Untersuchungen Zur Prävalenz Und Epidemiologie Von Neospora-Infektionen Bei Hunden in Rheinland-Pfalz (Kreis Mayen-Koblenz)

Total Page:16

File Type:pdf, Size:1020Kb

Untersuchungen Zur Prävalenz Und Epidemiologie Von Neospora-Infektionen Bei Hunden in Rheinland-Pfalz (Kreis Mayen-Koblenz) Bibliografische Informationen der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; Detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar. 1. Auflage 2004 © 2004 by Verlag: Deutsche Veterinärmedizinische Gesellschaft Service GmbH, Gießen Printed in Germany ISBN 3-938026-16-2 Verlag: DVG Service GmbH Frankfurter Straße 89 35392 Gießen 0641/24466 [email protected] www.dvg.net Aus dem Institut für Parasitologie und dem Institut für Biometrie, Epidemiologie und Informationsverarbeitung der Tierärztlichen Hochschule Hannover und dem Institut für Medizinische Parasitologie der Rheinischen Friedrich-Wilhelms-Universität in Bonn Untersuchungen zur Prävalenz und Epidemiologie von Neospora-Infektionen bei Hunden in Rheinland-Pfalz (Kreis Mayen-Koblenz) INAUGURAL-DISSERTATION zur Erlangung des Grades einer Doktorin der Veterinärmedizin (Dr. med. vet.) durch die Tierärztliche Hochschule Hannover Vorgelegt von Martina Staub geb. Krudewig aus Siegburg HANNOVER 2004 Wissenschaftliche Betreuung: Apl. Prof. Dr. med. vet. Astrid M. Tenter Univ.-Prof. Dr. rer. nat. Lothar Kreienbrock Prof. Dr. med. Hanns M. Seitz 1. Gutachter: Apl. Prof. Dr. med. vet. Astrid M. Tenter Univ.-Prof. Dr. rer. nat. Lothar Kreienbrock 2. Gutachter: Priv.-Doz. Dr. med. vet. Franz J. Conraths Tag der mündlichen Prüfung: 22. November 2004 Meinen Eltern INHALTSVERZEICHNIS Seite 1. EINLEITUNG 11 1.1. Abkürzungsverzeichnis 12 2. LITERATURÜBERSICHT 13 2.1. Taxonomie 13 2.2. Geschichte von N. caninum 14 2.3. Struktur und Biologie von N. caninum 17 2.3.1. Entwicklungszyklus 17 2.3.2. Morphologie der Entwicklungsstadien 17 2.3.3. Wirtsspektrum 22 2.3.4. Übertragungswege von N. caninum und Epidemiologie 24 2.4. Neospora-Infektionen bei Hunden 32 2.4.1. Serokonversion bei Hunden 32 2.4.2. Isolate von Hunden 33 2.4.3. Anteil seropositiver Hunde in verschiedenen Ländern 35 2.4.4. Untersuchungen auf Prädispositionen 36 2.4.4.1. Alter 38 2.4.4.2. Rasse 38 2.4.4.3. Geschlecht 39 2.4.4.4. Fütterung 39 2.4.4.5. Jagdliche Nutzung 40 2.4.4.6. Haltungsbedingungen 40 2.4.4.7. Geographische Region 40 2.4.4.8. Seropositivität gegenüber T. gondii 40 2.4.5. Klinische Symptome und Verlauf der Erkrankung 41 2.4.6. Fallberichte 42 2.4.6.1. Berichte über konnatale Neosporosen bei Wurfgeschwistern 42 2.4.6.2. Einzelfallberichte 47 2.4.7. Pathologie und Pathogenese 52 2.4.8. Behandlungsversuche 53 2.4.9. Differentialdiagnostik 55 2.4.9.1. Toxoplasmose 55 2.4.9.2. Hammondiose 57 2.4.9.3. Protozoen im Hundekot 58 2.4.9.3.1. H. heydorni 58 2.4.9.3.2. Cystoisospora-Arten 58 2.4.9.3.3. Sarcocystis-Arten 58 2.4.9.3.4. Giardien 59 2.4.9.3.5. Kryptosporidien 59 2.5. Diagnostik von Neospora-Infektionen 59 2.5.1. Indirekte Nachweismethoden 59 2.5.1.1. IFAT 60 