An Atlas of Protozoan Parasites in Animal Tissues

Total Page:16

File Type:pdf, Size:1020Kb

An Atlas of Protozoan Parasites in Animal Tissues United States Department of Agriculture An Atlas of Agricultural Protozoan Parasites Research Service in Animal Tissues Agriculture Handbook Number 651 C.H. Gardiner R. Payer J.P. Dubey rn : ^} 916886 Abstract Gardiner, C.H., R. Payer, and J.P. Dubey. 1988. Copies of this publication can be purchased from the An atlas of protozoan parasites in animal tissues. U.S. Superintendent of Documents, U.S. Government Printing Departnnent of Agriculture, Agriculture Handbook No. Office, Washington, DC 20402. 651, 83 p. Microfiche copies can be purchased from the National This atlas illustrates protozoan parasites in animal Technical Information Service, 5285 Port Royal Road, tissues. To facilitate identification, It provides a brief Springfield, VA 22161. description of parasites, hosts, transmission, and pathogenesis of the most Important protozoans and Agricultural Research Service has no additional copies simplified life-cycle drawings. Also included are 257 for free distribution. color photographs of protozoans and associated lesions, recorded using optimal conditions for iden- tification, and 36 color photomicrographs of fungi that are commonly confused with protozoans. KEYWORDS: Acanthamoeba, Akiba, Anaplasma, Babesia, Balantidium, Besnoitia, Calyptospora, Caryospora, Cryptosporidium, Cystoisospora, Cytaux- zoon, Ehrlichia, Eimeria, Encephalitozoon, Entamoeba, Trade names are used in this publication solely Frenkelia, Giardia, Glugea, Haemogregarina, for the purpose of providing specific information. Haemoproteus, Hammondia, Hepatocystis, Hepatozoon, Mention of a trade name does not constitute a Hexamita, Histomonas, Ichthyophthirius, Isospora, guarantee or warranty of the product by the U.S. Klossiella, Leishmania, Leucocytozoon, Myxosoma, Department of Agriculture or an endorsement by Naegleria, Pentatrichomonas, Plasmodium, the Department over other products not men- Pneumocystis, Sarcocystis, Spironucleus, Theileria, Tox- tioned. oplasma, Trichomonas, Trypanosoma. Issued April 1988 Preface Acknowledgments Identification of protozoan parasites in aninnal tissues We express our appreciation to the hundreds of scien- is often difficult and confusing. Sometimes it is im- tists who contributed biological specimens or possible. There is no single reference contammg il- microscope slides of protozoan parasites to the lustrations of the numerous species of protozoans Registry of Veterinary Pathology, Armed Forces In- and their stages as they appear within infected stitute of Pathology, from which many photo- tissues. The intent of this atlas is to fill this void by micrographs were made. providing color photomicrographs of these organisms prepared by techniques that best identify them. To fur- We also express appreciation to the following ther facilitate identification, we have included associates who provided tissues, mounted specimens, simplified life-cycle drawings and brief descriptions of transparencies, or information: P.O. Beaver, Tulane the parasites, hosts, transmission, and pathogenesis. University, New Orleans, LA; R.J. Cawthorne, Regional Veterinary College, Prince Edward Island, Canada; M.L The illustrations in this atlas represent the most com- Eberhard, Delta Regional Primate Center, Covington, mon stages under optimal conditions for identification. LA; J.V. Ernst, Animal Parasitology Institute, Beltsville, To obtain them, we have utilized fresh as well as fixed MD; P.R. Fitzgerald, University of Illinois, Urbana, IL; and stained specimens. Most protozoans can be readi- J.K. Frenkel, University of Kansas Medical Center, Kan- ly identified in tissues stained with hematoxylin and sas City, KS; P.C.C. Garnham, London School of eosin (H&E) and observed with bright field microscopy. Tropical