Please Click Here for the Article

Total Page:16

File Type:pdf, Size:1020Kb

Please Click Here for the Article TECHNOLOGY EXPLAINED Laptev Sea: A Frontier Arctic Basin The Laptev Sea Basin is a frontier Arctic basin explored by regional seismic only. Its thick sedimentary cover is thought to contain numerous potential reservoirs, seals and mature source rocks, and structural traps are probably abundant. The Lena River Delta is of special interest for hydrocarbon entrapment. Edward Dongarov, IHS Energy mouth of the Khatanga River eastward to in the basin. In 2004-2006, SMNG and MAGE The Laptev Sea Basin – covering an area the Omoloy River. It includes part of the acquired additional regional datasets. comparable to the southern part of the Lena River delta, which extends over one Norwegian Barents Sea – lies almost entire- hundred kilometres into the sea. Geological Setting and Basin Evolution ly on the continental shelf of Laptev Sea, The Laptev Sea Basin's sedimentary The basement of the Laptev Sea Basin off the northern coast of Russia. It is situ- fill (including the Precambrian-Cambrian comprises a number of heterogeneous ated between the Taymyr Peninsula in the sequence) is estimated to be up to 13 blocks that were welded together during west and the islands of the Novo sibirsk km thick in the basin's deepest parts. the mid-Mesozoic (Late Jurassic) "Cimme- (New Siberian) Archipelago in the east. Its The basin's structure includes a series of rian" collision of the Siberian Platform and southern border is roughly coincident with rift troughs of north-western strike filled the pre-existing continent of Arctida (or the Siberian coast, and it extends from the with Upper Cretaceous-Miocene sedi- Hyperborea). These blocks have differing ments overlain by a Pliocene-Quaternary pre-Cimmerian sequences, but their off- cover. shore boundaries are not obvious on seis- Water depths in the basin typically are mic data, as the area has been tectonically Basin Boundaries less than 50 m, but along the northern mar- overprinted by Cenozoic rifting. The basin's western boundary is formed by gin of the basin there is a steep continental The most important structural elements the Taymyr Fold Belt. The fold belt is subdi- slope, where water depths increase to over comprising the basement include the off- vided into two systems, i.e. the North Taymyr 1,000 m. shore extension of the Siberian Platform with metamorphosed Upper Proterozoic clastic in western Laptev Sea (also known as the and volcanic formations; and the South Taymyr No Offshore Wells Laptev Fold System), and the offshore with Upper Paleozoic-Lower Mesozoic clastics The Laptev Sea Basin has been explored extension of the Verkhoyansk and the Nov- and Permian-Triassic volcanics. by geophysical methods only. Detailed air- osibirsk-Chukotka Mesozoic fold belts in To the south, the Olenek fold zone separates borne magnetic surveys were carried out the East Laptev. the Laptev Sea Basin from the Lena- Anabar over the islands, but at a much smaller From Ordovician to Early Carboniferous Trough and Yenisey-Khatanga Basin. East of scale offshore. The first refraction seismic time, the northern East Siberian continental the Lena Delta, the Verkhoyansk Fold Belt surveys were run in 1973, and later in 1979 margin evolved in a stable tectonic regime. forms the basin's eastern margin. Near the and 1985-1988. Ordovician-Middle Devonian sequence in coast, the north-south striking fold belt splits First CDP surveys were run in the mid the Laptev Sea Basin is thought to be com- into several branches running north-west and east. 1980’s. Between 1984-1990, a series of posed largely of shallow marine carbon- To the east, the basin's margin is formed regional lines were shot across the entire ates. Upper Devonian-Early Carboniferous by the Lomonosov-Svyatoy Nos uplift zone. It offshore. These and subsequent profiles sequence is represented by shallow marine extends from Cape Svyatoy Nos to the Lya- were shot on an irregular and sparse grid. clastics and carbonates. khovskiye and the Anzhu group of islands on The seismic data were interpreted using Towards the end of the Devonian, the the shelf and then on to the Lomonosov Ridge correlations with five stratigraphic test Cherskiy block broke off the eastern mar- Photo: Halfdan Carstens in the ocean. The Anzhu group of islands are wells drilled onshore close to the basin’s gin of the Siberian Platform initiating an part of the Kotelnicheskiy median massif. southern margin. oceanic basin east of the Siberian Platform. The northern boundary of the basin is In 1993, 1994, 1997 and 1998, Germa- A major submarine fan sequence known as defined by the shelf edge and continental ny’s Federal Institute for Geosciences and the Verkhoyansk Complex was deposited slope as it opens into the Eurasia basin of the Natural Resources in cooperation with in this oceanic basin between the Early Arctic Ocean. the SevMorNefteGeofizika (SMNG) Trust Carboniferous and the Early Cretaceous. In acquired a large data set of regional seismic