2.5.1.2. ELISA 62 2.5.1.3. DAT 65 2.5.1.4. Immunoblot 66 2.5.2. Direkte Nachweismethoden 66 2.5.2.1. Mikroskopischer und immunhistochemischer Nachweis im Gewebe 66 2.5.2.2. PCR zum Nachweis von Neospora-DNA 68 2.5.2.3. Biologische Verfahren 71 2.5.2.4. Koproskopie 72 3. MATERIAL UND METHODEN 73 3.1. Material 73 3.1.1. Geräte und Verbrauchsmaterialien 73 3.1.2. Reagenzien und Lösungen 73 3.1.3. Patientenmaterial 73 3.2. Methoden 78 3.2.1. Datenerhebung 78 3.2.2. Untersuchung der Seren im IFAT auf Neospora-Antikörper 79 3.2.2.1. Serumgewinnung und Serumlagerung 79 3.2.2.2. Referenzseren 79 3.2.2.3. Antigengewinnung für den IFAT 79 3.2.2.4. Konjugat 80 3.2.2.5. Testdurchführung 80 3.2.3. Untersuchung der Seren auf Toxoplasma-Antikörper 83 3.2.3.1. IFAT zum Nachweis von Antikörpern gegen T. gondii 84 3.2.3.1.1. Untersuchungsgut 84 3.2.3.1.2. Antigengewinnung für den IFAT 84 3.2.3.1.3. Konjugat 85 3.2.3.1.4. Testdurchführung 85 3.2.3.2. SFT zum Nachweis von Antikörpern gegen T. gondii 86 3.2.3.2.1. Untersuchungsgut 86 3.2.3.2.2. Herstellung des Antigens (Toxoplasma-Suspension, Exsudat) 87 3.2.3.2.3. Aktivatorserum 87 3.2.3.2.4. Testdurchführung 87 3.2.3.2.4.1. Vorversuch zur Prüfung des Toxoplasma-Exsudates 87 3.2.3.2.4.2. Hauptversuch 88 3.2.3.2.4.3. Auswertung 88 3.2.3.3. Beurteilung der Seren 89 3.2.4. Vorversuche zur Untersuchung der Kotproben 89 3.2.4.1. Präparation des Kotes 90 3.2.4.2. Flotationslösungen 90 3.2.4.3. Flotation mit Zentrifugation 90 3.2.4.4. Flotation im Ovassay 91 3.2.5. Untersuchung der Kotproben 91 3.2.5.1. Gewinnung von Kotproben für den Ovassay 91 3.2.5.2. Untersuchung der Kotproben 91 3.2.6. Auswertung der erhobenen Daten 92 4. ERGEBNISSE 94 4.1. Fluoreszenz im Neospora-IFAT 94 4.2. Untersuchung von Serumproben auf Neospora-Antikörper 96 4.2.1. Zusammenhang zwischen den Eingangsdiagnosen und Neospora-Infektionen 96 4.2.2. Zusammenhang zwischen dem Alter der Hunde und Neospora- Infektionen 97 4.2.3. Zusammenhang zwischen der Rasse der Hunde und Neospora- Infektionen 98 4.2.3.1. Zusammenhang zwischen der FCI-Gruppenzugehörigkeit der Hunde und Neospora-Infektionen 98 4.2.4. Zusammenhang zwischen dem Gewicht und der Schulterhöhe der Hunde und Neospora-Infektionen 101 4.2.5. Zusammenhang zwischen dem Geschlecht der Hunde und Neospora-Infektionen 102 4.2.6. Zusammenhang zwischen dem Herkunftsland der Hunde und Neospora-Infektionen 103 4.2.7. Zusammenhang zwischen der Herkunftsstätte der Hunde und Neospora-Infektionen 104 4.2.8. Zusammenhang zwischen der Haltungsart der Hunde und Neospora-Infektionen 105 4.2.9. Zusammenhang zwischen dem Wohnort der Hundebesitzer und Neospora-Infektionen 105 4.2.10. Zusammenhang zwischen dem Auslauf der Hunde und Neospora- Infektionen 108 4.2.10.1. Auslauf im Garten 108 4.2.10.2. Auslauf in öffentlichen Grünanlagen 109 4.2.10.3. Auslauf im Wald 110 4.2.10.4. Auslauf im Feld 111 4.2.10.5. Auslauf auf befestigten Wegen (Stadt/Dorf) 111 4.2.10.6. Andere Auslaufmöglichkeiten 112 4.2.11. Zusammenhang zwischen einer jagdlichen Führung der