Medicine and Hygiene, Ascot, England; W.J. Therefore, most illustrations in this atlas show such Hartley, Wallaceville Agricultural Research Center, specimens, and no notation of this stain is made in the Upper Hutt, New Zealand; G.D. Imes, Armed Forces In- legends. Identification of other protozoans is facilitated stitute of Pathology, Washington, DC; R.G. Leek, by special stains, such as Giemsa, Protargol, Iron- Animal Parasitology Institute, Beltsville, MD; N.D. hematoxylin, periodic acid-Schiff (PAS) reaction, PAS- Levine, University of Illinois, Urbana, IL; D.S. Lindsay, hematoxylin (PASH), Gram, acid-fast, Gomori Auburn University, Auburn, AL; R.C. Neafie, Armed methanamine silver, and trichrome. which are noted in Forces Institute of Pathology, Washington, DC; R.M. the legends. Still other protozoans are best seen by Overstreet, Gulf Coast Research Laboratory, Ocean phase contrast or Nomarski interference contrast Springs, MS; M. Rommel, Institute for Parasitology of microscopy or by electron microscopy. the Hannover Veterinary College, Hannover, Federal Republic of Germany; L.T. Sangster, Veterinary Anaplasma and EhrHchia, historically associated with Diagnostic Laboratory, Tifton, GA; C.A. Speer, Montana protozoans but now known to be rickettsiae, are in- State University, Bozeman, MT; R.S. Wacha, Drake cluded to aid in differential diagnosis. Because of dif- University, Des Moines, lA; and R.G. Yaeger, Tulane ficulty in differentiating some fungi from protozoans, University, New Orleans, LA. several plates have been provided to illustrate those fungi. We thank R.B. Ewing, Animal Parasitology Institute, Beltsville, MD, for the life-cycle drawings and J.E. Each plate is labeled as color (CP) or black and white Luscavage, Armed Forces Institute of Pathology, (BW) and is numbered sequentially. Each photograph has Washington, DC, for the photomicrographs of most of a plate number followed by a decimal indicating its the specimens. placement within the plate. Furthermore, nearly every color photo is identified in the legend with a medical il- lustration number in parentheses. This number references the illustration on file at the Arnned Forces In- stitute of Pathology. A chart has been included to facilitate identification of coccidian genera, based on the morphology of the sporulated oocysts. We hope this atlas will aid students, teachers, diagnosticians, and researchers by facilitating iden- tification of protozoan parasites of animals. Contents Sarcomastigophora Apicomplexa 20 Klossiella 60 Fungi 76 Leishmania 3 Eimeria 20 Haemogregarina 62 Index of protozoan Trypanosoma 3 Isospora 31 Hepatozoon 62 parasite genera 83 Flagellates 6 Cd ry o s pora 34 Plasmodium 64 Histomonas 8 Cryp tosporidium 36 Hepatocystis 66 Amoebae 10 Sarcocystis 40 Theileria (syn., Cytaux- Microspora 12 Frenkelia 46 zoon) 68 Myxozoa 14 Besnoitia 48 Babesia 70 Ciliates 16 Toxoplasma and Haemoproteus 72 Pneumocystis 18 Hammondia 52 Leucocytozoon 72 Coccidia of undeter- Haemosporozoa of un- mined taxonomic determined taxo- status 56 nomic Status 74 Color plates 32. Toxoplasma and Hammondia of animals 54 1. Leishmania spp. and Trypanosoma spp. of 33. Toxoplasma abortion of sheep 55 animals 5 34. Coccidia of undetermined taxonomic status causing 2. Flagellates of animals 7 encephalomyelitis of domestic animals 57 3. Histomonas meleagridis of chickens 9 35. Coccidia of undetermined taxonomic status of 4. Amoebae of animals 11 animals 58 5. Microspora of animals 13 36. Calyptospora and organisms of undetermined 6. Myxozoa of fish 15 taxonomic status of animals 59 7. Clliates of animals 17 37. Klossiella spp. of animals 61 8. Pneumocystis sp. of mammals 19 38. Haemogregarina sp. and Hepatozoon canis of 9. Eimeria spp. of chickens 22 animals 63 10. Eimeria necatrix of chickens 23 39. Plasmodium spp. of birds 65 11. Eimeria spp. of birds 24 40. Plasmodium