Late Jurassic-Early Cretaceous time, it was t 36 GEO ExPro September 2007 folded by the collision of Siberia and vari- ous exotic terranes (Cimmerian collision). © HIS Laptev Sea: The initial phase of rifting causing the opening of the Eurasia Basin to the north of the Laptev Sea Basin took place in the Late Paleocene-Eocene. The spreading occurred along the Nansen-Gakkel ridge. A vast marine transgression took place in the Early-Middle Eocene. In the Oligocene-Early A Frontier Arctic Basin Miocene, the plate rotation pole shifted to the southern margin of the Nansen-Gakkel Ridge and a compressional episode took place. Extension resumed in the Middle Miocene-Middle Pleistocene. Petroleum Geology Source Rocks The main potential source rocks in the Laptev Basin are believed to occur in Permi- an and Triassic formations. As no wells have been drilled in the basin, all rock intervals described are from outcrops or wells on the mainland or from nearby islands, all of which lie outside the basin. The giant Olenek bitumen deposit in Per- mian formations is located on the Olenek high onshore northern East Siberia. In the early 1950’s, a gas show from a Permian interval was registered in an exploration well drilled near the River Olenek's mouth. Non-commercial flows of heavy oil from Permian-Triassic sediments were registered in wells near the Khatanga Bay. Triassic rocks from wells in the neigh- bouring Lena-Anabar Trough are largely Gross sedimentary thickness and structural elements of the Laptev Sea Basin. shales, with thin algal limestone interbed- ded. TOC and bitumen A content in Middle and Upper Triassic rocks are considerably and mudstones, Lower-Middle Devonian potential. The thick sedimentary cover, higher than in the underlying formations, carbonates and mudstones and Upper locally exceeding 10,000 m, is thought to with TOC values usually exceeding 2%. The Jurassic-Lower Cretaceous clastics. contain numerous potential reservoirs, kerogen is mixed humic-sapropelic. It is An active petroleum system in the Laptev seals and mature source rocks at various mature which is evidenced by the high Sea Basin is confirmed by surface seepages stratigraphic intervals. The presence of carbon content and low heterogeneous as well as seismic data. The composition Cenozoic rift zones is associated with high element content in bitumen. and stable carbon isotope data of adsorbed heat flow, favourable for hydrocarbon gen- Offshore, the Upper Paleozoic-Lower hydrocarbons from near-surface sediments eration. Structural traps are thought to be Cretaceous sequence is between 500-3,000 display a signature of thermally generated widely developed, and the Lena Delta and m thick, and its top occurs at 2,000 m or gas from a marine source rock within the paleo-delta are of special interest for hydro- deeper suggesting that potential source maturity range of peak petroleum gen- carbon entrapment. rocks in the sequence were able to reach eration. Seismic data show zones of poor maturity. Generally, Triassic rocks offshore reflectivity and chimneys suggesting there The Precambrian-Lower Cretaceous are thought to comprise marine clastics is ongoing hydrocarbon generation and Potential Precambrian-Lower Creta- deposited in reducing geochemical envi- migration at depths down to at least 2-3 ceous reservoirs could be associated with ronments, while Permian rocks comprise seconds twt. the regional unconformity surfaces. Such shallow marine clastics and volcaniclastics unconformities have been identified within with minor carbonate interbedded. Exploration potential the Precambrian, top Cambrian carbon- Other potential source rocks include Analogies with adjacent sedimentary ates, and at the boundary between Middle Precambrian1 -Cambrian clastics and car- areas suggest that the Laptev Sea Basin Devonian carbonates and Upper Devonian bonates, Ordovician-Silurian carbonates could have a substantial hydrocarbon clastics. 1 In Late Precambrian — a time period now called the Ediacaran that lasted from about 650 to 540 million years ago — macroscopic fossils of soft-bodied organisms can be found in a few localities around the world. Given the right geological conditions, horizons with abundant organic material may have turned into source rocks. t GEO ExPro September 2007 37 GEOSCIENCEV ignett EXPLAINED voir/seal combinations. © HIS No large structures/potential traps have so far been identified within the rift troughs. Potential traps here could be represented by drape basement structures. The best trapping potential appears to be associated with the trough flanks and the slopes of the highs separating the troughs. Expected mechanisms are onlaps, pinch-outs and 70% of the world is covered by facies changes. These are likely to be com- bined with structural control as there are numerous normal faults present in Upper Wavefi eld Inseis, the rest is land Cretaceous-Tertiary sequence. Potential traps associated with delta- ic and fluvial systems could be of major importance in the basin. Five long-living river systems, i.e.