Hunde und Neospora-Infektionen 112 4.2.12. Zusammenhang zwischen einer gleichzeitigen Haltung anderer Tiere und Neospora-Infektionen 113 4.2.13. Zusammenhang zwischen der Fütterung der Hunde und Neospora-Infektionen 114 4.2.13.1. Kategorie: Dosenfutter 114 4.2.13.2. Kategorie: Trockenfutter 115 4.2.13.3. Kategorie: Fleisch 116 4.2.13.3.1. Fleisch vom Schwein 117 4.2.13.3.2. Fleisch vom Rind 118 4.2.13.3.3. Fleisch vom Schaf 118 4.2.13.3.4. Fleisch von der Ziege 119 4.2.13.3.5. Fleisch vom Wildwiederkäuer 119 4.2.13.3.6. Fleisch vom Pferd 119 4.2.13.3.7. Fleisch vom Geflügel 120 4.2.13.3.8. Fleisch von anderen Tierarten 120 4.2.13.4. Kategorie: Innereien 121 4.2.13.4.1. Innereien vom Schwein 122 4.2.13.4.2. Innereien vom Rind 123 4.2.13.4.3. Innereien vom Schaf 123 4.2.13.4.4. Innereien von der Ziege 124 4.2.13.4.5. Innereien vom Wildwiederkäuer 124 4.2.13.4.6. Innereien vom Pferd 124 4.2.13.4.7. Innereien vom Geflügel 125 4.2.13.4.8. Innereien von anderen Tierarten 125 4.2.13.5. Kategorie: Gehirn oder Rückenmark 126 4.2.13.5.1. Gehirn oder Rückenmark vom Rind 126 4.2.13.5.2. Gehirn oder Rückenmark vom Schaf, von der Ziege, vom Wildwiederkäuer, vom Pferd oder von anderen Tierarten 126 4.2.13.6. Kategorie: Speisereste 127 4.2.13.7. Kategorie: Rohmilch oder Rohmilchprodukte 128 4.2.13.8. Kategorie: Behandlung des Futters bei Verfütterung von Fleisch oder Innereien 128 4.2.14. Zusammenhang zwischen der Aufnahme von Mäusen oder anderen Kleinnagern, Ratten, Kaninchen, Hunde- oder Fuchskot, Abortmaterial von Rindern, Schafen oder Ziegen durch die Hunde und Neospora-Infektionen 130 4.2.14.1. Aufnahme von Mäusen oder anderen Kleinnagern 131 4.2.14.2. Aufnahme von Ratten 132 4.2.14.3. Aufnahme von Kaninchen 133 4.2.14.4. Aufnahme von Hundekot 134 4.2.14.5. Aufnahme von Fuchskot 135 4.2.14.6. Aufnahme von Abortmaterial oder Nachgeburten verschiedener Tierarten 136 4.2.14.6.1. Aufnahme von Abortmaterial oder Nachgeburten von Rindern 136 4.2.14.6.2. Aufnahme von Abortmaterial oder Nachgeburten von Schafen oder Ziegen 136 4.2.15. Zusammenhang zwischen der Seropositivität von Hündinnen und Neospora-Infektionen bei ihren Welpen 137 4.2.16. Zusammenhang zwischen der Seropositivität für N. caninum und für T. gondii 138 4.2.17. Zusammenhang zwischen der Seropositivität und dem Ergebnis der Kotprobenuntersuchung 138 4.3. Versuche zur Optimierung der Untersuchung der Kotproben auf Oozysten von N. caninum 139 4.4. Untersuchung von Kotproben 141 5. DISKUSSION DER ERGEBNISSE 142 5.1. Untersuchung von Serumproben auf Neospora-Antikörper 142 5.1.1. Neospora-Infektionen in Deutschland 143 5.1.2. Zusammenhang zwischen den Eingangsdiagnosen und Neospora-Infektionen 144 5.1.3. Zusammenhang zwischen dem Alter der Hunde und Neospora- Infektionen 145 5.1.4. Zusammenhang zwischen der Rasse der Hunde und Neospora- Infektionen 147 5.1.5. Zusammenhang zwischen dem Gewicht und Schulterhöhe der Hunde und Neospora-Infektionen 148 5.1.6. Zusammenhang zwischen dem Geschlecht der Hunde und Neospora-Infektionen 148 5.1.7.
