(12) Patent Application Publication (10) Pub. No.: US 2010/0028966 A1 Blanchard Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2010/0028966 A1 Blanchard Et Al US 20100028966A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0028966 A1 Blanchard et al. (43) Pub. Date: Feb. 4, 2010 (54) METHODS AND COMPOSITIONS FOR Related U.S. Application Data IMPROVING THE PRODUCTION OF (60) Provisional application No. 61/228,922, filed on Jul. PRODUCTS IN MICROORGANISMS 27, 2009, provisional application No. 61/084.233, filed on Jul. 28, 2008. (76) Inventors: Jeffrey Blanchard, Leverett, MA Publication Classification (US); Elsa Petit, Northampton, MA (US); John Fabel, Amherst, MA (51) Int. C. CI2P 7/10 (2006.01) (US); Susan Leschine, Leverett, CI2N IS/II (2006.01) MA (US) CI2N IS/00 (2006.01) CI2P 7/06 (2006.01) Correspondence Address: (52) U.S. Cl. ..................... 435/165:536/23.2:435/252.3: FSH & RICHARDSON PC 435/161 P.O. BOX 1022 ABSTRACT MINNEAPOLIS, MN 55440-1022 (US) (57) Methods and compositions are provided for improving the production of products. Such as fuel products like ethanol, in (21) Appl. No.: 12/510,952 microorganisms. In particular, methods and compositions are described for improving ethanol production utilizing genes (22) Filed: Jul. 28, 2009 identified in Clostridium phytofermentans. EXTRACELLULARHYDROLASES MEMBRANE-BOUNDHYDROLASES CPHYDRAFT O995. CELLULASE • CPHYDRAFT 1067 END0-{EXO-GLUCANASE CPHYDRAFT 1068.EXOGLUCANASE - CELLULASEGHS) - - GH9 - CBM3 - DUF291-DUF291 CBM3 - . GH48 DUF291 CBM3 - CPHYDRAF 1460. CELLULASE ; : CPHYDRAFT 2095. MANNANENDO-1,4- MANNOSIDASE CELLULASEGHS) DUF294 CBD GH28 ; : CPHYDRAFT 3365: ENDO. NACETYLGLUCOSAMINIDASE D CPHYDRAFT 2150. CELLULASE PKD CELLULASEGH5) • CPHYDRAF 0433. CPHYDRAFT 0434: CPHYDRAFT 0435: GLYCOSDEHYDROLASE ENDO-14. XYLOSIDASE • CPHYDRAFT 0560. MANNANENDO-14. MANNOSIDASE XYANASE CBM6 GH26 CBM3 - - - - - GH3 - GH3C -- - - - - - -XYNA (GH10)- CPHYDRAFT 1793: ENDO-1,4-XYLANASE • CPHYDRAF 3622. MANNAN ENDO-1,4- -A1ANNOSIDASE XYNA (GH10) - GH26 -DUF291-DUF291 CBM3 - - CPHYDRAFT3641: ENDO-1,4-XYLANASE CARBOHYDRATE BINDING DOMAIN G-IKE DOMAN CPHYDRAFT 2095. MANNAN ENDO-1,4- MANNOSIDASE XYNA GHO). CBM49 CATALYTC DOMAINDEGRADING CELLULOSE GH26 CPHYDRAF 3644: ENDO-1,4- XYLANASE CATALYTC DOMAINDEGRADING XYLAN GH1 CPHYDRAFT 2913. ENDO-1,4- XYLANASE CATALYTC DOMAINDEGRADING MANNAN XYNA (GHG) XYNA (GH10) E. CPHYDRAFT 1850. PUTATIVE PECTINASE CATALYTIC DOMAINDEGRADING PECTIN GH28 OHER CATALYTIC DOMAINDEGRADING PLANT CPHYDRAF 1307. ENDOGLUCANASE . CPHYDRAFT 0239. PUTATIVE PECTINASE CELL WALL COMPONENTS GH12 - - GH28 - SINGLEPEPTIDECLEANAGE CPHYDRAFT 11.10: ENDO-13(4)--GLUCANASE CPHYDRAFT 1555. GLYCOSIDE HYDROLASE GH16 -CBM49-CBM49-CBM49-CBM49-CBM49- BIG2 - - GH3 - GH3C - : (ABOUT50 DVERSEANDNUMEROUSSUGARABCTYPETRANSPORTERSSYSTEMS l Patent Application Publication Feb. 4, 2010 Sheet 1 of 17 US 2010/0028966 A1 Possible gene combinations S I R R FIG. 1 Patent Application Publication Feb. 4, 2010 Sheet 2 of 17 US 2010/0028966 A1 Specific examples in Cphy related to cellulose and Xylan FIG. 2 Patent Application Publication Feb. 4, 2010 Sheet 3 of 17 US 2010/0028966 A1 co ; : 15 CD E| ||O CD - : Patent Application Publication Feb. 4, 2010 Sheet 4 of 17 US 2010/0028966 A1 47000014800001100001 460000 00001 450000 300001 4400001 "too 4300001 - 4200001 w (g O 400001 y 00 4000001 800001 90000 390000 1000001 380000 1100001 370000 20000 360000 