stresses were was considered to impact too high of a risk and generated by the combination of non-uniform consequently has not been specified in thermal gradient and higher temperatures than production engines. Composite material anticipated by thermal analysis. It was found combining the advantages of ceramics with a that these stress levels were twice than that of material capable of offering an improved the SiC/SiC series A300 design allowable (80 tolerance to strain have captured all the recent MPa) and induced micro-cracking of the efforts to use ceramics in larger aero-engines. material leading to an oxidation rate The incorporation of continuous ceramic fibers incompatible with long life span. In the same period, Snecma developed a offer the ultimate in the ability to control the â properties of the material. C/SiC (SEPCARBINOX , Carbon fiber/Silicon carbide matrix) material for engine nozzles 3 BACKGROUND operating at intermediate temperature and life span objective over one thousand hours. A SiC/SiC (Silicon Carbide fiber/ silicon typical example of application is the M88-2 carbide matrix) composite material series A300 engine outer flaps. â developed by SPS (originally SEP) before 1992 SEPCARBINOX A262 is made of a were made of a 2D reinforcement (2D : 2 multilayer reinforcement with carbon fiber, a directions of reinforcement), using NicalonTM pyrocarbon interphase, a SiC CVI matrix and an 2 AN IMPROVED LONG LIFE DURATION Ceramic Matrix Composite MATERIAL FOR JET AIRCRAFT ENGINE APPLICATIONS enhanced finishing treatment to improve its know-how achieved on C/SiC A262, the behavior in oxidative atmosphere. combination of a carbon reinforcement with a SEPCARBINOXâ A262 is characterized by a self-sealing matrix has been studied. This non-brittle behavior with failure strength of approach provides better economical outlook about 250 MPa at room temperature, and life considering the gap between the cost of carbon time duration, for temperatures below 973 K, and carbide fibers. matching the application requirements. Qualification of the SEPCARBINOXâ A262 4.2 A410 and A500 description technology was pronounced in 1996 for the M88-2 engine outer flaps, after completion of Plane multi-layer reinforcement named endurance testing based on accelerated mission GUIPEXâ has been developed, in order to cycles. The lifetime objective of the component prevent the natural delamination sensitivity of has now been demonstrated on the M88-2 2D materials. GUIPEXâ preforms are made of engine and serial production is underway. layers, linked together and the technology is Moreover, destructive evaluation, after applicable to carbon and ceramic fibers. representative engine life duration (1000 hours Number of layers is adjustable, in order to engine test, resulting from 375 hours ground test obtain composite thickness range between 2 and and 625 hours flight test), performed by tensile 7 mm, or variable thickness composite. These properties measurements, at room temperature, reinforcements have been optimized to obtain has confirmed the excellent capabilities of such orthotropics composites, with in-plane material : characteristics close to a 2D material. - s/sinitial > 0.90, A hardening step is necessary to obtain - e/einitial > 0.90, the desired shape, with the desired fiber volume fraction, before the matrix infiltration. Specific - E/ E initial > 0.90 CVI route, combining both interphase and 4 NOVEL SELF-SEALING MATERIALS hardening process has been selected. A self-sealing route has been selected for 4.1 General approach the matrix in order to eliminate finishing SPS decided in 1992 to engage the treatment. The principles of the self-sealing development of a new CMC material concept, approach are to consume part of the incoming matching long life span at high temperature with oxygen and
Recommended publications
  • Green Composites in Architecture and Building Material Science
    Modern Applied Science; Vol. 9, No. 1; 2015 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education Green Composites in Architecture and Building Material Science Ruslan Lesovik1, Yury Degtev1, Mahmud Shakarna1 & Anastasiya Levchenko1 1 Belgorod Shukhov State Technological University, 308012, Belgorod, Russia Correspondence: Ruslan Lesovik, Belgorod Shukhov State Technological University, 308012, Belgorod, Russia. Received: September 5, 2014 Accepted: September 8, 2014 Online Published: November 23, 2014 doi:10.5539/mas.v9n1p45 URL: http://dx.doi.org/10.5539/mas.v9n1p45 Abstract Currently, the topic of improvement of man`s live ability is becoming increasingly important. The notion of luxury living in the city includes social comfort, environment comfort (urban, natural landscape component). A wide range of small architectural forms of different architectural design and purpose is developed. The basic material for the production of small architectural forms is concrete. On optimal combination of negative and positive qualities, concrete is the most cost- effective material. In order to avoid increasing the price of hardscape, at their creating, it`s actual to use local raw materials and industrial waste. On their basis the modern high quality building materials are developed. To reduce prime costs of construction materials the technogenic raw materials are used. The solution of this actual problem possibly on the basis of expansion of a source of raw materials of the stone materials suitable for production
    [Show full text]
  • Ceramic Matrix Composites with Nano Technology–An Overview