Recommended publications
  • Molecular Phylogenetic Analysis in Hammondia-Like Organisms Based on Partial Hsp70 Coding Sequences
    1195 Molecular phylogenetic analysis in Hammondia-like organisms based on partial Hsp70 coding sequences R. M. MONTEIRO1, L. J. RICHTZENHAIN1,H.F.J.PENA1,S.L.P.SOUZA1, M. R. FUNADA1, S. M. GENNARI1, J. P. DUBEY2, C. SREEKUMAR2,L.B.KEID1 and R. M. SOARES1* 1 Departamento de Medicina Veterina´ria Preventiva e Sau´de Animal, Faculdade de Medicina Veterina´ria e Zootecnia, Universidade de Sa˜o Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, CEP 05508-900, Sa˜o Paulo, SP, Brazil 2 Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, Agricultural Research Service, United States Department of Agricultural, Building 1001, Beltsville, MD 20705, USA (Resubmitted 7 January 2007; revised 31 January 2007; accepted 5 February 2007; first published online 27 April 2007) SUMMARY The 70 kDa heat-shock protein (Hsp70) sequences are considered one of the most conserved proteins in all domains of life from Archaea to eukaryotes. Hammondia heydorni, H. hammondi, Toxoplasma gondii, Neospora hughesi and N. caninum (Hammondia-like organisms) are closely related tissue cyst-forming coccidians that belong to the subfamily Toxoplasmatinae. The phylogenetic reconstruction using cytoplasmic Hsp70 coding genes of Hammondia-like organisms revealed the genetic sequences of T. gondii, Neospora spp. and H. heydorni to possess similar levels of evolutionary distance. In addition, at least 2 distinct genetic groups could be recognized among the H. heydorni isolates. Such results are in agreement with those obtained with internal transcribed spacer-1 rDNA (ITS-1) sequences. In order to compare the nucleotide diversity among different taxonomic levels within Apicomplexa, Hsp70 coding sequences of the following apicomplexan organisms were included in this study: Cryptosporidium, Theileria, Babesia, Plasmodium and Cyclospora.
    [Show full text]
  • The Transcriptome of the Avian Malaria Parasite Plasmodium
    bioRxiv preprint doi: https://doi.org/10.1101/072454; this version posted August 31, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 The Transcriptome of the Avian Malaria Parasite 2 Plasmodium ashfordi Displays Host-Specific Gene 3 Expression 4 5 6 7 8 Running title 9 The Transcriptome of Plasmodium ashfordi 10 11 Authors 12 Elin Videvall1, Charlie K. Cornwallis1, Dag Ahrén1,3, Vaidas Palinauskas2, Gediminas Valkiūnas2, 13 Olof Hellgren1 14 15 Affiliation 16 1Department of Biology, Lund University, Lund, Sweden 17 2Institute of Ecology, Nature Research Centre, Vilnius, Lithuania 18 3National Bioinformatics Infrastructure Sweden (NBIS), Lund University, Lund, Sweden 19 20 Corresponding authors 21 Elin Videvall ([email protected]) 22 Olof Hellgren ([email protected]) 23 24 1 bioRxiv preprint doi: https://doi.org/10.1101/072454; this version posted August 31, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 25 Abstract 26 27 Malaria parasites (Plasmodium spp.) include some of the world’s most widespread and virulent 28 pathogens, infecting a wide array of vertebrates. Our knowledge of the molecular mechanisms these 29 parasites use to invade and exploit hosts other than mice and primates is, however, extremely limited. 30 How do Plasmodium adapt to individual hosts and to the immune response of hosts throughout an 31 infection? To better understand parasite plasticity, and identify genes that are conserved across the 32 phylogeny, it is imperative that we characterize transcriptome-wide gene expression from non-model 33 malaria parasites in multiple host individuals.
