Tools from Viruses: Bacteriophage Successes and Beyond. Marine Henry, Laurent Debarbieux
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Asymmetric Cryo-EM Reconstruction of Phage MS2 Reveals Genome Structure in Situ
ARTICLE Received 8 Feb 2016 | Accepted 11 Jul 2016 | Published 26 Aug 2016 DOI: 10.1038/ncomms12524 OPEN Asymmetric cryo-EM reconstruction of phage MS2 reveals genome structure in situ Roman I. Koning1,2, Josue Gomez-Blanco3, Inara Akopjana4, Javier Vargas3, Andris Kazaks4, Kaspars Tars4, Jose´ Marı´a Carazo3 & Abraham J. Koster1,2 In single-stranded ribonucleic acid (RNA) viruses, virus capsid assembly and genome packaging are intertwined processes. Using cryo-electron microscopy and single particle analysis we determined the asymmetric virion structure of bacteriophage MS2, which includes 178 copies of the coat protein, a single copy of the A-protein and the RNA genome. This reveals that in situ, the viral RNA genome can adopt a defined conformation. The RNA forms a branched network of stem-loops that almost all allocate near the capsid inner surface, while predominantly binding to coat protein dimers that are located in one-half of the capsid. This suggests that genomic RNA is highly involved in genome packaging and virion assembly. 1 Department of Molecular Cell Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands. 2 Netherlands Centre for Electron Nanoscopy, Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands. 3 Biocomputing Unit, Centro Nacional de Biotecnologı´a, Consejo Superior de Investigaciones Cientı´ficas (CNB-CSIC), Darwin 3, Campus Universidad Auto´noma, Cantoblanco, Madrid 28049, Spain. 4 Biomedical Research and Study Centre, Ratsupites 1, LV-1067 Riga, Latvia. Correspondence and requests for materials should be addressed to R.I.K. (email: [email protected]). -
Bacteriophages: Ecology and Applications Ramin Mazaheri Nezhad Fard 1,2*
Iranian Journal of Virology 2018;12(2): 41-56 ©2018, Iranian Society of Virology Review Article Bacteriophages: Ecology and Applications Ramin Mazaheri Nezhad Fard 1,2* 1. Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran 2. Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran Table of Contents Bacteriophages: Ecology and Applications………………………………………………....1 Abstract ...................................................................................................................................... 1 Introduction ................................................................................................................................ 2 Background ............................................................................................................................ 2 Ecology .................................................................................................................................. 2 Genomics ............................................................................................................................... 6 Collection ............................................................................................................................... 7 Applications ........................................................................................................................... 8 Conclusions ............................................................................................................................. -
Encapsulation of Biomolecules in Bacteriophage MS2 Viral Capsids
Encapsulation of Biomolecules in Bacteriophage MS2 Viral Capsids By Jeff Edward Glasgow A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor Matthew Francis, Co-Chair Professor Danielle Tullman-Ercek, Co-Chair Professor Michelle Chang Professor John Dueber Spring 2014 Encapsulation of Biomolecules in Bacteriophage MS2 Viral Capsids Copyright ©2014 By: Jeff Edward Glasgow Abstract Encapsulation of Biomolecules in Bacteriophage MS2 Viral Capsids By Jeff Edward Glasgow Doctor of Philosophy in Chemistry University of California, Berkeley Professor Matthew Francis, Co-Chair Professor Danielle Tullman-Ercek, Co-Chair Nanometer-scale molecular assemblies have numerous applications in materials, catalysis, and medicine. Self-assembly has been used to create many structures, but approaches can match the extraordinary combination of stability, homogeneity, and chemical flexibility found in viral capsids. In particular, the bacteriophage MS2 capsid has provided