    International Review of Applied Engineering Research. ISSN 2248-9967 Volume 4, Number 2 (2014), pp. 99-102 © Research India Publications http://www.ripublication.com/iraer.htm Ceramic Matrix Composites with Nano Technology–An Overview Saubhagya Sharma, Samresh Kumar Shashi and Vikram Tomar Department of Material Science & Nano Technology, University of Petroleum & Energy Studies, Dehradun, Uttrakhand. Abstract Ceramic matrix composites (CMCs) are promising materials for use in high temperature structural applications. This class of materials offers high strength to density ratios. Also, their higher temperature capability over conventional super alloys may allow for components that require little or no cooling. This benefit can lead to simpler component designs and weight savings. These materials can also contribute in increasing the operating efficiency due to higher operating temperatures being achieved. Using carbon/carbon composites with the help of Nanotechnology is more beneficial in structural engineering and can decrease the production cost. They can withstand high stresses and temperatures than the traditional alumina, silicon carbide which fracture easily under mechanical loads Fundamental work in processing, characterization and analysis is important before the structural properties of this new class of Nano composites can be optimized. The fields of the Nano composite materials have received a lot of attention to scientists and engineers in recent years. The fabrication of such composites using Nano technology can make a revolution in the field of material science engineering and can make the composites able to be used in long lasting applications. 1. Introduction As we know that Composite materials are the type of materials that are formed by combining two or more materials of different physical and chemical properties.
    [Show full text]
  • Ceramic Matrix Composites Taking Flight at GE Aviation Featuring
    AMERICAN CERAMIC SOCIETY bullemerginge ceramicstin & glass technology APRIL 2019 Ceramic matrix composites taking flight at GE Aviation Featuring: April 30 – May 1, 2019 Ceramic science in the skies: Electrification, EBCs, and PDCs | New Ohio partnership for technician training FIRING YOUR IMAGINATION FOR 100 YEARS Ads from the 1940’s and 1950’s www.harropusa.com ACerS Anniversary Ad 2.indd 1 2/13/19 3:44 PM contents April 2019 • Vol. 98 No.3 feature articles Ceramic matrix composites taking flight at 30 GE aviation The holy grail for jet engines is efficiency, and the improved high-temperature capability of CMC systems is giving General Electric a great advantage. department News & Trends . 4 by Jim Steibel Spotlight . 10 Ceramics in Energy . 19 cover story Research Briefs . 21 Nonoxide polymer-derived CMCs for 34 “super” turbines The melting point of single-crystal blades limits further columns advancement in operating temperature of gas turbines with metallic materials. Ceramics, which have much higher melt- All about aircraft . 29 ing points, hold the promise for future “super” turbines. Infographic by Lisa McDonald by Zhongkan Ren and Gurpreet Singh Deciphering the Discipline . 64 Ultra-high temperature oxidation of high entropy UHTCs Taking off: Advanced materials contribute by Lavina Backman 40 to the evolution of electrified aircraft Commercial electrified aircraft are expected to take off within the next decade—and advanced materials are play- ing an increasingly critical role in solving key technical challenges that will push the boundaries even higher. meetings 25th International Congress on by Ajay Misra Glass (ICG 2019) . 56 GFMAT-2/Bio-4 .
    [Show full text]
  • Hybrid Self-Reinforced Composite Materials Based on Ultra-High Molecular Weight Polyethylene
    materials Article Hybrid Self-Reinforced Composite Materials Based on Ultra-High Molecular Weight Polyethylene Dmitry Zherebtsov 1,* , Dilyus Chukov 1 , Eugene Statnik 2 and Valerii Torokhov 1 1 Center of Composite Materials, National University of Science and Technology “MISiS”, 119049 Moscow, Russia; [email protected] (D.C.); [email protected] (V.T.) 2 Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; [email protected] * Correspondence: [email protected] Received: 2 March 2020; Accepted: 3 April 2020; Published: 8 April 2020 Abstract: The properties of hybrid self-reinforced composite (SRC) materials based on ultra-high molecular weight polyethylene (UHMWPE) were studied. The hybrid materials consist of two parts: an isotropic UHMWPE layer and unidirectional SRC based on UHMWPE fibers. Hot compaction as an approach to obtaining composites allowed melting only the surface of each UHMWPE fiber. Thus, after cooling, the molten UHMWPE formed an SRC matrix and bound an isotropic UHMWPE layer and the SRC. The single-lap shear test, flexural test, and differential scanning calorimetry (DSC) analysis were carried out to determine the influence of hot compaction parameters on the properties of the SRC and the adhesion between the layers. The shear strength increased with increasing hot compaction temperature while the preserved fibers’ volume decreased, which was proved by the DSC analysis and a reduction in the flexural modulus of the SRC. The increase in hot compaction pressure resulted in a decrease in shear strength caused by lower remelting of the fibers’ surface. It was shown that the hot compaction approach allows combining UHMWPE products with different molecular, supramolecular, and structural features.