    [Show full text]
  • Control of Intestinal Protozoa in Dogs and Cats
    Control of Intestinal Protozoa 6 in Dogs and Cats ESCCAP Guideline 06 Second Edition – February 2018 1 ESCCAP Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire, WR14 3SZ, United Kingdom First Edition Published by ESCCAP in August 2011 Second Edition Published in February 2018 © ESCCAP 2018 All rights reserved This publication is made available subject to the condition that any redistribution or reproduction of part or all of the contents in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise is with the prior written permission of ESCCAP. This publication may only be distributed in the covers in which it is first published unless with the prior written permission of ESCCAP. A catalogue record for this publication is available from the British Library. ISBN: 978-1-907259-53-1 2 TABLE OF CONTENTS INTRODUCTION 4 1: CONSIDERATION OF PET HEALTH AND LIFESTYLE FACTORS 5 2: LIFELONG CONTROL OF MAJOR INTESTINAL PROTOZOA 6 2.1 Giardia duodenalis 6 2.2 Feline Tritrichomonas foetus (syn. T. blagburni) 8 2.3 Cystoisospora (syn. Isospora) spp. 9 2.4 Cryptosporidium spp. 11 2.5 Toxoplasma gondii 12 2.6 Neospora caninum 14 2.7 Hammondia spp. 16 2.8 Sarcocystis spp. 17 3: ENVIRONMENTAL CONTROL OF PARASITE TRANSMISSION 18 4: OWNER CONSIDERATIONS IN PREVENTING ZOONOTIC DISEASES 19 5: STAFF, PET OWNER AND COMMUNITY EDUCATION 19 APPENDIX 1 – BACKGROUND 20 APPENDIX 2 – GLOSSARY 21 FIGURES Figure 1: Toxoplasma gondii life cycle 12 Figure 2: Neospora caninum life cycle 14 TABLES Table 1: Characteristics of apicomplexan oocysts found in the faeces of dogs and cats 10 Control of Intestinal Protozoa 6 in Dogs and Cats ESCCAP Guideline 06 Second Edition – February 2018 3 INTRODUCTION A wide range of intestinal protozoa commonly infect dogs and cats throughout Europe; with a few exceptions there seem to be no limitations in geographical distribution.
    [Show full text]
  • The Revised Classification of Eukaryotes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D.
    [Show full text]
  • C:\Dokumente Und Einstellungen\Nikola Vorwerk
    Aus dem Institut für Parasitologie der Stiftung Tierärztliche Hochschule Hannover ___________________________________________________________________________ Etablierung und Validierung einer Real-Time-PCR zur Detektion der Oozysten von Toxoplasma gondii INAUGURAL-DISSERTATION Zur Erlangung des Grades einer Doktorin der Veterinärmedizin (Dr. med. vet.) durch die Tierärztliche Hochschule Hannover Vorgelegt von Nikola Vorwerk aus Soltau Hannover 2008 Wissenschaftliche Betreuung: Apl. Prof.’in Dr. Astrid M. Tenter 1. Gutachter: Apl. Prof.’in Dr. Astrid M. Tenter 2. Gutachter: Apl. Prof.’in Dr. rer.nat. Irene Greiser-Wilke Tag der mündlichen Prüfung: 21.11.2008 Für meine Eltern und meine Schwester Die Menschheit lässt sich grob in zwei Gruppen einteilen: in Katzenliebhaber und in vom Leben Benachteiligte. Francesco Petrarca Inhaltsverzeichnis 5 INHALTSVERZEICHNIS 1. EINLEITUNG.............................................................................................................11 2. LITERATURÜBERSICHT........................................................................................13 2.1 TOXOPLASMA GONDII.................................................................................................13 2.1.1 Taxonomie ....................................................................................................13 2.1.2 Lebenszyklus und Morphologie der Entwicklungsstadien..............................14 2.1.3 Wirtsspektrum, Übertragungswege und geografische Verbreitung .................17 2.1.4 Genetische Divergenz....................................................................................20