1300001 350000 140000 3400001 1500001 3300001 160000 3200001 X 1700001 300001 3000001 180000 1900001 290000 2000001 280000 21 OOOO 'S6000 2300002200001 2500001 2400001 FIG. 5 Patent Application Publication Feb. 4, 2010 Sheet 5 of 17 US 2010/0028966 A1 . Position in Genome (Mb) FIG. 6 Patent Application Publication Feb. 4, 2010 Sheet 6 of 17 US 2010/0028966 A1 Patent Application Publication Feb. 4, 2010 Sheet 7 of 17 US 2010/0028966 A1 Lactobacillales 1% Bacillales 6% \ ACtinomycetales 1% Other O Unique to C. Clostridiales 4% Other 6% Phytofermentans 15% Cluster VIII Custer V 196 Cluster X Cluster v Cluster1% XI S 1% Cluster III Cluster XIVa 38% Cluster I FG. 8 Patent Application Publication Feb. 4, 2010 Sheet 8 of 17 US 2010/0028966 A1 GH Cluster XIVa Other 30% 14% Cluster I 11% Cluster III 17% Bacili 18% Cluster X - E - 5% Other strida Cluster V O 1% All Genes Other Clostridia ... Other 6% 4% Bacili Unique to C. Cluster V phytotonians 1% Cluster X 1% Cluster IV Cluster XIVa 1% 38% Cluster XI 4% Cluster III 7% Cluster I FIG. 9B 13% Patent Application Publication Feb. 4, 2010 Sheet 9 of 17 US 2010/0028966 A1 Patent Application Publication Feb. 4, 2010 Sheet 11 of 17 US 2010/0028966 A1 as Se SEs ess s 8 s s: 3. s Patent Application Publication Feb. 4, 2010 Sheet 12 of 17 US 2010/0028966 A1 BSWT/ITTEO9660TIHWHOMHd0 –(GHQ)JSWINTEO ESWINTEOOG??TI-VACAHd0 (GHQ)ESWINTEO |ZH?HET Patent Application Publication Feb. 4, 2010 Sheet 13 of 17 US 2010/0028966 A1 ABC transporter Cphy 1219 Xylose isomerase Kinase F.G. 13 Patent Application Publication Feb. 4, 2010 Sheet 14 of 17 US 2010/0028966 A1 -F COSE Cpy 2010-2 L-FUCOSE Cphy 3153 y -FUCOSE Cphy 355 Ap ADP -FCJOSE Cphy 3154 -UCJOSE - P-OSP-AE Cphy 177 EMP 4-w OAP ACALE-Y). Pathway NA) Cphy 185 NA) 12-PROPANEDO Cphy 174-5 t PROPONADEYE NAD NAD Cyphy 78 NAD Cphypity 9 PROPONY-COA ROPANO Chy 83 AOP py A PROPONYP-OSP-AEy PROPONAE FIG. 14 Patent Application Publication Feb. 4, 2010 Sheet 15 of 17 US 2010/0028966A1 R-AMNOSE Cpy 0580-3 -R-AMNOSE Cphy 149 -R-AMNOSE Cphy 147 Ap AP -R-AMNUOSE Cphy 146 y -R-AMNOSE - P-OSP-AE Cphy 77 -- DHAP + L-LACTALDEHYDE Pathway NA) Cphy it 85 Sa NAO 12-PROPANEDO Cphy 1174-5 t PROPONADE-Y) NAD NAD Cphyphy 78 NAO- Cphypity 9 PROPONYCOA PROPANO Chy 83 /* A) pay As PROPONY-P-OSP-AEy ROPONAE FIG. 15 Patent Application Publication Feb. 4, 2010 Sheet 16 of 17 US 2010/0028966 A1 CO V CD -OEDITO Patent Application Publication Feb. 4, 2010 Sheet 17 of 17 US 2010/0028966 A1 C-3 3. Cphy 2-6-6 ABC transporter CHESH - N Cphy (430 Y Nice obiose phosphoryliase A A. C.S.- {COS 8-3- FIG. 17 US 2010/0028966 A1 Feb. 4, 2010 METHODS AND COMPOSITIONS FOR tans In further embodiments, the polynucleotide can contain IMPROVING THE PRODUCTION OF a regulatory sequence operably linked to the isolated nucleic PRODUCTS IN MICROORGANISMS acid encoding the hydrolase. 0007 Some embodiments include polynucleotides con CLAIM OF PRIORITY taining an isolated nucleic acid encoding at least one ATP 0001. This application claims the benefit of priority from binding cassette (ABC)-transporter identified in C. phytofer U.S. Provisional Patent Application Ser. No. 61/084.233, mentans. In Such embodiments, the isolated nucleic acid can filed on Jul. 28, 2008, and U.S. Provisional Patent Application be selected from Table 7. In particular embodiments, the Ser. No. 61/228,922, filed on Jul.27, 2009, the entire contents ABC-transporter is selected from the group