Recommended publications
  • Late Quaternary Environment of Central Yakutia (NE' Siberia
    Late Quaternary environment of Central Yakutia (NE’ Siberia): Signals in frozen ground and terrestrial sediments Spätquartäre Umweltentwicklung in Zentral-Jakutien (NO-Sibirien): Hinweise aus Permafrost und terrestrischen Sedimentarchiven Steffen Popp Steffen Popp Alfred-Wegener-Institut für Polar- und Meeresforschung Forschungsstelle Potsdam Telegrafenberg A43 D-14473 Potsdam Diese Arbeit ist die leicht veränderte Fassung einer Dissertation, die im März 2006 dem Fachbereich Geowissenschaften der Universität Potsdam vorgelegt wurde. 1. Introduction Contents Contents..............................................................................................................................i Abstract............................................................................................................................ iii Zusammenfassung ............................................................................................................iv List of Figures...................................................................................................................vi List of Tables.................................................................................................................. vii Acknowledgements ........................................................................................................ vii 1. Introduction ...............................................................................................................1 2. Regional Setting and Climate...................................................................................4
    [Show full text]
  • Geochemistry of Surficial and Ice-Rafted Sediments from The
    Estuarine, Coastal and Shelf Science (1999) 49, 45–59 Article No. ecss.1999.0485, available online at http://www.idealibrary.com on Geochemistry of Surficial and Ice-rafted Sediments from the Laptev Sea (Siberia) J. A. Ho¨lemanna, M. Schirmacherb, H. Kassensa and A. Prangeb aGEOMAR, Forschungszentrum fu¨r marine Geowissenschaften, Wischhofstr. 1–3, 24148 Kiel, Germany bGKSS, Forschungszentrum Geesthacht GmbH, Max-Planck-Str., 21502 Geesthacht, Germany Received 20 June 1997 and accepted in revised form 19 February 1999 The Laptev Sea, as a part of the world’s widest continental shelves surrounding the Arctic Ocean, is a key area for understanding the land–ocean interaction in high latitude regions. With a yearly freshwater input of 511 km3, the Lena River—one of the eight major world rivers—has an influencing control over the environment of this Arctic marginal sea, which is ice-covered during most of the year. In this paper, the first measurements are presented of the major and trace element distribution within the <20 ìm grain size fraction of surficial sediments and of particulate matter in new and young ice from the Laptev Sea (Siberian Arctic). The concentration and distribution of major and trace elements have been determined in 51 surficial sediment samples covering the whole Laptev Sea shelf south of the 50 m isobath. Thirty-one samples of particulate matter in newly formed ice were taken during the freeze-up period in 1995. Median concentration levels of heavy metals in surficial sediments (Ni (46 ìgg"1), Cu (26 ìgg"1), Zn (111 ìgg"1) and Pb (21 ìgg"1) are within the concentration range of marine unpolluted sediments.
    [Show full text]
  • The Contribution of Shore Thermoabrasion to the Laptev Sea Sediment Balance
    THE CONTRIBUTION OF SHORE THERMOABRASION TO THE LAPTEV SEA SEDIMENT BALANCE F.E. Are Petersburg State University of Means of Communications, Moskovsky av. 9, St.-Petersburg, 190031, Russia e-mail: [email protected] Abstract A schematic map of Laptev Sea shore dynamics is compiled for the first time, using available published data. It shows the distribution of thermoabrasion shores, mean long-term shore retreat rates, and areas of seabed ero- sion and accretion. The amount of sediment released to the sea from the 85 km Anabar-Olenyok section of the coast is calculated, as an example, at 3.4 Mt/year. These results are compared with published data on sediment transport of rivers running into the Laptev Sea. Estimates of the Lena River discharge range from 12 to 21 Mt/year, of which only 2.1 to 3.5 Mt may reach the sea. The analysis shows that the input of thermoabrasion at mean shoreline retreat rates of 0.7 to 0.9 m/year is at least of the same order as the river input and may great- ly exceed it. Introduction ble to determine the input from shore thermoabrasion offshore more accurately. Thousands of kilometres of Arctic sea coast retreat at rates 2-6 m/year under the action of thermoabrasion1 Maps of shore dynamics are needed to solve this (Are, 1985; Barnes et al., 1991). Tens of square kilome- problem and others related to climate change impacts. tres of Arctic land therefore are consumed by the sea Such maps have been compiled for about 650 km of every year.
