Here Were Some Arguable Ambiguity As to the Language at Issue, the Context, History, and Clear Legislative Intent Require Rejection of the Nation's Claim
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Penobscot Rivershed with Licensed Dischargers and Critical Salmon
0# North West Branch St John T11 R15 WELS T11 R17 WELS T11 R16 WELS T11 R14 WELS T11 R13 WELS T11 R12 WELS T11 R11 WELS T11 R10 WELS T11 R9 WELS T11 R8 WELS Aroostook River Oxbow Smith Farm DamXW St John River T11 R7 WELS Garfield Plt T11 R4 WELS Chapman Ashland Machias River Stream Carry Brook Chemquasabamticook Stream Squa Pan Stream XW Daaquam River XW Whitney Bk Dam Mars Hill Squa Pan Dam Burntland Stream DamXW Westfield Prestile Stream Presque Isle Stream FRESH WAY, INC Allagash River South Branch Machias River Big Ten Twp T10 R16 WELS T10 R15 WELS T10 R14 WELS T10 R13 WELS T10 R12 WELS T10 R11 WELS T10 R10 WELS T10 R9 WELS T10 R8 WELS 0# MARS HILL UTILITY DISTRICT T10 R3 WELS Water District Resevoir Dam T10 R7 WELS T10 R6 WELS Masardis Squapan Twp XW Mars Hill DamXW Mule Brook Penobscot RiverYosungs Lakeh DamXWed0# Southwest Branch St John Blackwater River West Branch Presque Isle Strea Allagash River North Branch Blackwater River East Branch Presque Isle Strea Blaine Churchill Lake DamXW Southwest Branch St John E Twp XW Robinson Dam Prestile Stream S Otter Brook L Saint Croix Stream Cox Patent E with Licensed Dischargers and W Snare Brook T9 R8 WELS 8 T9 R17 WELS T9 R16 WELS T9 R15 WELS T9 R14 WELS 1 T9 R12 WELS T9 R11 WELS T9 R10 WELS T9 R9 WELS Mooseleuk Stream Oxbow Plt R T9 R13 WELS Houlton Brook T9 R7 WELS Aroostook River T9 R4 WELS T9 R3 WELS 9 Chandler Stream Bridgewater T T9 R5 WELS TD R2 WELS Baker Branch Critical UmScolcus Stream lmon Habitat Overlay South Branch Russell Brook Aikens Brook West Branch Umcolcus Steam LaPomkeag Stream West Branch Umcolcus Stream Tie Camp Brook Soper Brook Beaver Brook Munsungan Stream S L T8 R18 WELS T8 R17 WELS T8 R16 WELS T8 R15 WELS T8 R14 WELS Eagle Lake Twp T8 R10 WELS East Branch Howe Brook E Soper Mountain Twp T8 R11 WELS T8 R9 WELS T8 R8 WELS Bloody Brook Saint Croix Stream North Branch Meduxnekeag River W 9 Turner Brook Allagash Stream Millinocket Stream T8 R7 WELS T8 R6 WELS T8 R5 WELS Saint Croix Twp T8 R3 WELS 1 Monticello R Desolation Brook 8 St Francis Brook TC R2 WELS MONTICELLO HOUSING CORP. -
Environmental Benefits of Dam Removal
A Research Paper by Dam Removal: Case Studies on the Fiscal, Economic, Social, and Environmental Benefits of Dam Removal October 2016 <Year> Dam Removal: Case Studies on the Fiscal, Economic, Social, and Environmental Benefits of Dam Removal October 2016 PUBLISHED ONLINE: http://headwaterseconomics.org/economic-development/local-studies/dam-removal-case-studies ABOUT HEADWATERS ECONOMICS Headwaters Economics is an independent, nonprofit research group whose mission is to improve community development and land management decisions in the West. CONTACT INFORMATION Megan Lawson, Ph.D.| [email protected] | 406-570-7475 P.O. Box 7059 Bozeman, MT 59771 http://headwaterseconomics.org Cover Photo: Whittenton Pond Dam, Mill River, Massachusetts. American Rivers. TABLE OF CONTENTS INTRODUCTION ............................................................................................................................................. 1 MEASURING THE BENEFITS OF DAM REMOVAL ........................................................................................... 2 CONCLUSION ................................................................................................................................................. 5 CASE STUDIES WHITTENTON POND DAM, MILL RIVER, MASSACHUSETTS ........................................................................ 11 ELWHA AND GLINES CANYON DAMS, ELWHA RIVER, WASHINGTON ........................................................ 14 EDWARDS DAM, KENNEBEC RIVER, MAINE ............................................................................................... -
Critical Habitat
Biological valuation of Atlantic salmon habitat within the Gulf of Maine Distinct Population Segment Biological assessment of specific areas currently occupied by the species; and determination of whether critical habitat in specific areas outside the currently occupied range is deemed essential to the conservation of the species NOAA’s National Marine Fisheries Service Northeast Regional Office 1 Blackburn Drive Gloucester, MA. 01930 2009 Foreword: Atlantic salmon life history........................................................................................................... 3 Chapter 1: Methods and Procedures for Biological Valuation of Atlantic Salmon Habitat in the Gulf of Maine Distinct Population Segment (GOM DPS).......................................................................................... 6 1.1 Introduction .............................................................................................................................................. 6 1.2 Identifying the Geographical Area Occupied by the Species and Specific Areas within the Geographical Area ................................................................................................................................................................ 7 1.3 Specific areas outside the geographical area occupied by the species essential to the conservation of the species .......................................................................................................................................................... 11 1.4 Identify those “Physical -