consisting of of both of which are incorporated by reference herein. Cphy3854, Cphy3855, Cphy3857, Cphy3858, Cphy3859, Cphy3860, Cphy3861, and Cphy3862. In further embodi FIELD OF THE INVENTION ments, the polynucleotide can contain a regulatory sequence 0002 The present invention relates to the field of micro operably linked to the isolated nucleic acid encoding the biology, molecular biology and biotechnology. More specifi ABC-transporter. cally, the present invention relates to methods and composi 0008. Some embodiments include polynucleotides con tions for improving the production of products, such as taining an isolated nucleic acid encoding at least one tran ethanol and hydrogen, in microorganisms. Scriptional regulator identified in C. phytofermentans. In Such embodiments, the isolated nucleic acid can be selected from BACKGROUND Table 8. In further embodiments, the polynucleotide can con tain a regulatory sequence operably linked to the isolated 0003. There is an interest in developing methods and com nucleic acid encoding the transcriptional regulator. positions for producing usable energy from renewable and 0009. Some embodiments include polynucleotide cas Sustainable biomass resources. Energy in the form of carbo settes containing any combination of the nucleic acids encod hydrates can be found in waste biomass, and in dedicated ing hydrolases, ABC-transporters, and transcriptional regu energy crops, for example, grains, such as corn or wheat, or lators described herein. In one embodiment, a polynucleotide grasses, such as Switchgrass. cassette can contain an isolated nucleic acid encoding at least 0004. A current challenge is to develop viable and eco one hydrolase, and an isolated nucleic acid encoding at least nomical strategies for the conversion of carbohydrates into one ABC-transporter. In another embodiment, a polynucle usable energy forms. Strategies for deriving useful energy otide cassette can contain an isolated nucleic acid encoding at from carbohydrates include the production of ethanol and least one hydrolase, and an isolated nucleic acid encoding at other alcohols, conversion of carbohydrates into hydrogen, least one transcriptional regulator. In another embodiment, a and direct conversion of carbohydrates into electrical energy polynucleotide cassette can contain an isolated nucleic acid through fuel cells. Examples of strategies to derive ethanol encoding at least one ABC-transporter, and an isolated form biomass are described by DiPardo, Journal of Outlook nucleic acid encoding at least one transcriptional regulator. In for Biomass Ethanol Production and Demand (EIA Fore yet another embodiment, a polynucleotide cassette can con casts), 2002; Sheehan, Biotechnology Progress, 15:8,179, tain an isolated nucleic acid encoding at least one hydrolase, 1999; Martin, Enzyme Microbes Technology, 31:274, 2002: and an isolated nucleic acid encoding at least one ABC Greer, BioCycle, 61-65, April 2005; Lynd, Microbiology and transporter, and an isolated nucleic acid encoding at least one Molecular Biology Reviews, 66:3, 506-577, 2002; and Lynd transcriptional regulator. et al. in “Consolidated Bioprocessing of Cellulosic Biomass: 0010 Some embodiments include expression cassettes An Update. Current Opinion in Biotechnology, 16:577-583, containing any polynucleotide described herein and a regu 2005. latory sequence operably linked to the polynucleotide cas SUMMARY Sette.