    [Show full text]
  • Laptev Sea System
    Russian-German Cooperation: Laptev Sea System Edited by Heidemarie Kassens, Dieter Piepenburg, Jör Thiede, Leonid Timokhov, Hans-Wolfgang Hubberten and Sergey M. Priamikov Ber. Polarforsch. 176 (1995) ISSN 01 76 - 5027 Russian-German Cooperation: Laptev Sea System Edited by Heidemarie Kassens GEOMAR Research Center for Marine Geosciences, Kiel, Germany Dieter Piepenburg Institute for Polar Ecology, Kiel, Germany Jör Thiede GEOMAR Research Center for Marine Geosciences, Kiel. Germany Leonid Timokhov Arctic and Antarctic Research Institute, St. Petersburg, Russia Hans-Woifgang Hubberten Alfred-Wegener-Institute for Polar and Marine Research, Potsdam, Germany and Sergey M. Priamikov Arctic and Antarctic Research Institute, St. Petersburg, Russia TABLE OF CONTENTS Preface ....................................................................................................................................i Liste of Authors and Participants ..............................................................................V Modern Environment of the Laptev Sea .................................................................1 J. Afanasyeva, M. Larnakin and V. Tirnachev Investigations of Air-Sea Interactions Carried out During the Transdrift II Expedition ............................................................................................................3 V.P. Shevchenko , A.P. Lisitzin, V.M. Kuptzov, G./. Ivanov, V.N. Lukashin, J.M. Martin, V.Yu. ßusakovS.A. Safarova, V. V. Serova, ßvan Grieken and H. van Malderen The Composition of Aerosols
    [Show full text]
  • The Population History of Northeastern Siberia Since the Pleistocene Martin Sikora1,43*, Vladimir V
    ARTICLE https://doi.org/10.1038/s41586-019-1279-z The population history of northeastern Siberia since the Pleistocene Martin Sikora1,43*, Vladimir V. Pitulko2,43*, Vitor C. Sousa3,4,5,43, Morten E. Allentoft1,43, Lasse Vinner1, Simon Rasmussen6,41, Ashot Margaryan1, Peter de Barros Damgaard1, Constanza de la Fuente1,42, Gabriel Renaud1, Melinda A. Yang7, Qiaomei Fu7, Isabelle Dupanloup8, Konstantinos Giampoudakis9, David Nogués-Bravo9, Carsten Rahbek9, Guus Kroonen10,11, Michaël Peyrot11, Hugh McColl1, Sergey V. Vasilyev12, Elizaveta Veselovskaya12,13, Margarita Gerasimova12, Elena Y. Pavlova2,14, Vyacheslav G. Chasnyk15, Pavel A. Nikolskiy2,16, Andrei V. Gromov17, Valeriy I. Khartanovich17, Vyacheslav Moiseyev17, Pavel S. Grebenyuk18,19, Alexander Yu. Fedorchenko20, Alexander I. Lebedintsev18, Sergey B. Slobodin18, Boris A. Malyarchuk21, Rui Martiniano22, Morten Meldgaard1,23, Laura Arppe24, Jukka U. Palo25,26, Tarja Sundell27,28, Kristiina Mannermaa27, Mikko Putkonen25, Verner Alexandersen29, Charlotte Primeau29, Nurbol Baimukhanov30, Ripan S. Malhi31,32, Karl-Göran Sjögren33, Kristian Kristiansen33, Anna Wessman27,34, Antti Sajantila25, Marta Mirazon Lahr1,35, Richard Durbin22,36, Rasmus Nielsen1,37, David J. Meltzer1,38, Laurent Excoffier4,5* & Eske Willerslev1,36,39,40* Northeastern Siberia has been inhabited by humans for more than 40,000 years but its deep population history remains poorly understood. Here we investigate the late Pleistocene population history of northeastern Siberia through analyses of 34 newly recovered ancient
    [Show full text]
  • Quaternary International Xxx (2010) 1E23