sp. and Hepatocystis sp. of non- 12. E/mer/a spp. of bovines 25 human primates 67 13. Eimeria spp. of sheep 26 41. Theileria fells (syn., Cytauxzoon felis) of cats 69 14. Eimeria spp. of sheep and goats 27 42. PIroplasms and rickettsiae of animals 71 15. Eimeria spp. of horses, deer, and goats 28 43. Haemosporozoa of birds 73 16. Eimeria spp. of wallabies and snakes 29 44. Haemosporozoa of birds 75 17. Eimeria spp. of rabbits and mink 30 45. Histopiasma capsulatum and Candida albicans of 18. Isospora spp. of pigs and baboons 32 animals 77 19. Isospora spp. and Cystoisospora spp. of mam- 46. Rhinosporidium seeberl of dogs 78 mals 33 47. Emmonsia crescens and Sporothrix schenckli of 20. Caryospora bigenetica of snakes and mice 35 animals 79 21. Cryptosporidium spp. of animals 37 48. Coccidioldes Immltis and Prototheca sp. of ani- 22. Cryptosporidium spp. of calves 38 mals 80 23. Sarcocystis cruzi {syn., S. bovlcanis) of canines and 49. Cryptococcus neoformans and Paracoccidl- bovines 41 oides brasillensis of animals 81 24. Sarcocystis cruzi (syn., S. bovlcanis) of bovines 42 50, Blastomyces dermatitidls and Loboa lobol of 25. Sarcocystis spp. of bovines 43 animals 82 26. Sarcocystis spp. of various animals 44 27. Frenkelia microti of birds and rodents 47 Black and white plates 28. Besnoitia spp. of animals 49 1. Eimerian life cycle 21 29. Besnoitia spp. of animals 50 2. Electron micrographs of Cryptosporidium sp. of 30. ßes/70/f/a-like organism of knots 51 sheep 39 31. Toxoplasma gondii of animals 53 3. Electron micrograph of Sarcocystis of sheep 45 An Atlas of Protozoan Parasites in Animal Tissues By C.H. Gardiner, R. Payer, and J.P. Dubey^ Protozoans are unicellular aninnals. Most are very snnall Subphylum Sarcodina—locomotion by (10-20 /xnn in diameter), nnany are sonriewhat larger pseudopodia (100-200 jitnn). Even though they are unicellular, sonne Superclass Rhizopodea—pseudopodia, not stages in their life
Recommended publications
  • Molecular Phylogenetic Analysis in Hammondia-Like Organisms Based on Partial Hsp70 Coding Sequences
    1195 Molecular phylogenetic analysis in Hammondia-like organisms based on partial Hsp70 coding sequences R. M. MONTEIRO1, L. J. RICHTZENHAIN1,H.F.J.PENA1,S.L.P.SOUZA1, M. R. FUNADA1, S. M. GENNARI1, J. P. DUBEY2, C. SREEKUMAR2,L.B.KEID1 and R. M. SOARES1* 1 Departamento de Medicina Veterina´ria Preventiva e Sau´de Animal, Faculdade de Medicina Veterina´ria e Zootecnia, Universidade de Sa˜o Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, CEP 05508-900, Sa˜o Paulo, SP, Brazil 2 Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, Agricultural Research Service, United States Department of Agricultural, Building 1001, Beltsville, MD 20705, USA (Resubmitted 7 January 2007; revised 31 January 2007; accepted 5 February 2007; first published online 27 April 2007) SUMMARY The 70 kDa heat-shock protein (Hsp70) sequences are considered one of the most conserved proteins in all domains of life from Archaea to eukaryotes. Hammondia heydorni, H. hammondi, Toxoplasma gondii, Neospora hughesi and N. caninum (Hammondia-like organisms) are closely related tissue cyst-forming coccidians that belong to the subfamily Toxoplasmatinae. The phylogenetic reconstruction using cytoplasmic Hsp70 coding genes of Hammondia-like organisms revealed the genetic sequences of T. gondii, Neospora spp. and H. heydorni to possess similar levels of evolutionary distance. In addition, at least 2 distinct genetic groups could be recognized among the H. heydorni isolates. Such results are in agreement with those obtained with internal transcribed spacer-1 rDNA (ITS-1) sequences. In order to compare the nucleotide diversity among different taxonomic levels within Apicomplexa, Hsp70 coding sequences of the following apicomplexan organisms were included in this study: Cryptosporidium, Theileria, Babesia, Plasmodium and Cyclospora.