    [Show full text]
  • A Study of the Mechanical Properties of Composite Materials with a Dammar-Based Hybrid Matrix and Two Types of Flax Fabric Reinforcement
    polymers Article A Study of the Mechanical Properties of Composite Materials with a Dammar-Based Hybrid Matrix and Two Types of Flax Fabric Reinforcement Dumitru Bolcu † and Marius Marinel St˘anescu*,† Department of Mechanics, University of Craiova, 165 Calea Bucure¸sti,200620 Craiova, Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-740-355-079 † These authors contributed equally to this work. Received: 7 July 2020; Accepted: 22 July 2020; Published: 24 July 2020 Abstract: The need to protect the environment has generated, in the past decade, a competition at the producers’ level to use, as much as possible, natural materials, which are biodegradable and compostable. This trend and the composite materials have undergone a spectacular development of the natural components. Starting from these tendencies we have made and studied from the point of view of mechanical and chemical properties composite materials with three types of hybrid matrix based on the Dammar natural hybrid resin and two types of reinforcers made of flax fabric. We have researched the mechanical properties of these composite materials based on their tensile strength and vibration behavior, respectively. We have determined the characteristic curves, elasticity modulus, tensile strength, elongation at break, specific frequency and damping factor. Using SEM (Scanning Electron Microscopy) analysis we have obtained images of the breaking area for each sample that underwent a tensile test and, by applying FTIR (Fourier Transform Infrared Spectroscopy) and EDS (Energy Dispersive Spectroscopy) analyzes, we have determined the spectrum bands and the chemical composition diagram of the samples taken from the hybrid resins used as a matrix for the composite materials under study.
    [Show full text]
  • Investigating the Mechanical Properties of Polyester- Natural Fiber Composite
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072 INVESTIGATING THE MECHANICAL PROPERTIES OF POLYESTER- NATURAL FIBER COMPOSITE OMKAR NATH1, MOHD ZIAULHAQ2 1M.Tech Scholar,Mech. Engg. Deptt.,Azad Institute of Engineering & Technology,Uttar Pradesh,India 2Asst. Prof. Mechanical Engg. Deptt.,Azad Institute of Engineering & Technology, Uttar Pradesh,India ------------------------------------------------------------------------***----------------------------------------------------------------------- Abstract : Reinforced polymer composites have played an Here chemically treated and untreated fibres were mixed ascendant role in a variety of applications for their high separately with polyester matrix and by using hand lay –up meticulous strength and modulus. The fiber may be synthetic technique these reinforced composite material is moulded or natural used to serves as reinforcement in reinforced into dumbbell shape. Five specimens were prepared in composites. Glass and other synthetic fiber reinforced different arrangement of natural fibres and glass fiber in composites consists high meticulous strength but their fields of order to get more accurate results. applications are restrained because of their high cost of production. Natural fibres are not only strong & light weight In the present era of environmental consciousness, but mostly cheap and abundantly available material especially more and more material are emerging worldwide, Efficient in central uttar Pradesh region and north middle east region. utilization of plant species and utilizing the smaller particles Now a days most of the automotive parts are made with and fibers obtained from various lignocellulosic materials different materials which cannot be recycled. Recently including agro wastes to develop eco-friendly materials is European Union (E.U) and Asian countries have released thus certainly a rational and sustainable approach.