Penobscot River 2007 Data Report July 2008
Penobscot River 2007 Data Report July 2008 Prepared by Donald Albert, P. E. Bureau of Land and Water Quality Division of Environmental Assessment DEPLW-0882 Table of Contents Introduction ...........................................................................................................................1 Technical Design of Study ....................................................................................................1 Hydrologic Data ....................................................................................................................4 Ambient Chemical Data ........................................................................................................4 -DO, Temperature and Salinity .............................................................................................5 -Ultimate BOD ......................................................................................................................8 -Phosphorus Series ................................................................................................................11 -Nitrogen Series.....................................................................................................................13 -Chlorophyll-a .......................................................................................................................15 -Secchi disk transparency......................................................................................................17 Effluent Chemical Data .........................................................................................................18 -
Stillwater Recertification Attachments 2015
Stillwater Hydroelectric Project (FERC No. 2712) Project Description Black Bear Hydro Partners, LLC’s Stillwater Hydroelectric Project is a run-of-river hydroelectric generating facility located on the Stillwater Branch of the Penobscot River in Old Town, Maine with a gross nameplate generating capacity of 4.18 MW. The Stillwater Project Powerhouse A commenced initial commercial operations in 1913. The Licensee applied for an amendment to increase capacity at the Stillwater Project via the construction of an additional powerhouse (Powerhouse B). The Project consists of an existing 1,720-foot-long dam consisting of 13 sections of various height, creating an impoundment with a normal full pond elevation of 94.65 feet National Geodetic Vertical Datum. The Project has two powerhouses. Powerhouse A consists of four generating units a total installed capacity of 1,950 kW and a maximum hydraulic capacity of 1,700 cfs. Powerhouse B consists of three generating units with a total installed capacity of 2,229 kW and a maximum hydraulic capacity of 1,758 cfs. Powerhouse A has 50 ft long aerial transmission lines installed from the powerhouse’s GSU to the existing substation. Powerhouse B has 300 ft long aerial transmission lines installed from the powerhouse’s generating step-up unit (GSU) to the existing, adjacent 12.5 kV distribution system located adjacent to the existing project boundary and along the south side of Stillwater Avenue. The Stillwater Powerhouse B commenced initial commercial operation September, 2013. The Stillwater Project generates clean, renewable electricity while providing recreational opportunities (portage trail, parking areas for river access and hand-carried boat launch), fish passage measures, consistent water levels that enhance habitats for waterfowl, etc., and substantial support of the local community through stable property tax payments, reliable voltage support of the electrical distribution system, etc. -
Penobscot River Restoration Great Works & Veazie Dam Removals Sedgeunkedunk Steam Restoration
Sponsored by Ecological Landscaping Association Society for Ecological Restoration - New England Chapter Penobscot River Restoration Great Works & Veazie Dam Removals Sedgeunkedunk Steam Restoration Thursday, August 8, 2013 10:00 AM – 4:00 PM $35.00 ELA & SER Members - $40 Non-Member The Penobscot River Restoration Project (Penobscot Project) is an unprecedented collaborative effort that will rebalance fisheries restoration with hydropower production in the largest watershed within Maine and result in the ecological restoration on the Penobscot River. Major partners in the project include hydropower companies; federal, state, and tribal governments; the Penobscot River Restoration Trust (Penobscot Trust); and conservation groups. After several years and considerable work, the Penobscot Trust purchased three dams from the PPL Corporation (the hydropower company) in order to remove the two most seaward dams—Great Works and Veazie and to pursue a fish bypass around the Howland dam. As part of the arrangement, PPL Corporation received approval to increase generation at six existing dams and will improve fish passage at four additional dams. The largest river in Maine, the Penobscot River and its tributaries flow from near Mount Katahdin in the North Woods through the heart of Maine to Penobscot Bay. As a model for cooperative conservation, the Penobscot Project provides numerous benefits while maintaining hydropower generation. The Penobscot Project: Provides access to habitat for Atlantic and Shortnose sturgeon as well as striped bass. Improves access to nearly 1,000 miles of habitat for endangered Atlantic salmon and other species. Restores ecological functions to benefit native plant and animals in the river, estuary, and Gulf of Maine. -