    ARTICLE IN PRESS Quaternary International xxx (2010) 1e23 Contents lists available at ScienceDirect Quaternary International journal homepage: www.elsevier.com/locate/quaint Sedimentary characteristics and origin of the Late Pleistocene Ice Complex on north-east Siberian Arctic coastal lowlands and islands e A review L. Schirrmeister a,*, V. Kunitsky b, G. Grosse c, S. Wetterich a, H. Meyer a, G. Schwamborn a, O. Babiy b, A. Derevyagin d, C. Siegert a a Alfred Wegener Institute for Polar and Marine Research, Periglacial Research, Telegrafenberg A 43, 14471 Potsdam, Germany b Melnikov Permafrost Institute RAS SB, Merslotnaya Street, Yakutsk, Republic of Sakha, (Yakutia), 677010 Russia c Geophysical Institute, University of Alaska Fairbanks (UAF), 903 Koyukuk Drive, Fairbanks, AK 99775, USA d Moscow State University (MSU), Faculty of Geology Russia, Moscow 119899, Vorobievy Gory article info abstract Article history: The origin of Late Pleistocene ice-rich, fine-grained permafrost sequences (Ice Complex deposits) in arctic Available online xxx and subarctic Siberia has been in dispute for a long time. Corresponding permafrost sequences are frequently exposed along seacoasts and river banks in Yedoma hills, which are considered to be erosional remnants of Late Pleistocene accumulation plains. Detailed cryolithological, sedimentological, geochro- nological, and stratigraphical results from 14 study sites along the Laptev and East Siberian seacoasts were summarized for the first time in order to compare and correlate the local datasets on a large regional scale. The sediments of the Ice Complex are characterized by poorly-sorted silt to fine-sand, buried cryosols, TOC contents of 1.2e4.8 wt%, and very high ground ice content (40e60 wt% absolute).
    [Show full text]
  • Rapid Assessment of Circum-Arctic Ecosystem
    Rapid assessment of CiRCum-aRCtiC eCosystem ResilienCe a tool For identiFyinG and maPPinG land and sea Features that suPPort ecosystem FunctioninG in a climate-chanGed arctic RACER Published by the WWF Global arctic ProGramme Written and edited by peter Christie and martin sommerkorn Concept and design by daniel lohnes (doCument) Cover photos: arctic tern © naturepl.com / edwin Giesbers / WWf; Caribou © naturepl.com / Bryan and Cherry alexan der / WWf; muskox © Wild Wonders of europe /munier / WWf; icebergs © Wim van passel / WWf-Canon title page photo: polar Bear © steve morello / WWf-Canon published march 2012 (2nd edition) and november 2011 (1st edition) by WWf Global arctic programme, ottawa, Canada. any reproduction in full or part must mention the title and credit the above-mentioned publisher as the copyright owner. © 2012 WWf. earlier edition © 2011 by WWf. all rights reserved. isBn 978-2-940443-41-3 Recommended citation: Christie p, sommerkorn m. 2012. RaCeR: Rapid assessment of Circum-arctic ecosystem Resilience, 2nd ed. ottawa, Canada: WWf Global arctic programme. 72 p. this report is available on the internet at www.panda.org/arctic/racer 04 EXECUTIVE SUMMARY 06 FOREWORD 08 INTRODUCTION a neW Way ForWard a strateGic, Functional aPProach the racer introductory handboo k 14 CONSERVATION AND RESILIENCE IN THE ARCTIC 50 diverse ecoreGions conservation urGency 20 RACER: THE GEOGRAPHY OF ARCTIC ECOLOGICAL RESILIENCE chanGinG to Face chanGe the racer method CONTENTS key Features and their drivers 26 MAPPING FEATURES THAT CONFER ECOLOGICAL RESILIENCE satellite remote sensinG scientiFic revieW evaluation by exPerts 36 ECOLOGICAL RESILIENCE IN A CLIMATE-CHANGED ARCTIC assessinG continued resilience 42 A MARINE CASE STUDY: THE BEAUFORT CONTINENTAL COAST AND SHELF key Features imPortant For resilience 52 A TERRESTRIAL CASE STUDY: EASTERN CHUKOTKA key Features imPortant For resilience f W 64 CONCLUSION W / s R e 68 REFERENCES B s e i G n 70 ACKNOWLEDGEMENTS i W d e / m o C .