    [Show full text]
  • Phylogenetic Analysis of Ruminant Theileria Spp. from China Based on 28S Ribosomal RNA Gene
    ISSN (Print) 0023-4001 ISSN (Online) 1738-0006 Korean J Parasitol Vol. 51, No. 5: 511-517, October 2013 ▣ ORIGINAL ARTICLE http://dx.doi.org/10.3347/kjp.2013.51.5.511 Phylogenetic Analysis of Ruminant Theileria spp. from China Based on 28S Ribosomal RNA Gene Huitian Gou, Guiquan Guan, Miling Ma, Aihong Liu, Zhijie Liu, Zongke Xu, Qiaoyun Ren, Youquan Li, Jifei Yang, Ze Chen, Hong Yin* and Jianxun Luo* State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Grazing Animal Diseases MOA, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu 730046, P. R. China Abstract: Species identification using DNA sequences is the basis for DNA taxonomy. In this study, we sequenced the ri- bosomal large-subunit RNA gene sequences (3,037-3,061 bp) in length of 13 Chinese Theileria stocks that were infective to cattle and sheep. The complete 28S rRNA gene is relatively difficult to amplify and its conserved region is not important for phylogenetic study. Therefore, we selected the D2-D3 region from the complete 28S rRNA sequences for phylogenet- ic analysis. Our analyses of 28S rRNA gene sequences showed that the 28S rRNA was useful as a phylogenetic marker for analyzing the relationships among Theileria spp. in ruminants. In addition, the D2-D3 region was a short segment that could be used instead of the whole 28S rRNA sequence during the phylogenetic analysis of Theileria, and it may be an ideal DNA barcode. Key words: Theileria sp., 28S rRNA, phylogeny, cattle, sheep, China INTRODUCTION bers of cattle [3,7].
    [Show full text]
  • Neospora Caninum and Hammondia Heydorni Are Two Coccidian Parasites with Found N
    66 Opinion TRENDS in Parasitology Vol.18 No.2 February 2002 from the infective larval stage of Toxocara canis 22 Hunter, S.J. et al. (1999) The isolation of extracellular CuZn superoxide dismutases in by an expressed sequence tag strategy. Infect. differentially expressed cDNA clones from the the human parasitic nematode Onchocerca Immun. 67, 4771–4779 filarial nematode Brugia pahangi. Parasitology. volvulus. Mol. Biochem. Parasitol. 88, 20 Gregory, W.F. et al. (2000) The abundant larval 119, 189–198 187–202 transcript-1 and 2 genes of Brugia malayi encode 23 Au, X. et al. (1995) Brugia malayi: Differential 25 Selkirk, M.E. et al. (2001) Acetylcholinesterase stage-specific candidate vaccine antigens for susceptibility to and metabolism of hydrogen secretion by nematodes. In Parasitic filariasis. Infect. Immun. 68, 4174–4179 peroxide in adults and microfilariae. Exp. Nematodes: Molecular Biology, Biochemistry 21 Blaxter, M.L. et al. (1996) Genes expressed in Parasitol. 80, 530–540 and Immunology (Kennedy, M.W. and Brugia malayi infective third stage larvae. Mol. 24 Henkle-Dührsen, K. et al. (1997) Localization Harnett, W., eds), pp. 211–228, CABI Biochem. Parasitol. 77, 77–93 and functional analysis of the cytosolic and Publishing N. caninum and T.gondii Neospora caninum In 1984, Bjerkås et al. [5] first discovered a toxoplasmosis-like disease of Norwegian dogs that had no demonstrable antibodies to T. gondii. In 1988, and Hammondia Dubey et al. [6] described in detail a similar neurological disease of dogs in the USA, distinguished the parasite from T. gondii based on antigenic and heydorni are separate ultrastructural differences, and proposed the genus Neospora with N.