Recommended publications
  • Bacteria Belonging to Pseudomonas Typographi Sp. Nov. from the Bark Beetle Ips Typographus Have Genomic Potential to Aid in the Host Ecology
    insects Article Bacteria Belonging to Pseudomonas typographi sp. nov. from the Bark Beetle Ips typographus Have Genomic Potential to Aid in the Host Ecology Ezequiel Peral-Aranega 1,2 , Zaki Saati-Santamaría 1,2 , Miroslav Kolaˇrik 3,4, Raúl Rivas 1,2,5 and Paula García-Fraile 1,2,4,5,* 1 Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; [email protected] (E.P.-A.); [email protected] (Z.S.-S.); [email protected] (R.R.) 2 Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain 3 Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague, Czech Republic; [email protected] 4 Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic 5 Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain * Correspondence: [email protected] Received: 4 July 2020; Accepted: 1 September 2020; Published: 3 September 2020 Simple Summary: European Bark Beetle (Ips typographus) is a pest that affects dead and weakened spruce trees. Under certain environmental conditions, it has massive outbreaks, resulting in attacks of healthy trees, becoming a forest pest. It has been proposed that the bark beetle’s microbiome plays a key role in the insect’s ecology, providing nutrients, inhibiting pathogens, and degrading tree defense compounds, among other probable traits. During a study of bacterial associates from I. typographus, we isolated three strains identified as Pseudomonas from different beetle life stages. In this work, we aimed to reveal the taxonomic status of these bacterial strains and to sequence and annotate their genomes to mine possible traits related to a role within the bark beetle holobiont.
    [Show full text]
  • Isolation and Characterization of Achromobacter Sp. CX2 From
    Ann Microbiol (2015) 65:1699–1707 DOI 10.1007/s13213-014-1009-6 ORIGINAL ARTICLE Isolation and characterization of Achromobacter sp. CX2 from symbiotic Cytophagales, a non-cellulolytic bacterium showing synergism with cellulolytic microbes by producing β-glucosidase Xiaoyi Chen & Ying Wang & Fan Yang & Yinbo Qu & Xianzhen Li Received: 27 August 2014 /Accepted: 24 November 2014 /Published online: 10 December 2014 # Springer-Verlag Berlin Heidelberg and the University of Milan 2014 Abstract A Gram-negative, obligately aerobic, non- degradation by cellulase (Carpita and Gibeaut 1993). There- cellulolytic bacterium was isolated from the cellulolytic asso- fore, efficient degradation is the result of multiple activities ciation of Cytophagales. It exhibits biochemical properties working synergistically to efficiently solubilize crystalline cel- that are consistent with its classification in the genus lulose (Sánchez et al. 2004;Lietal.2009). Most known Achromobacter. Phylogenetic analysis together with the phe- cellulolytic organisms produce multiple cellulases that act syn- notypic characteristics suggest that the isolate could be a novel ergistically on native cellulose (Wilson 2008)aswellaspro- species of the genus Achromobacter and designated as CX2 (= duce some other proteins that enhance cellulose hydrolysis CGMCC 1.12675=CICC 23807). The strain CX2 is the sym- (Wang et al. 2011a, b). Synergistic cooperation of different biotic microbe of Cytophagales and produces β-glucosidase. enzymes is a prerequisite for the efficient degradation of cellu- The results showed that the non-cellulolytic Achromobacter lose (Jalak et al. 2012). Both Trichoderma reesi and Aspergillus sp. CX2 has synergistic activity with cellulolytic microbes by niger were co-cultured to increase the levels of different enzy- producing β-glucosidase.