    [Show full text]
  • Anabar Plateau, Siberia, Russia
    Arctic, Antarctic, and Alpine Research, Vol. 45, No. 4, 2013, pp. 526–537 Tree-Line Structure and Dynamics at the Northern Limit of the Larch Forest: Anabar Plateau, Siberia, Russia Viacheslav I. Kharuk*‡ Abstract Kenneth J. Ranson† The goal of the study was to provide an analysis of climate impact before, during, and after the Little Ice Age (LIA) on the larch (Larix gmelinii) tree line at the northern extreme Sergey T. Im* of Siberian forests. Recent decadal climate change impacts on the tree line, regeneration Pavel A. Oskorbin* abundance, and age structure were analyzed. Maria L. Dvinskaya* and The location of the study area was within the forest-tundra ecotone (elevation range 170–450 m) in the Anabar Plateau, northern Siberia. Field studies were conducted along Dmitriy V. Ovchinnikov* elevational transects. Tree natality/mortality and radial increment were determined based *V. N. Sukachev Institute of Forest, on dendrochronology analyses. Tree morphology, number of living and subfossil trees, Krasnoyarsk 660036, Russia regeneration abundance, and age structure were studied. Locations of pre-LIA, LIA, and †Goddard Space Flight Center, NASA, post-LIA tree lines and refugia boundaries were established. Long-term climate variables Code 618, Greenbelt, Maryland 20771, U.S.A. and drought index were included in the analysis. ‡Corresponding author: It was found that tree mortality from the 16th century through the beginning of the [email protected] 19th century caused a downward tree line recession. Sparse larch stands experienced deforestation, transforming into tundra with isolated relict trees. The maximum tree mortal- ity and radial growth decrease were observed to have occurred at the beginning of 18th century.
    [Show full text]
  • Tracing Silicate Weathering Processes in the Permafrost-Dominated Lena River Watershed Using Lithium Isotopes
    Available online at www.sciencedirect.com ScienceDirect Geochimica et Cosmochimica Acta 245 (2019) 154–171 www.elsevier.com/locate/gca Tracing silicate weathering processes in the permafrost-dominated Lena River watershed using lithium isotopes Melissa J. Murphy a,⇑, Don Porcelli a, Philip A.E. Pogge von Strandmann b, Catherine A. Hirst c,d, Liselott Kutscher c,e, Joachim A. Katchinoff f, Carl-Magnus Mo¨rth e, Trofim Maximov g, Per S. Andersson c a Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK b London Geochemistry and Isotope Centre (LOGIC), Institute of Earth and Planetary Sciences, University College London and Birkbeck College, Gower Street, London WC1E 6BT, UK c Department of Geosciences, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden d Earth and Life Institute, Universite´ catholique de Louvain, Croix du Sud, L7.05.10, B-1348 Louvain-la-Neuve, Belgium e Department of Geological Sciences, Stockholm University, SE-10691 Stockholm, Sweden f Department of Geology & Geophysics, Yale University, USA g Institute for Biological Problems of the Cryolithozone, Siberian Branch, Russian Academy of Science, Russia Received 25 March 2018; accepted in revised form 19 October 2018; Available online 31 October 2018 Abstract Increasing global temperatures are causing widespread changes in the Arctic, including permafrost thawing and altered freshwater inputs and trace metal and carbon fluxes into the ocean and atmosphere. Changes in the permafrost active layer thickness can affect subsurface water flow-paths and water-rock interaction times, and hence weathering processes. Riverine lithium isotope ratios (reported as d7Li) are tracers of silicate weathering that are unaffected by biological uptake, redox, car- bonate weathering and primary lithology.