    [Show full text]
  • Characterization of an Alpha Tubulin Gene Sequence from Neospora Caninum and Hammondia Heydorni, and Their Comparison to Homologous Genes from Apicomplexa
    561 Characterization of an alpha tubulin gene sequence from Neospora caninum and Hammondia heydorni, and their comparison to homologous genes from Apicomplexa S. SIVERAJAHt, C. RYCEt, D. A. MORRISON and J. T. ELLIS* Department of Cell and Molecular Biology, University of Technology, Sydney, Westbourne St, Gore Hill, NSW 2065, Australia (Received 14 June 2002; revised 9 December 2002; accepted 16 December 2002) SUMMARY The gene coding for a tubulin has been isolated by the polymerase chain reaction and sequenced from 2 isolates of Neospora caninum (Nc-Liverpool and Nc-SweBl)t. The data show that the gene, as in Toxoplasma gondii, is single copy and contains 3 exons and 2 introns and is identical in sequence in the 2 isolates studied. Comparison of the predicted protein sequence shows it to be identical to the a tubulin protein encoded by the T. gondii gene. The majority of the nucleotidesubstitutions that haveoccurredduring the evolutionof the T. gondii and N. caninum genesfrom their common ancestor have occurred in the third codon position. A partial coding sequence for a tubulin was also obtained from Hammondia heydorni and compared to other a tubulin sequencesfrom Apicomplexa.The results show the sequences of the T. gondii, N. caninum and H. heydorni a tubulin genes to be similar but not identical in sequence, thereby providing new evidencethat N. caninum and H. heydorni are geneticallydistinct species. Key words: Neospora caninum, Hammondia heydorni, tubulin, phylogeny. INTRODUCTIO,," understood (MacRae & Langdon, 1989; Mandelkow & Mandelkow, 1990, 1995; MacRae, 1992, 1997; Microtubules are found in all eukaryotes, from Drewes, Ebneth & Mandelkow, 1998). A number of yeasts to multicellular organisms where they are chemical reagents are known to inhibit cell function principally involved in maintenance of cell structure and division, including herbicides, by inhibiting and division.
    [Show full text]
  • Genetic Differentiation of the Mitochondrial Cytochrome Oxidase C Subunit I Gene in Genus Paramecium (Protista, Ciliophora)
    Genetic Differentiation of the Mitochondrial Cytochrome Oxidase c Subunit I Gene in Genus Paramecium (Protista, Ciliophora) Yan Zhao1,2, Eleni Gentekaki3*, Zhenzhen Yi2*, Xiaofeng Lin2 1 Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China, 2 Laboratory of Protozoology, College of Life Science, South China Normal University, Guangzhou, China, 3 Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax NS, Canada Abstract Background: The mitochondrial cytochrome c oxidase subunit I (COI) gene is being used increasingly for evaluating inter- and intra-specific genetic diversity of ciliated protists. However, very few studies focus on assessing genetic divergence of the COI gene within individuals and how its presence might affect species identification and population structure analyses. Methodology/Principal findings: We evaluated the genetic variation of the COI gene in five Paramecium species for a total of 147 clones derived from 21 individuals and 7 populations. We identified a total of 90 haplotypes with several individuals carrying more than one haplotype. Parsimony network and phylogenetic tree analyses revealed that intra-individual diversity had no effect in species identification and only a minor effect on population structure. Conclusions: Our results suggest that the COI gene is a suitable marker for resolving inter- and intra-specific relationships of Paramecium spp. Citation: Zhao Y, Gentekaki E, Yi Z, Lin X (2013) Genetic Differentiation of the Mitochondrial Cytochrome Oxidase c Subunit I Gene in Genus Paramecium (Protista, Ciliophora). PLoS ONE 8(10): e77044. doi:10.1371/journal.pone.0077044 Editor: Ziyin Li, University of Texas Medical School at Houston, United States of America Received January 28, 2013; Accepted September 5, 2013; Published October 29, 2013 Copyright: ß 2013 Zhao et al.