a porous scaffold for several engineered nanomaterials for drug delivery, targeted cellular imaging, and photodynamic thera- py by chemical modification of the inner and outer surfaces of the shell. This work describes the development of new methods for reassembly of the capsid with concomitant encapsulation of large biomolecules. These methods were then used to encapsulate a variety of interesting cargoes, including RNA, DNA, protein-nucleic acid and protein-polymer conjugates, metal nanoparticles, and enzymes. To develop a stable, scalable method for encapsulation of biomolecules, the assembly of the capsid from its constituent subunits was analyzed in detail. It was found that combinations of negatively charged biomolecules and protein stabilizing agents could enhance reassembly, while electrostatic interactions of the biomolecules with the positively charged inner surface led to en- capsulation. -
Sensitive Detection of Live Escherichia Coli by Bacteriophage Amplification-Coupled
bioRxiv preprint doi: https://doi.org/10.1101/318071; this version posted May 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Sensitive detection of Live Escherichia coli by bacteriophage amplification-coupled 2 immunoassay on the Luminex® MAGPIX instrument 3 Tomotaka Midoa*, Eric M. Schafferb,c, Robert W. Dorseyc, Shanmuga Sozhamannand,e, E. 4 Randal Hofmannc,f 5 6 CBRN Detection Technology Section, CBRN Defense Technology Division, Advanced Defense 7 Technology Center, Acquisition, Technology and Logistics Agency (ATLA), Tokyo, Japana; 8 Leidos, Inc., Aberdeen Proving Ground, Maryland, USAb; Biosciences Division, U.S. Army 9 Edgewood Chemical Biological Center, Aberdeen Proving Grounds, Edgewood, MD, USAc; The 10 Tauri Group, LLC, Alexandria, VA, USAd; Defense Biological Product Assurance Office, JPM 11 G, JPEO, Frederick, MD, USAe; EXCET, Inc. Springfield, VA, USAf. 12 13 Running Head: Bacterial detection via phage on a MAGPIX instrument 14 15 #Address correspondence to [email protected] 16 *Present address: International Affairs Office, International Cooperation Division, Department 17 of Equipment Policy, Acquisition, Technology and Logistics Agency (ATLA), Tokyo, Japan 18 19 20 1 bioRxiv preprint doi: https://doi.org/10.1101/318071; this version posted May 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 21 Abstract (250 words) 22 Phages are natural predators of bacteria and have been exploited in bacterial detection because of 23 their exquisite specificity to their cognate bacterial hosts. -
Evaluation of Methods for the Concentration and Extraction of Viruses from Sewage in the Context of Metagenomic Sequencing
RESEARCH ARTICLE Evaluation of Methods for the Concentration and Extraction of Viruses from Sewage in the Context of Metagenomic Sequencing Mathis Hjort Hjelmsø1☯*, Maria HellmeÂr2☯, Xavier Fernandez-Cassi3, Natàlia Timoneda3,4, Oksana Lukjancenko1, Michael Seidel5, Dennis ElsaÈsser5, Frank M. Aarestrup1, Charlotta LoÈfstroÈ m2¤, SõÂlvia Bofill-Mas3, Josep F. Abril3,4, Rosina Girones3, Anna Charlotte Schultz2 a1111111111 1 Research Group for Genomic Epidemiology, The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark, 2 Division of Microbiology and Production, The National Food Institute, a1111111111 Technical University of Denmark, Søborg, Denmark, 3 Laboratory of Virus Contaminants of Water and Food, a1111111111 Department of Genetics, Microbiology, and Statistics, University of Barcelona, Barcelona, Catalonia, Spain, a1111111111 4 Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Catalonia, a1111111111 Spain, 5 Institute of Hydrochemistry, Chair of Analytical Chemistry, Technical University of Munich, Munich, Germany ☯ These authors contributed equally to this work. ¤ Current address: Food and Bioscience, SP Technical Research Institute of Sweden, Lund, Sweden * [email protected] OPEN ACCESS Citation: Hjelmsø MH, HellmeÂr M, Fernandez-Cassi X, Timoneda N, Lukjancenko O, Seidel M, et al. Abstract (2017) Evaluation of Methods for the Concentration and Extraction of Viruses from Viral sewage metagenomics is a novel field of study used for surveillance, epidemiological Sewage in the Context of Metagenomic Sequencing. PLoS ONE 12(1): e0170199. studies, and evaluation of waste water treatment efficiency. In raw sewage human waste doi:10.1371/journal.pone.0170199 is mixed with household, industrial and drainage water, and virus particles are, therefore, Editor: Patrick Tang, Sidra Medical and Research only found in low concentrations. -