Dams and Fish
Dams and Fish Understanding our impounded legacy in the Penobscot River Joseph Zydlewski [email protected] Many to acknowledge… Berlynna Heres Lisa Izzo George Maynard Alejandro Molina-Moctezuma Daniel Stich Dan Weaver Kevin Job Andrew O’Malley Betsy Barber Anadromous fish populations declines over the past two centuries Four great threats to ecosystems David Wilcove 2007 No Way Home Habitat destruction Overexploitation Climate Change Human created obstacles Migratory Animals Migration NURSERY ADULT FEEDING Corridor Dam Construction History • 1830-1835:1830-1835: Old Town/ Veazie wing dams • 1876: Bangor Waterworks (rkm 43) • 1887: Great Works Dam (rkm 60) • 1912: Milford Dam (rkm 62) • 1913: Veazie Dam (rkm 48) Veazie Historical Society Veazie Historical Society Dam removals in Maine 1995 1999 2008 2009 2010 2012 2013 Bangor Dam Edwards Dam Fort Halifax Dam Winterport Dam Great Works Dam Veazie Dam Penobscot River Kennebec River Sebasticook River Marsh Stream Penobscot River Penobscot River Mill and Meadow Dams Sedgeunkedunk Stream Connectivity on the Penobscot River West Enfield Howland Penobscot River Restoration Project Removal of Great Works Dam (2012) & Veazie Dam (2013) Gillman Falls Milford No survival estimates for Stillwater Great Works American eels on Penobscot River Orono Veazie Shortnose sturgeon Fall 2015 upstream movements Detections of tag # 21266 River Km Milford Dam former Great Works Dam former Veazie Dam Date Alewife and Blueback herring River Herring Alewife returns to Milford Dam Atlantic salmon Release & Recapture Great Works Dam Remnants Stillwater Confluence Veazie Dam Remnants Radio Tagging of Adult Salmon Delays at Milford Dam 2015 Milford Dam Passage & Delays 2002 – 2004 (Pre-PRRP) • PIT study by D. -
MAINE HISTORIC ENGINEERING RECORD FORMER CITY MILLS DAM MHER No. 44 Location
MAINE HISTORIC ENGINEERING RECORD FORMER CITY MILLS DAM MHER No. 44 Location: The former City Mills Dam is located within what had been the impoundment of the modern Veazie Dam on the Penobscot River, in the Village of Veazie, Penobscot County, Maine. Quad: Veazie, Maine UTM: N: 4964554 E: 523613. Zone 19 Date of Construction: 1835 ca. Present Owner: Penobscot River Restoration Trust Present Use: Submerged ruins Significance: The former City Mills Dam, located within what had been the impoundment of the modern Veazie Dam, was built in the mid-1830s to provide water for an early sawmill complex on the Penobscot River. This mill and dam complex, which contained several blocks of sawmills, was built as a wing dam that extended upriver and out from the west bank of the river. A spillway then extended from the upstream end of the wing dam to the east bank of the river, which impounded water for the sawmills while allowing logs to float to other mills downstream of Veazie. Samuel Veazie, one of Bangor’s wealthiest and most influential business men, bought the mill in the 1840s and soon relocated near the dam in the town that now bears his name. This dam served its original purpose, to provide power for lumber mills, until the 1880s, when it was purchased by investors for use as an early hydroelectric plant. The remains of the dam and spillway are significant for their association with Samuel Veazie, the early development of the timber milling industry on the Penobscot River, the shift in the use of water power from lumber production to hydroelectric power, and as an example of early dam construction technology. -
14. Water Resources
Draft June 23, 2014 14. WATER RESOURCES The Penobscot River Overview. The Penobscot River is Brewer’s primary water resource. It forms the western boundary of the City, providing a link between the City and the sea. The Penobscot River watershed is new England’s second largest watershed, draining an area of 8,570 square miles including about a quarter of the State of Maine. It includes most of Maine’s pristine bogs and ponds as well as Baxter State Park near its center. A system of upstream dams, the relatively gradual fall of the river, averaging only three feet per mile, and the presence of extensive wetlands in the eastern part of the basin has in the past served to minimize flooding in Brewer. River and estuary meet in Brewer where tidal fluctuations are about 6.5 feet. Watersheds. All of Brewer’s surface waters flow into the Penobscot River, either directly or through its tributaries including Eaton Brook, Felts Brook, and Sedgeunkedunk Stream. The four major watersheds of the City are the Penobscot Watershed (draining most of the urbanized area closest to the Penobscot), Felts Brook Watershed (draining most of the central, rural area portion of the community including Wilson Street), Eaton Brook Watershed (draining the northern quarter of the community) and Sedgeunkedunk Watershed (draining a small area in the southwestern part of Brewer). Water quality. The Penobscot River is a Class “B” water from the confluence of the Mattawamkeag River downstream to Brewer and south to Penobscot Bay. Eaton Brook, Felts Brook, and Sedgeunkedunk Stream are also Class B waters. -