    [Show full text]
  • Supplementary Information
    doi: 10.1038/nature06269 SUPPLEMENTARY INFORMATION METAGENOMIC AND FUNCTIONAL ANALYSIS OF HINDGUT MICROBIOTA OF A WOOD FEEDING HIGHER TERMITE TABLE OF CONTENTS MATERIALS AND METHODS 2 • Glycoside hydrolase catalytic domains and carbohydrate binding modules used in searches that are not represented by Pfam HMMs 5 SUPPLEMENTARY TABLES • Table S1. Non-parametric diversity estimators 8 • Table S2. Estimates of gross community structure based on sequence composition binning, and conserved single copy gene phylogenies 8 • Table S3. Summary of numbers glycosyl hydrolases (GHs) and carbon-binding modules (CBMs) discovered in the P3 luminal microbiota 9 • Table S4. Summary of glycosyl hydrolases, their binning information, and activity screening results 13 • Table S5. Comparison of abundance of glycosyl hydrolases in different single organism genomes and metagenome datasets 17 • Table S6. Comparison of abundance of glycosyl hydrolases in different single organism genomes (continued) 20 • Table S7. Phylogenetic characterization of the termite gut metagenome sequence dataset, based on compositional phylogenetic analysis 23 • Table S8. Counts of genes classified to COGs corresponding to different hydrogenase families 24 • Table S9. Fe-only hydrogenases (COG4624, large subunit, C-terminal domain) identified in the P3 luminal microbiota. 25 • Table S10. Gene clusters overrepresented in termite P3 luminal microbiota versus soil, ocean and human gut metagenome datasets. 29 • Table S11. Operational taxonomic unit (OTU) representatives of 16S rRNA sequences obtained from the P3 luminal fluid of Nasutitermes spp. 30 SUPPLEMENTARY FIGURES • Fig. S1. Phylogenetic identification of termite host species 38 • Fig. S2. Accumulation curves of 16S rRNA genes obtained from the P3 luminal microbiota 39 • Fig. S3. Phylogenetic diversity of P3 luminal microbiota within the phylum Spirocheates 40 • Fig.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips Et Al
    USOO598.1835A United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips et al. (45) Date of Patent: Nov. 9, 1999 54) TRANSGENIC PLANTS AS AN Brown and Atanassov (1985), Role of genetic background in ALTERNATIVE SOURCE OF Somatic embryogenesis in Medicago. Plant Cell Tissue LIGNOCELLULOSC-DEGRADING Organ Culture 4:107-114. ENZYMES Carrer et al. (1993), Kanamycin resistance as a Selectable marker for plastid transformation in tobacco. Mol. Gen. 75 Inventors: Sandra Austin-Phillips; Richard R. Genet. 241:49-56. Burgess, both of Madison; Thomas L. Castillo et al. (1994), Rapid production of fertile transgenic German, Hollandale; Thomas plants of Rye. Bio/Technology 12:1366–1371. Ziegelhoffer, Madison, all of Wis. Comai et al. (1990), Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS 73 Assignee: Wisconsin Alumni Research elements. Plant Mol. Biol. 15:373-381. Foundation, Madison, Wis. Coughlan, M.P. (1988), Staining Techniques for the Detec tion of the Individual Components of Cellulolytic Enzyme 21 Appl. No.: 08/883,495 Systems. Methods in Enzymology 160:135-144. de Castro Silva Filho et al. (1996), Mitochondrial and 22 Filed: Jun. 26, 1997 chloroplast targeting Sequences in tandem modify protein import specificity in plant organelles. Plant Mol. Biol. Related U.S. Application Data 30:769-78O. 60 Provisional application No. 60/028,718, Oct. 17, 1996. Divne et al. (1994), The three-dimensional crystal structure 51 Int. Cl. ............................. C12N 15/82; C12N 5/04; of the catalytic core of cellobiohydrolase I from Tricho AO1H 5/00 derma reesei. Science 265:524-528.
    [Show full text]
  • Insights Into the Oxidative Degradation of Cellulose by a Copper Metalloenzyme That Exploits Biomass Components
    Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components R. Jason Quinlana,1, Matt D. Sweeneya,1, Leila Lo Leggiob, Harm Ottenb, Jens-Christian N. Poulsenb, Katja Salomon Johansenc,2, Kristian B. R. M. Kroghc, Christian Isak Jørgensenc, Morten Tovborgc, Annika Anthonsenc, Theodora Tryfonad, Clive P. Walterc, Paul Dupreed, Feng Xua, Gideon J. Daviese, and Paul H. Waltone aNovozymes, Inc., Davis, CA 95618; bDepartment of Chemistry, University of Copenhagen, 2100 Copenhagen Ø, Denmark; cNovozymes A/S, DK-2880 Bagsværd, Denmark; dDepartment of Biochemistry, School of Biological Sciences, University of Cambridge, Cambridge CB2 1QW, United Kingdom; and eDepartment of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom Edited* by Diter von Wettstein, Washington State University, Pullman, WA, and approved August 2, 2011 (received for review April 13, 2011) The enzymatic degradation of recalcitrant plant biomass is one lysis. From this work, it was suggested that GH61s act directly on of the key industrial challenges of the 21st century. Accordingly, cellulose rendering it more accessible to traditional cellulase there is a continuing drive to discover new routes to promote action (11). Moreover, recent genomic sequencing of the brown polysaccharide degradation. Perhaps the most promising approach rot fungi Postia placenta showed a number of GH61 genes in this involves the application of “cellulase-enhancing factors,” such as organism (13–15), indicating the widespread nature of this those from the glycoside hydrolase (CAZy) GH61 family. Here we family of enzymes in cellulose degradation. As such, GH61s show that GH61 enzymes are a unique family of copper-depen- likely hold major potential for industrial decomposition of dent oxidases.