Phagemid-Based Method of Producing Filamentous Bacteriophage Particles Displaying Antibody Molecules and the Corresponding Bacteriophage Particles
Europäisches Patentamt *EP001433846A2* (19) European Patent Office Office européen des brevets (11) EP 1 433 846 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: C12N 15/10, C07K 16/00, 30.06.2004 Bulletin 2004/27 C12N 15/62, C12N 7/00, C12N 15/73 (21) Application number: 04005419.9 (22) Date of filing: 10.07.1991 (84) Designated Contracting States: • Griffiths, Andrew David AT BE CH DE DK ES FR GB GR IT LI LU NL SE Cambridge CB1 4AY (GB) • Jackson, Ronald Henry (30) Priority: 10.07.1990 GB 9015198 Cambridge CB1 2NU (GB) 19.10.1990 GB 9022845 • Holliger, Kaspar Philipp 12.11.1990 GB 9024503 Cambridge CB1 4HT (GB) 06.03.1991 GB 9104744 • Marks, James David 15.05.1991 GB 9110549 Kensington, CA 94707-1310 (US) • Clackson, Timothy Piers (62) Document number(s) of the earlier application(s) in Somerville, MA 02143 (US) accordance with Art. 76 EPC: • Chiswell, David John 97120149.6 / 0 844 306 Buckingham MK18 2LD (GB) 96112510.1 / 0 774 511 • Winter, Gregory Paul Cambridge CB2 1TQ (GB) (71) Applicants: • Bonnert, Timothy Peter • Cambridge Antibody Technology LTD Seattle, WA 98102 (US) Cambridge CB1 6GH (GB) • Medical Research Council (74) Representative: Walton, Seán Malcolm et al London W1B 1AL (GB) Mewburn Ellis LLP York House, (72) Inventors: 23 Kingsway • McCafferty, John London WC2B 6HP (GB) Babraham CB2 4AP (GB) • Pope, Anthony Richard Remarks: Cambridge CB1 2LW (GB) This application was filed on 08 - 03 - 2004 as a • Johnson, Kevin Stuart divisional application to the application mentioned Highfields, Cambridge CB3 7NY (GB) under INID code 62. -
Antibody Discovery for Development of a Serotyping Dengue Virus NS1 Capture Assay
Antibody Discovery for Development of a Serotyping Dengue Virus NS1 Capture Assay Kebaneilwe Lebani Master of Biotechnology (Advanced) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2014 Australian Institute for Bioengineering and Nanotechnology ABSTRACT Dengue virus (DENV) infections are a significant public health burden in tropical and sub-tropical regions of the world. Infections are caused by four different but antigenically related viruses which result in four DENV serotypes. The multifaceted nature of DENV pathogenesis hinders the sensitivity of assays designed for the diagnosis of infection. Different markers can be optimally detected at different stages of infection. Of particular clinical importance is the identification of acute viremia during the febrile phase of infection which is pivotal for management of infection. Non-structural protein 1 (NS1) has been identified as a good early surrogate marker of infection with possible applications in epidemiological surveillance and the development of blood screening assays. This contribution is towards using serotype-specificity to achieve specific and more sensitive diagnostic detection of DENV NS1. The general aim of this work is to isolate immune-reagents that can be used to develop an assay with improved sensitivity of DENV NS1 detection in a diagnostic setting. In this work, we sought to isolate serotype-specific antibodies that discern discreet antigenic differences in NS1 from each DENV serotype. Additionally, we also sought to isolate a pairing antibody that recognises NS1 from all four DENV serotypes (pan-reactive) for tandem capture of the DENV NS1. To achieve this, three naive, immunoglobulin gene libraries (a VH domain, a scFv and a Fab library) were interrogated for binders to recombinant NS1 antigen from all four DENV serotypes using phage display technology and various biopanning approaches. -
Reticulate Evolution Everywhere