    [Show full text]
  • Development of New Matrix and Interfacial Materials for Ceramic Matrix Composites Gavin C
    University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 8-26-2014 Development of New Matrix and Interfacial Materials for Ceramic Matrix Composites Gavin C. Richards University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Richards, Gavin C., "Development of New Matrix and Interfacial Materials for Ceramic Matrix Composites" (2014). Doctoral Dissertations. 522. https://opencommons.uconn.edu/dissertations/522 Development of New Matrix and Interfacial Materials for Ceramic Matrix Composites Gavin C. Richards, PhD University of Connecticut, 2014 Pre-ceramic polymers are attractive, low cost materials for the manufacture of ceramic fibers and matrix materials in Ceramic Matrix Composites (CMCs). A new pre-ceramic polymer, an ethanol-modified polyvinylsilazane (PVSZ), was synthesized and characterized. The PVSZ polymer has been previously shown to be a viable precursor for silicon nitride and silicon carbide based ceramics, but lacked stability when exposed to air. The PVSZ polymer was synthesized via the ammonolysis of trichlorovinylsilazane in tetrahydrofuran (THF), and then reacted with ethanol to form the ethanol-modified PVSZ. The PVSZ polymer and ethanol- modified PVSZ resin were each characterized with Attenuated Total Reflectance spectroscopy (ATR), 1H Nuclear Magnetic Resonance ( 1H-NMR), and Gel Permeation Chromatography (GPC), Thermogravimetric Analysis (TGA), Residual Gas Analysis (RGA), and X-Ray Powder Diffraction (XRD) of the ceramic char after pyrolysis in various atmospheres. A second new modified PVSZ was also synthesized. Rather than use ethanol, a second silane monomer was added during synthesis, with the intent of stabilizing the polymer without incorporating oxygen. The new end cap modified PVSZ (EC-PVSZ) was characterized using the same methods outlined for the ethanol-modified PVSZ.
    [Show full text]
  • Materials for Polymer Composites
    Module 2 - Materials For Polymer Composites Module 2 - Materials for Polymer Composites Introduction Major constituents in a fiber-reinforced composite material are the reinforcing fibers and a matrix, which acts as a binder for the fibers. Other constituents that may also be found are coupling agents, coatings, and fillers. Coupling agents and coatings are applied on the fibers to improve their wetting with the matrix as well as to promote bonding across the fiber–matrix interface. Both in turn promote a better load transfer between the fibers and the matrix. Fillers are used with some polymeric matrices primarily to reduce cost and improve their dimensional stability. Manufacturing of a composite structure starts with the incorporation of a large number of fibers into a thin layer of matrix to form a lamina (ply). The thickness of a lamina is usually in the range of 0.1–1 mm. If continuous (long) fibers are used in making the lamina, they may be arranged either in a unidirectional orientation (i.e., all fibers in one direction, Figure 2.1a), in a bidirectional orientation (i.e., fibers in two directions, usually normal to each other, Figure 2.1b), or in a multidirectional orientation (i.e., fibers in more than two directions, Figure 2.1c). The bi- or multidirectional orientation of fibers is obtained by weaving or other processes used in the textile industry. For a lamina containing unidirectional fibers, the composite material has the highest strength and modulus in the longitudinal direction of the fibers. However, in the transverse direction, its strength and modulus are very low.
    [Show full text]
  • Foundations of Materials Science and Engineering Lecture Note 7(Chapter 12 Composite Materials) May 6, 2013
    Foundations of Materials Science and Engineering Lecture Note 7(Chapter 12 Composite Materials) May 6, 2013 Kwang Kim Yonsei University [email protected] 39 8 7 34 53 Y O N Se I 88.91 16.00 14.01 78.96 126.9 Introduction • What are the classes and types of composites? • What are the advantages of using composite materials? • Mechanical properties of composites • How do we predict the stiffness and strength of the various types of composites? • Applications Introduction • Combination of two or more individual materials • A composite material is a material system, a mixture or combination of two or more micro or macroconstituents that differ in form and composition and do not form a solution. • Multiphase materials with chemically different phases and distinct interfaces • Design goal: obtain a more desirable combination of properties (principle of combined action) e.g., High-strength/light-weight, low cost, environmentally resistant • Properties of composite materials can be superior to its individual components. • Examples: Fiber reinforced plastics, concrete, asphalt, wood etc. Composite Characteristics • Matrix: – softer, more flexible and continuous part that surrounds the other phase. – transfer stress to other phases – protect phases from environment • Reinforcement (dispersed phase): – stiffer, high strength part (particles or fibers are the most common). – enhances matrix properties matrix: particles: ferrite (a) cementite (Fe C) (ductile) 3 (brittle) 60mm Spheroidite steel Composite Natural composites: - Wood: strong & flexible cellulose fibers in stiffer lignin (surrounds the fibers). - Bone: strong but soft collagen (protein) within hard but brittle apatite (mineral). - Certain types of rocks can also be considered as composites. Composite Synthetic composites: • Matrix phase: -- Purposes are to: woven - transfer stress to dispersed phase fibers - protect dispersed phase from environment -- Types: MMC, CMC, PMC 0.5 mm metal ceramic polymer cross section view • Dispersed phase: -- Purpose: 0.5 mm MMC: increase sy, TS, creep resist.