    [Show full text]
  • Genomic and Transcriptomic Analysis of Carbohydrate Utilization by Paenibacillus Sp
    Sawhney et al. BMC Genomics (2016) 17:131 DOI 10.1186/s12864-016-2436-5 RESEARCH ARTICLE Open Access Genomic and transcriptomic analysis of carbohydrate utilization by Paenibacillus sp. JDR-2: systems for bioprocessing plant polysaccharides Neha Sawhney1†, Casey Crooks2, Virginia Chow1, James F. Preston1* and Franz J. St John2*† Abstract Background: Polysaccharides comprising plant biomass are potential resources for conversion to fuels and chemicals. These polysaccharides include xylans derived from the hemicellulose of hardwoods and grasses, soluble β-glucans from cereals and starch as the primary form of energy storage in plants. Paenibacillus sp. JDR-2 (Pjdr2) has evolved a system for bioprocessing xylans. The central component of this xylan utilization system is a multimodular glycoside hydrolase family 10 (GH10) endoxylanase with carbohydrate binding modules (CBM) for binding xylans and surface layer homology (SLH) domains for cell surface anchoring. These attributes allow efficient utilization of xylans by generating oligosaccharides proximal to the cell surface for rapid assimilation. Coordinate expression of genes in response to growth on xylans has identified regulons contributing to depolymerization, importation of oligosaccharides and intracellular processing to generate xylose as well as arabinose and methylglucuronate. The genome of Pjdr2 encodes several other putative surface anchored multimodular enzymes including those for utilization of β-1,3/1,4 mixed linkage soluble glucan and starch. Results: To further define polysaccharide utilization systems in Pjdr2, its transcriptome has been determined by RNA sequencing following growth on barley-derived soluble β-glucan, starch, cellobiose, maltose, glucose, xylose and arabinose. The putative function of genes encoding transcriptional regulators, ABC transporters, and glycoside hydrolases belonging to the corresponding substrate responsive regulon were deduced by their coordinate expression and locations in the genome.
    [Show full text]
  • WO 2015/130881 Al 3 September 2015 (03.09.2015) P O P CT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/130881 Al 3 September 2015 (03.09.2015) P O P CT (51) International Patent Classification: (72) Inventors: NAGY, Kevin D.; 106 Steven Lane, Wilming C12P 19/16 (2006.01) C12P 19/12 (2006.01) ton, Delaware 19808 (US). HAGO, Erwin Columbus; CUP 19/18 (2006.01) C12P 19/08 (2006.01) 2901 6th Street Sw Apt. 24, Cedar Rapids, Iowa 52404 CUP 19/04 (2006.01) (US). SHETTY, Jayarama K.; 4806 Braxton Place, Pleasonton, California 94566 (US). HENNESSEY, Susan (21) International Application Number: Marie; 32 Truman Lane, Avondale, Pennsylvania 193 11 PCT/US20 15/0 17644 (US). DICOSIMO, Robert; 1607 Masters Way, Chadds (22) International Filing Date: Ford, Pennsylvania 193 17-9720 (US). HUA, Ling; 126 26 February 2015 (26.02.2015) Hockessin Drive, Hockessin, Delaware 19707 (US). RAMIREZ, Rodrigo; Rua Alfredo Ribeiro Nogueira, 280. (25) Filing Language: English Casa08, Campinas, 13092-480 Sao Paulo (BR). TANG, Publication Language: English Zhongmei; Room 602, Building 100, Lane 1100, Gudai Road, Shanghai 201 102 (CN). YU, Zheyong; Room 501, Priority Data: Building 17, Lane 150, Guangyue Road, Hongkou District, 61/945,233 27 February 2014 (27.02.2014) US Shanghai 200000 (CN). 61/945,241 27 February 2014 (27.02.2014) US 62/004,300 29 May 2014 (29.05.2014) us (74) Agent: CHESIRE, Dennis; E. I. du Pont de Nemours and 62/004,305 29 May 2014 (29.05.2014) us Company, Legal Patent Records Center, Chestnut Run 62/004,308 29 May 2014 (29.05.2014) us Plaza 721/2640, 974 Centre Road, PO Box 291 5 Wilming 62/004,290 29 May 2014 (29.05.2014) us ton, Delaware 19805 (US).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,468,955 B1 Smets Et Al