Reticulate Evolution Everywhere Nathalie Gontier Abstract Reticulation is a recurring evolutionary pattern found in phylogenetic reconstructions of life. The pattern results from how species interact and evolve by mechanisms and processes including symbiosis; symbiogenesis; lateral gene transfer (that occurs via bacterial conjugation, transformation, transduction, Gene Transfer Agents, or the movements of transposons, retrotransposons, and other mobile genetic elements); hybridization or divergence with gene flow; and infec- tious heredity (induced either directly by bacteria, bacteriophages, viruses, pri- ons, protozoa and fungi, or via vectors that transmit these pathogens). Research on reticulate evolution today takes on inter- and transdisciplinary proportions and is able to unite distinct research fields ranging from microbiology and molecular genetics to evolutionary biology and the biomedical sciences. This chapter sum- marizes the main principles of the diverse reticulate evolutionary mechanisms and situates them into the chapters that make up this volume. Keywords Reticulate evolution · Symbiosis · Symbiogenesis · Lateral Gene Transfer · Infectious agents · Microbiome · Viriome · Virolution · Hybridization · Divergence with gene flow · Evolutionary patterns · Extended Synthesis 1 Reticulate Evolution: Patterns, Processes, Mechanisms According to the Online Etymology Dictionary (http://www.etymonline.com), the word reticulate is an adjective that stems from the Latin words “re¯ticulātus” (having a net-like pattern) and re¯ticulum (little net). When scholars identify the evolution of life as being “reticulated,” they first and foremost refer to a recurring evolutionary pattern. N. Gontier (*) AppEEL—Applied Evolutionary Epistemology Lab, University of Lisbon, Lisbon, Portugal e-mail: [email protected] © Springer International Publishing Switzerland 2015 1 N. Gontier (ed.), Reticulate Evolution, Interdisciplinary Evolution Research 3, DOI 10.1007/978-3-319-16345-1_1 2 N. -
Internal Control for Real-Time Polymerase Chain Reaction Based on MS2 Bacteriophage for RNA Viruses Diagnostics
Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 112(5): 339-347, May 2017 339 Internal control for real-time polymerase chain reaction based on MS2 bacteriophage for RNA viruses diagnostics Miriam Ribas Zambenedetti1,2, Daniela Parada Pavoni1/+, Andreia Cristine Dallabona1, Alejandro Correa Dominguez1, Celina de Oliveira Poersch1, Stenio Perdigão Fragoso1, Marco Aurélio Krieger1,3 1Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Genômica, Curitiba, PR, Brasil 2Universidade Federal do Paraná, Departamento de Bioprocessos e Biotecnologia, Curitiba, PR, Brasil 3Fundação Oswaldo Cruz-Fiocruz, Instituto de Biologia Molecular do Paraná, Curitiba, PR, Brasil BACKGROUND Real-time reverse transcription polymerase chain reaction (RT-PCR) is routinely used to detect viral infections. In Brazil, it is mandatory the use of nucleic acid tests to detect hepatitis C virus (HCV), hepatitis B virus and human immunodeficiency virus in blood banks because of the immunological window. The use of an internal control (IC) is necessary to differentiate the true negative results from those consequent from a failure in some step of the nucleic acid test. OBJECTIVES The aim of this study was the construction of virus-modified particles, based on MS2 bacteriophage, to be used as IC for the diagnosis of RNA viruses. METHODS The MS2 genome was cloned into the pET47b(+) plasmid, generating pET47b(+)-MS2. MS2-like particles were produced through the synthesis of MS2 RNA genome by T7 RNA polymerase. These particles were used as non-competitive IC in assays for RNA virus diagnostics. In addition, a competitive control for HCV diagnosis was developed by cloning a mutated HCV sequence into the MS2 replicase gene of pET47b(+)-MS2, which produces a non-propagating MS2 particle. -
Molecular Cloning and Functional Expression of Gibberellin 2- Oxidases, Multifunctional Enzymes Involved in Gibberellin Deactivation
Proc. Natl. Acad. Sci. USA Vol. 96, pp. 4698–4703, April 1999 Plant Biology Molecular cloning and functional expression of gibberellin 2- oxidases, multifunctional enzymes involved in gibberellin deactivation STEPHEN G. THOMAS,ANDREW L. PHILLIPS, AND PETER HEDDEN* Institute of Arable Crops Research (IACR)-Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, Long Ashton, Bristol BS41 9AF, United Kingdom Communicated by Jake MacMillan FRS, University of Bristol, Bristol, United Kingdom, February 16, 1999 (received for review December 22, 1998) ABSTRACT A major catabolic pathway for the gibberel- centration of bioactive GAs, the genes for these enzymes have lins (GAs) is initiated by 2b-hydroxylation, a reaction cata- not yet been isolated and it has not been possible to study their lyzed by 2-oxoglutarate-dependent dioxygenases. To isolate a regulation. GA 2b-hydroxylase cDNA clone we used functional screening Gibberellin 2b-hydroxylase activity is abundant in seeds of a cDNA