    [Show full text]
  • Monthly Discharges for 2400 Rivers and Streams of the Former Soviet Union [FSU]
    Annotations for Monthly Discharges for 2400 Rivers and Streams of the former Soviet Union [FSU] v1.1, September, 2001 Byron A. Bodo [email protected] Toronto, Canada Disclaimer Users assume responsibility for errors in the river and stream discharge data, associated metadata [river names, gauge names, drainage areas, & geographic coordinates], and the annotations contained herein. No doubt errors and discrepancies remain in the metadata and discharge records. Anyone data set users who uncover further errors and other discrepancies are invited to report them to NCAR. Acknowledgement Most discharge records in this compilation originated from the State Hydrological Institute [SHI] in St. Petersburg, Russia. Problems with some discharge records and metadata notwithstanding; this compilation could not have been created were it not for the efforts of SHI. The University of New Hampshire’s Global Hydrology Group is credited for making the SHI Arctic Basin data available. Foreword This document was prepared for on-screen viewing, not printing !!! Printed output can be very messy. To ensure wide accessibility, this document was prepared as an MS Word 6 doc file. The www addresses are not active hyperlinks. They have to be copied and pasted into www browsers. Clicking on a page number in the Table of Contents will jump the cursor to the beginning of that section of text [in the MS Word version, not the pdf file]. Distribution Files Files in the distribution package are listed below: Contents File name short abstract abstract.txt ascii description of
    [Show full text]
  • Distinctive Features of Human Adaptation to the Environment of the Arctic Zone of the Republic of Sakha (Yakutia)
    Distinctive Features of Human Adaptation to the Environment of the Arctic Zone of the Republic of Sakha (Yakutia) Svetlana A. Lozovskaya1; Nataliia G. Stepanko2*; Aleksandr B. Kosolapov3 1Pacific Geographical Institute, Far-Eastern Branch of the Russian Academy of Science. [email protected]; ORCID: 0000-0002-7219-6124 2*Pacific Geographical Institute, Far-Eastern Branch of the Russian Academy of Science. 2*[email protected]; ORCID: 0000-0002-9549-8555 3Moscow State University of Sports and Tourism. [email protected]; ORCID: 0000-0002-8191-575Х Abstract The paper gives a medico-geographical analysis of various Arctic and sub-Arctic regions of Yakutia, namely, the city of Yakutsk, the town of Nam of Namsky District and the rural town of Tiksi of Bulunsky District. A new methodological approach and methods are suggested for assessing the adaptation process of residents of Russia’s Eastern Arctic using the medico-ecological screening of the population. This procedure found the general adaptation syndrome among the residents of Yakutia’s sub-Arctic and Arctic areas. A survey was used to investigate the impacts of different environmental factors on adaptation indicators among various groups residing in some of Yakutia’s districts. Adaptation parameters were defined among indigenous and non-indigenous groups living in various Arctic areas in terms of extreme environmental conditions affecting human adaptation to changing environments. Key-words: Human Adaptation, Environmental Factors, Medical and Geographical Research, Health of Indigenous and Non-indigenous People, Arctic and Sub-Arctic Regions of the Republic of Sakha (Yakutia). 1. Introduction The rapid development of the northern regions of the Russian Far East implies further theoretical and methodological research into regional human ecosystems, thematic mapping and forecasting activities and the definition of the place and role of the man/environment relationship in the entire system of social and economic development of northern territories [1-3].
    [Show full text]
  • VI. Republic of Sakha (Yakutia) Overview of the Region Josh
    Saving Russia's Far Eastern Taiga : Deforestation, Protected Areas, and Forests 'Hotspots' VI. Republic of Sakha (Yakutia) Overview of the Region Josh Newell Location The Republic of Yakutia (Sakha), situated in northeastern Siberia, stretches to the Henrietta Islands (77 N) in the far north and is washed by the Arctic Ocean (Laptev and Eastern Siberian Seas). These waters, the coldest and iciest of all seas in the northern hemisphere, are covered by ice for 9 to 10 months of the year. The Stanovoy Ridge (55 D. 30 D. N) borders Yakutia in the south, the upper reaches of the Olenyok River form the western border, and Chukotka forms the eastern border (165 E). Size Almost one-fifth of the territory of the Russian Federation (3,103,200 sq. km.) and greater than the combined areas of France, Austria, Germany, Italy, Sweden, England, Greece, and Finland. Climate Winter is prolonged and severe, with average January temperatures about -40C. Summer is short but warm; the average in July is 13C and temperatures have reached 39C in Yakutsk. In the northeast, the town of Verekhoyansk reaches -70C (-83F) and is considered the coldest inhabited place on Earth. There is little precipitation - from 150-200 mm. in Central Yakutia to 500-700 mm. in the mountains of eastern and southern Yakutia. Geography and Ecology Forty percent of Yakutia lies within the Arctic Circle and all of it is covered by eternally frozen ground- permafrost - which greatly influences the region's ecology and limits forests to the southern region. Yakutia can be divided into three great vegetation belts.
    [Show full text]