    USOO6468955B1 (12) United States Patent (10) Patent No.: US 6,468,955 B1 Smets et al. (45) Date of Patent: Oct. 22, 2002 (54) LAUNDRY DETERGENT AND/OR FABRIC FOREIGN PATENT DOCUMENTS CARE COMPOSITIONS COMPRISINGA MODIFIED ENZYME WO WO 94/07998 4/1994 ............ C12N/9/42 WO WO 94/29460 12/1994 ... C12N/15/62 (75) Inventors: Johan Smets, Lubbeek (BE); Jean-Luc WO WO 97/07203 2/1997 C12N/11/12 Philippe Bettiol, Brussels (BE); WO WO 97/24421 7/1997 WO WO-97/24421 * 7/1997 ........... C11D/3/386 Stanton Lane Boyer, Fairfield, OH WO WO-97/28243 * 8/1997 ..... ... C11D/3/386 (US); Alfred Busch, Londerzeel (BE) WO WO 97/28256 8/1997 ..... ... C12N/9/00 WO WO 97/301.48 8/1997 ..... ... C12N/9/96 (73) Assignee: The Proctor & Gamble Company, WO WO 98/OO500 1/1998 ..... ... C11D/3/386 Cincinnati, OH (US) WO WO 98/16633 4/1998 ..... ... C12N/9/26 (*) Notice: Subject to any disclaimer, the term of this WO WO 98/284.11 7/1998 ............ C12N/9/42 patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS (21) Appl. No.: 09/674,478 Characterization of a Double Cellulose-Binding Domain No (22) PCT Filed: Apr. 30, 1999 date. (86) PCT No.: PCT/US99/09453 * cited by examiner S371 (c)(1), (2), (4) Date: Nov. 1, 2000 Primary Examiner Mark Kopec (87) PCT Pub. No.: WO99/57252 ASSistant Examiner-Eisa Elhilo (74) Attorney, Agent, or Firm-Frank Taffy; C. Brant Cook; PCT Pub. Date: Nov. 11, 1999 K.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall Et Al
    USOO9689046B2 (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall et al. (45) Date of Patent: Jun. 27, 2017 (54) SYSTEM AND METHODS FOR THE FOREIGN PATENT DOCUMENTS DETECTION OF MULTIPLE CHEMICAL WO O125472 A1 4/2001 COMPOUNDS WO O169245 A2 9, 2001 (71) Applicants: Robert Matthew Mayall, Calgary (CA); Emily Candice Hicks, Calgary OTHER PUBLICATIONS (CA); Margaret Mary-Flora Bebeselea, A. et al., “Electrochemical Degradation and Determina Renaud-Young, Calgary (CA); David tion of 4-Nitrophenol Using Multiple Pulsed Amperometry at Christopher Lloyd, Calgary (CA); Lisa Graphite Based Electrodes', Chem. Bull. “Politehnica” Univ. Kara Oberding, Calgary (CA); Iain (Timisoara), vol. 53(67), 1-2, 2008. Fraser Scotney George, Calgary (CA) Ben-Yoav. H. et al., “A whole cell electrochemical biosensor for water genotoxicity bio-detection”. Electrochimica Acta, 2009, 54(25), 6113-6118. (72) Inventors: Robert Matthew Mayall, Calgary Biran, I. et al., “On-line monitoring of gene expression'. Microbi (CA); Emily Candice Hicks, Calgary ology (Reading, England), 1999, 145 (Pt 8), 2129-2133. (CA); Margaret Mary-Flora Da Silva, P.S. et al., “Electrochemical Behavior of Hydroquinone Renaud-Young, Calgary (CA); David and Catechol at a Silsesquioxane-Modified Carbon Paste Elec trode'. J. Braz. Chem. Soc., vol. 24, No. 4, 695-699, 2013. Christopher Lloyd, Calgary (CA); Lisa Enache, T. A. & Oliveira-Brett, A. M., "Phenol and Para-Substituted Kara Oberding, Calgary (CA); Iain Phenols Electrochemical Oxidation Pathways”, Journal of Fraser Scotney George, Calgary (CA) Electroanalytical Chemistry, 2011, 1-35. Etesami, M. et al., “Electrooxidation of hydroquinone on simply prepared Au-Pt bimetallic nanoparticles'. Science China, Chem (73) Assignee: FREDSENSE TECHNOLOGIES istry, vol.