Scoping of Flood Hazard Mapping Needs for Penobscot County, Maine
Prepared for the Federal Emergency Management Agency, Region I and the Maine Floodplain Management Program, State Planning Office Scoping of Flood Hazard Mapping Needs for Penobscot County, Maine By Charles W. Schalk and Robert W. Dudley Open File Report 2007–1129 U.S. Department of the Interior U.S. Geological Survey Contents Section 1. Introduction .....................................................................................................................................................4 Background .....................................................................................................................................................................4 Scope of Work.................................................................................................................................................................5 Description of Penobscot County................................................................................................................................8 Section 2. Available Flood-Mapping Data and Mapping Needs.............................................................................13 Community FISs and FIRMs........................................................................................................................................13 State of Maine Best Available Data (BAD) for Unnumbered A-Zones ...............................................................13 Letters of Map Change (LOMCs) ...............................................................................................................................13 -
Maine State Legislature
MAINE STATE LEGISLATURE The following document is provided by the LAW AND LEGISLATIVE DIGITAL LIBRARY at the Maine State Law and Legislative Reference Library http://legislature.maine.gov/lawlib Reproduced from scanned originals with text recognition applied (searchable text may contain some errors and/or omissions) I L.U.O. I V1 ~o. (DfVIa u <; ~~~·1 I ·-V vtutn:S I Report to the Joint Standing Committee on Marine Resources I and the Joint Standing Committee on Natural Resources I in response to Resolve Chapter 109 (LD 1528, LR 1911) I I Prepared by the Departments of Marine Resources & Environmental Protection I January 30, 2008 I. I. I I I I KF 5588 I .Z99 M25 I 2008 I I I j 1 Resolve Chapter 109 (LD 1528, LR 1911) required the Department of Inland Fisheries and Wildlife (DIFW), the Department of Marine Resources (DMR), and the Department of Environmental Protection (DEP) to : • review and update their plans for passage of native diadromous fish; • develop a proposed water quality standard that defines a fish kill; and • evaluate the processing of petitions filed with the Board of Environmental Protection (BEP) to reopen hydropower licenses. This report presents the findings and recommendations of this work for the first two matters to the Joint Standing Committees on Marine Resources and Natural Resources. The BEP is presenting its report on the petition process under separate cover. Recommendations • Implement the identified priority projects for fish passage (DMR) • Maintain the current water quality standard for protection of aquatic life (DEP) Section 1. DMR review of statewide fish passage efforts Maine’s waters are home to 12 species of native diadromous1 fishes, each of which has specific habitat requirements. -
Survival of Atlantic Salmon Salmo Salar Smolts Through a Hydropower Complex
Journal of Fish Biology (2014) 85, 1074–1096 doi:10.1111/jfb.12483, available online at wileyonlinelibrary.com Survival of Atlantic salmon Salmo salar smolts through a hydropower complex D. S. Stich*†,M.M.Bailey‡ and J. D. Zydlewski*§ *Department of Wildlife Ecology, 5755 Nutting Hall, University of Maine, Orono, ME 04469, U.S.A., ‡U.S. Fish and Wildlife Service, Central New England Fishery Resource Office, Nashua, NH 03063, U.S.A. and §U.S. Geological Survey, Maine Cooperative Fish and Wildlife Research Unit, 5755 Nutting Hall, University of Maine, Orono, ME 04469, U.S.A. This study evaluated Atlantic salmon Salmo salar smolt survival through the lower Penobscot River, Maine, U.S.A., and characterized relative differences in proportional use and survival through the main-stem of the river and an alternative migration route, the Stillwater Branch. The work was con- ducted prior to removal of two main-stem dams and operational changes in hydropower facilities in the Stillwater Branch. Survival and proportional use of migration routes in the lower Penobscot were estimated from multistate (MS) models based on 6 years of acoustic telemetry data from 1669 smolts and 2 years of radio-telemetry data from 190 fish. A small proportion (0⋅12, 95% c.i. = 0⋅06–0⋅25) of smolts used the Stillwater Branch, and mean survival through the two operational dams in this part of the river was relatively high (1⋅00 and 0⋅97). Survival at Milford Dam, the dam that will remain in the main-stem of the Penobscot River, was relatively low (0⋅91), whereas survival through two dams that were removed was relatively high (0⋅99 and 0⋅98).