library from developing cotyledons of runner bean during the later stages of maturation, particularly in legume (Phaseolus coccineus L.) with a highly sensitive tritium-release seeds, which accumulate large amounts of 2b-hydroxylated b assay for enzyme activity. The encoded protein, obtained by GAs (6–8). Indeed, GA8, the first 2 -hydroxyGA to be heterologous expression in Escherichia coli, converted GA9 to identified, was extracted from seeds of runner bean (Phaseolus b GA51 (2 -hydroxyGA9) and GA51-catabolite, the latter pro- coccineus, originally classified as P. multiflorus) (9). In certain duced from GA51 by further oxidation at C-2. The enzyme thus species, including legumes, further metabolism of 2b- is multifunctional and is best described as a GA 2-oxidase. -
PRIMER Fall 2008 Volume 5 Issue 2
the PRIMER Fall 2008 Volume 5 Issue 2 also in this issue Guts ’R Us?: CSP 2009 JGI News . 2 Genome of Simplest Animal Reveals Ancient User Community Faces: Lineage . 10 Selections Announced Alexandra Worden . 3 Using Metagenomics Super Bacteria for on Lake Washington Q: What do boat-boring the information that we gener- Super Alfalfa . 4 Microbes. 12 bivalves and stinkbirds have ate from these selections CSP2009 Project at in common? JGI Announcements . 16 promise to take us faster and Contaminated A: Their guts are just two of 44 further down the path toward Hanford Site . 6 new CSP 2009 targets. clean, renewable transporta- In the continuing effort to tion fuels while affording us a tap the vast, unexplored reaches more comprehensive under- Director Rubin of the Earth’s microbial and standing of the global carbon plant domains for bioenergy cycle,” says Eddy Rubin, DOE Reviews and environmental applications, JGI Director. “The range of the DOE JGI has announced its projects spans important ter- Genomics of latest portfolio of DNA sequenc- restrial contributors to bio- ing projects for the coming year. mass production in the Loblolly Biofuels in The 44 projects, culled from pine—the cornerstone of the Nature nearly 150 proposals received U.S. forest products industry— through the Community to phytoplankton, barely visible Genomics is accelerating Sequencing Program (CSP), will to the naked eye, but no less improvements for converting collectively generate more than important to the massive gen- plant biomass into biofuel, thus 60 billion nucleotides of data. eration of fixed carbon in our bringing closer to reality wide- “The scientific and techno- marine ecosystems.” spread use of an alternative to logical advances enabled by With new cont. -
What Is a Gene, Post-ENCODE? History and Updated Definition
Downloaded from genome.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Perspective What is a gene, post-ENCODE? History and updated definition Mark B. Gerstein,1,2,3,9 Can Bruce,2,4 Joel S. Rozowsky,2 Deyou Zheng,2 Jiang Du,3 Jan O. Korbel,2,5 Olof Emanuelsson,6 Zhengdong D. Zhang,2 Sherman Weissman,7 and Michael Snyder2,8 1Program in Computational Biology & Bioinformatics, Yale University, New Haven, Connecticut 06511, USA; 2Molecular Biophysics & Biochemistry Department, Yale University, New Haven, Connecticut 06511, USA; 3Computer Science Department, Yale University, New Haven, Connecticut 06511, USA; 4Center for Medical Informatics, Yale University, New Haven, Connecticut 06511, USA; 5European Molecular Biology Laboratory, 69117 Heidelberg, Germany; 6Stockholm Bioinformatics Center, Albanova University Center, Stockholm University, SE-10691 Stockholm, Sweden; 7Genetics Department, Yale University, New Haven, Connecticut 06511, USA; 8Molecular, Cellular, & Developmental Biology Department, Yale University, New Haven, Connecticut 06511, USA While sequencing of the human genome surprised us with how many protein-coding genes there are, it did not fundamentally change our perspective on what a gene is. In contrast, the complex patterns of dispersed regulation and pervasive transcription uncovered by the ENCODE project, together with non-genic conservation and the abundance of noncoding RNA genes, have challenged the notion of the gene. To illustrate this, we review the evolution of operational definitions of a gene over the past century—from the abstract elements of heredity of Mendel and Morgan to the present-day ORFs enumerated in the sequence databanks. We then summarize the current ENCODE findings and provide a computational metaphor for the complexity.