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Ron Caspi Quang Ong Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_900114035Cyc: Amycolatopsis sacchari DSM 44468 Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • Protein & Peptide Letters
    696 Send Orders for Reprints to [email protected] Protein & Peptide Letters, 2017, 24, 696-709 REVIEW ARTICLE ISSN: 0929-8665 eISSN: 1875-5305 Impact Factor: 1.068 Glycan Phosphorylases in Multi-Enzyme Synthetic Processes BENTHAM Editor-in-Chief: SCIENCE Ben M. Dunn Giulia Pergolizzia, Sakonwan Kuhaudomlarpa, Eeshan Kalitaa,b and Robert A. Fielda,* aDepartment of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; bDepartment of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, Assam -784028, India Abstract: Glycoside phosphorylases catalyse the reversible synthesis of glycosidic bonds by glyco- A R T I C L E H I S T O R Y sylation with concomitant release of inorganic phosphate. The equilibrium position of such reac- tions can render them of limited synthetic utility, unless coupled with a secondary enzymatic step Received: January 17, 2017 Revised: May 24, 2017 where the reaction lies heavily in favour of product. This article surveys recent works on the com- Accepted: June 20, 2017 bined use of glycan phosphorylases with other enzymes to achieve synthetically useful processes. DOI: 10.2174/0929866524666170811125109 Keywords: Phosphorylase, disaccharide, α-glucan, cellodextrin, high-value products, biofuel. O O 1. INTRODUCTION + HO OH Glycoside phosphorylases (GPs) are carbohydrate-active GH enzymes (CAZymes) (URL: http://www.cazy.org/) [1] in- H2O O GP volved in the formation/cleavage of glycosidic bond together O O GT O O + HO O + HO with glycosyltransferase (GT) and glycoside hydrolase (GH) O -- NDP OPO3 NDP -- families (Figure 1) [2-6]. GT reactions favour the thermody- HPO4 namically more stable glycoside product [7]; however, these GS R enzymes can be challenging to work with because of their O O + HO current limited availability and relative instability, along R with the expense of sugar nucleotide substrates [7].
    [Show full text]
  • Supplementary Informations SI2. Supplementary Table 1
    Supplementary Informations SI2. Supplementary Table 1. M9, soil, and rhizosphere media composition. LB in Compound Name Exchange Reaction LB in soil LBin M9 rhizosphere H2O EX_cpd00001_e0 -15 -15 -10 O2 EX_cpd00007_e0 -15 -15 -10 Phosphate EX_cpd00009_e0 -15 -15 -10 CO2 EX_cpd00011_e0 -15 -15 0 Ammonia EX_cpd00013_e0 -7.5 -7.5 -10 L-glutamate EX_cpd00023_e0 0 -0.0283302 0 D-glucose EX_cpd00027_e0 -0.61972444 -0.04098397 0 Mn2 EX_cpd00030_e0 -15 -15 -10 Glycine EX_cpd00033_e0 -0.0068175 -0.00693094 0 Zn2 EX_cpd00034_e0 -15 -15 -10 L-alanine EX_cpd00035_e0 -0.02780553 -0.00823049 0 Succinate EX_cpd00036_e0 -0.0056245 -0.12240603 0 L-lysine EX_cpd00039_e0 0 -10 0 L-aspartate EX_cpd00041_e0 0 -0.03205557 0 Sulfate EX_cpd00048_e0 -15 -15 -10 L-arginine EX_cpd00051_e0 -0.0068175 -0.00948672 0 L-serine EX_cpd00054_e0 0 -0.01004986 0 Cu2+ EX_cpd00058_e0 -15 -15 -10 Ca2+ EX_cpd00063_e0 -15 -100 -10 L-ornithine EX_cpd00064_e0 -0.0068175 -0.00831712 0 H+ EX_cpd00067_e0 -15 -15 -10 L-tyrosine EX_cpd00069_e0 -0.0068175 -0.00233919 0 Sucrose EX_cpd00076_e0 0 -0.02049199 0 L-cysteine EX_cpd00084_e0 -0.0068175 0 0 Cl- EX_cpd00099_e0 -15 -15 -10 Glycerol EX_cpd00100_e0 0 0 -10 Biotin EX_cpd00104_e0 -15 -15 0 D-ribose EX_cpd00105_e0 -0.01862144 0 0 L-leucine EX_cpd00107_e0 -0.03596182 -0.00303228 0 D-galactose EX_cpd00108_e0 -0.25290619 -0.18317325 0 L-histidine EX_cpd00119_e0 -0.0068175 -0.00506825 0 L-proline EX_cpd00129_e0 -0.01102953 0 0 L-malate EX_cpd00130_e0 -0.03649016 -0.79413596 0 D-mannose EX_cpd00138_e0 -0.2540567 -0.05436649 0 Co2 EX_cpd00149_e0
    [Show full text]