    [Show full text]
  • Genetic and Phenotypic Diversity Characterization of Natural Populations of the Parasitoid Parvilucifera Sinerae
    Vol. 76: 117–132, 2015 AQUATIC MICROBIAL ECOLOGY Published online October 22 doi: 10.3354/ame01771 Aquat Microb Ecol OPENPEN ACCESSCCESS Genetic and phenotypic diversity characterization of natural populations of the parasitoid Parvilucifera sinerae Marta Turon1, Elisabet Alacid1, Rosa Isabel Figueroa2, Albert Reñé1, Isabel Ferrera1, Isabel Bravo3, Isabel Ramilo3, Esther Garcés1,* 1Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain 2Department of Biology, Lund University, Box 118, 221 00 Lund, Sweden 3Centro Oceanográfico de Vigo, IEO (Instituto Español de Oceanografía), Subida a Radio Faro 50, 36390 Vigo, Spain ABSTRACT: Parasites exert important top-down control of their host populations. The host−para- site system formed by Alexandrium minutum (Dinophyceae) and Parvilucifera sinerae (Perkinso- zoa) offers an opportunity to advance our knowledge of parasitism in planktonic communities. In this study, DNA extracted from 73 clonal strains of P. sinerae, from 10 different locations along the Atlantic and Mediterranean coasts, was used to genetically characterize this parasitoid at the spe- cies level. All strains showed identical sequences of the small and large subunits and internal tran- scribed spacer of the ribosomal RNA, as well as of the β-tubulin genes. However, the phenotypical characterization showed variability in terms of host invasion, zoospore success, maturation time, half-maximal infection, and infection rate. This characterization grouped the strains within 3 phe- notypic types distinguished by virulence traits. A particular virulence pattern could not be ascribed to host-cell bloom appearance or to the location or year of parasite-strain isolation; rather, some parasitoid strains from the same bloom significantly differed in their virulence traits.
    [Show full text]
  • Redalyc.Molecular Phylogeny of Toxoplasmatinae
    Revista Brasileira de Parasitologia Veterinária ISSN: 0103-846X [email protected] Colégio Brasileiro de Parasitologia Veterinária Brasil Klein Sercundes, Michelle; Oshiro Branco Valadas, Samantha Yuri; Borges Keid, Lara; Ferreira Souza Oliveira, Tricia Maria; Lage Ferreira, Helena; Wagner de Almeida Vitor, Ricardo; Gregori, Fábio; Martins Soares, Rodrigo Molecular phylogeny of Toxoplasmatinae: comparison between inferences based on mitochondrial and apicoplast genetic sequences Revista Brasileira de Parasitologia Veterinária, vol. 25, núm. 1, enero-marzo, 2016, pp. 82 -89 Colégio Brasileiro de Parasitologia Veterinária Jaboticabal, Brasil Available in: http://www.redalyc.org/articulo.oa?id=397844775009 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Original Article Braz. J. Vet. Parasitol., Jaboticabal, v. 25, n. 1, p. 82-89, jan.-mar. 2016 ISSN 0103-846X (Print) / ISSN 1984-2961 (Electronic) Doi: http://dx.doi.org/10.1590/S1984-29612016015 Molecular phylogeny of Toxoplasmatinae: comparison between inferences based on mitochondrial and apicoplast genetic sequences Filogenia molecular de Toxoplasmatinae: comparação entre inferências baseadas em sequências genéticas mitocondriais e de apicoplasto Michelle Klein Sercundes1; Samantha Yuri Oshiro Branco Valadas1; Lara Borges Keid2; Tricia Maria Ferreira
    [Show full text]
  • Predatory Colponemids Are the Sister Group to All Other Alveolates
    Manuscript FilebioRxiv preprint doi: https://doi.org/10.1101/2020.02.06.936658; this version posted February 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Running head: Colponemids are early-branching alveolates Predatory colponemids are the sister group to all other alveolates Denis V. Tikhonenkova,b,1*, Jürgen F. H. Strassertc,1,2*, Jan Janouškovecd, Alexander P. Mylnikova,†, Vladimir V. Aleoshine,f, Fabien Burkic,g, Patrick J. Keelingb aPapanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742, Russia bDepartment of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, V6T1Z4, British Columbia, Canada. cDepartment of Organismal Biology, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden dDepartment of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, United Kingdom eBelozersky Institute for Physicochemical Biology, Lomonosov Moscow State University, Leninskye gory, house 1, building 40 Moscow, 119991 Russia fInstitute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny per. 19, build.1, Moscow 127051 Russian Federation gScience for Life Laboratory, Uppsala University, Norbyvägen 18DUppsala, 75236 Sweden 1Shared first authorship, both authors contributed equally 2 Current affiliation: Institute of Biology, Free University of Berlin, Königin-Luise-Straße 1–3, 14195 Berlin, Germany
    [Show full text]