    [Show full text]
  • A Novel Composite Material for Foldable Building Envelopes
    sustainability Article A Novel Composite Material for Foldable Building Envelopes Gianluca Rodonò 1,* , Vincenzo Sapienza 1 , Giuseppe Recca 2 and Domenico Carmelo Carbone 2 1 Department of Civil Engineering and Architecture—University of Catania (Italy) via S. Sofia 64, 95125 Catania, Italy 2 Institute of Polymers, Composites and Biomaterials—National Research Council of Italy via Paolo Gaifami, 18, 95126 Catania, Italy * Correspondence: [email protected]; Tel.: +39-3891-556-134 Received: 2 July 2019; Accepted: 24 August 2019; Published: 28 August 2019 Abstract: Contemporary research is increasingly focused on studying buildings that either interact with environmental boundaries or adapt themselves to their users’ needs. In the current literature, this kind of ability is given different names: responsivity, adaptability, smartness. These are different ways to refer to a common concept, with subtle nuances. Foldable surfaces are one of the most interesting geometries able to give responsivity to building components, but often their production is complex and expensive. The aim of this research was the creation of a novel material that can provide lightweight solutions for foldable building envelopes. This composite material can be folded and unfolded easily, like a sheet of paper, but with a higher mechanical performance. It is made with the thermoplastic elastomer SEBS (styrene–ethylene–butylene–styrene) as its matrix, as well as a fabric reinforcement. In this paper, following an introduction to this subject, the authors present the composite material’s production methods and its mechanical characterization. Keywords: textile architecture; fabric structures; origami; composite material; responsive surface 1. Introduction At present, it is difficult to give a fixed structure to the functions carried out inside buildings via hierarchical organization and a rhythmic arrangement of spaces, because of their transitory nature.
    [Show full text]
  • Carbon Fiber /Reaction-Bonded Carbide Matrix For
    Carbon fiber /reaction-bonded carbide matrix for composite materials -Manufacture and characterization Jérôme Magnant, Laurence Maillé, René Pailler, Jean-Christophe Ichard, Alain Guette, Francis Rebillat, Eric Philippe To cite this version: Jérôme Magnant, Laurence Maillé, René Pailler, Jean-Christophe Ichard, Alain Guette, et al.. Carbon fiber /reaction-bonded carbide matrix for composite materials -Manufacture and charac- terization. Journal of the European Ceramic Society, Elsevier, 2012, 32 (16), pp.4497 - 4505. 10.1016/j.jeurceramsoc.2012.06.009. hal-01845172 HAL Id: hal-01845172 https://hal.archives-ouvertes.fr/hal-01845172 Submitted on 20 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Carbon fiber /reaction-bonded carbide matrix for composite materials - Manufacture and characterization Jérôme Magnant1; Laurence Maillé1*; René Pailler1; Jean-Christophe Ichard1; Alain Guette1; Francis Rebillat1; Eric Philippe2 1 University of Bordeaux, Laboratory for Thermostructural Composites (LCTS), Pessac, France. 2 SAFRAN - Snecma Propulsion Solide, Le Haillan, France. ABSTRACT The processing of self-healing Ceramic Matrix Composites by a short time and low cost process was studied. This process is based on the deposition of fiber dual interphases by chemical vapor infiltration and on the densification of the matrix by reactive melt infiltration of silicon.
    [Show full text]
  • Advanced Measurements of Silicon Carbide Ceramic Matrix Composites
    INL/EXT-12-27032 Advanced Measurements of Silicon Carbide Ceramic Matrix Composites David Hurley Farhad Fazbod Zilong Hua Stephen Reese Marat Khafizov August 2012 The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof. INL/EXT-12-27032 Advanced Measurements of Silicon Carbide Ceramic Matrix Composites David Hurley Farhad Farzbod Zilong Hua Stephen Reese Marat Khafizov August, 2012 Idaho National Laboratory Materials Science and Engineering Department Idaho Falls, Idaho 83415 http://www.inl.gov Prepared for the U.S. Department of Energy Office of Nuclear Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 ii iii ABSTRACT Silicon carbide (SiC) is being considered as a fuel cladding material for accident tolerant fuel under the Light Water Reactor Sustainability (LWRS) Program sponsored by the Nuclear Energy Division of the Department of Energy.
    [Show full text]