    [Show full text]
  • The Transcriptome of the Avian Malaria Parasite Plasmodium
    bioRxiv preprint doi: https://doi.org/10.1101/072454; this version posted August 31, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 The Transcriptome of the Avian Malaria Parasite 2 Plasmodium ashfordi Displays Host-Specific Gene 3 Expression 4 5 6 7 8 Running title 9 The Transcriptome of Plasmodium ashfordi 10 11 Authors 12 Elin Videvall1, Charlie K. Cornwallis1, Dag Ahrén1,3, Vaidas Palinauskas2, Gediminas Valkiūnas2, 13 Olof Hellgren1 14 15 Affiliation 16 1Department of Biology, Lund University, Lund, Sweden 17 2Institute of Ecology, Nature Research Centre, Vilnius, Lithuania 18 3National Bioinformatics Infrastructure Sweden (NBIS), Lund University, Lund, Sweden 19 20 Corresponding authors 21 Elin Videvall ([email protected]) 22 Olof Hellgren ([email protected]) 23 24 1 bioRxiv preprint doi: https://doi.org/10.1101/072454; this version posted August 31, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 25 Abstract 26 27 Malaria parasites (Plasmodium spp.) include some of the world’s most widespread and virulent 28 pathogens, infecting a wide array of vertebrates. Our knowledge of the molecular mechanisms these 29 parasites use to invade and exploit hosts other than mice and primates is, however, extremely limited. 30 How do Plasmodium adapt to individual hosts and to the immune response of hosts throughout an 31 infection? To better understand parasite plasticity, and identify genes that are conserved across the 32 phylogeny, it is imperative that we characterize transcriptome-wide gene expression from non-model 33 malaria parasites in multiple host individuals.
    [Show full text]
  • (Apicomplexa: Adeleorina) Haemoparasites
    Biological Forum – An International Journal 8(1): 331-337(2016) ISSN No. (Print): 0975-1130 ISSN No. (Online): 2249-3239 Molecular identification of Hepatozoon Miller, 1908 (Apicomplexa: Adeleorina) haemoparasites in Podarcis muralis lizards from northern Italy and detection of conserved motifs in the 18S rRNA gene Simona Panelli, Marianna Bassi and Enrica Capelli Department of Earth and Environmental Sciences, Section of Animal Biology, Laboratory of Immunology and Genetic Analyses and Centre for Health Technologies (CHT)/University of Pavia, Via Taramelli 24, 27100 Pavia, Italy (Corresponding author: Enrica Capelli, [email protected]) (Received 22 March, 2016, Accepted 06 April, 2016) (Published by Research Trend, Website: www.researchtrend.net) ABSTRACT: This study applies a non-invasive molecular test on common wall lizards (Podarcis muralis) collected in Northern Italy in order to i) identify protozoan blood parasites using primers targeting a portion of haemogregarine 18S rRNA; ii) perform a detailed bioinformatic and phylogenetic analysis of amplicons in a context where sequence analyses data are very scarce. Indeed the corresponding phylum (Apicomplexa) remains the poorest-studied animal group in spite of its significance for reptile ecology and evolution. A single genus, i.e., Hepatozoon Miller, 1908 (Apicomplexa: Adeleorina) and an identical infecting genotype were identified in all positive hosts. Bioinformatic analyses identified highly conserved sequence patterns, some of which known to be involved in the host-parasite cross-talk. Phylogenetic analyses evidenced a limited host specificity, in accord with existing data. This paper provides the first Hepatozoon sequence from P. muralis and one of the few insights into the molecular parasitology, sequence analysis and phylogenesis of haemogregarine parasites.
    [Show full text]
  • A New Species of Sarcocystis in the Brain of Two Exotic Birds1
    © Masson, Paris, 1979 Annales de Parasitologie (Paris) 1979, t. 54, n° 4, pp. 393-400 A new species of Sarcocystis in the brain of two exotic birds by P. C. C. GARNHAM, A. J. DUGGAN and R. E. SINDEN * Imperial College Field Station, Ashurst Lodge, Ascot, Berkshire and Wellcome Museum of Medical Science, 183 Euston Road, London N.W.1., England. Summary. Sarcocystis kirmsei sp. nov. is described from the brain of two tropical birds, from Thailand and Panama. Its distinction from Frenkelia is considered in some detail. Résumé. Une espèce nouvelle de Sarcocystis dans le cerveau de deux Oiseaux exotiques. Sarcocystis kirmsei est décrit du cerveau de deux Oiseaux tropicaux de Thaïlande et de Panama. Les critères de distinction entre cette espèce et le genre Frenkelia sont discutés en détail. In 1968, Kirmse (pers. comm.) found a curious parasite in sections of the brain of an unidentified bird which he had been given in Panama. He sent unstained sections to one of us (PCCG) and on examination the parasite was thought to belong to the Toxoplasmatea, either to a species of Sarcocystis or of Frenkelia. A brief description of the infection was made by Tadros (1970) in her thesis for the Ph. D. (London). The slenderness of the cystozoites resembled those of Frenkelia, but the prominent spines on the cyst wall were more like those of Sarcocystis. The distri­ bution of the cystozoites within the cyst is characteristic in that the central portion is practically empty while the outer part consists of numerous pockets of organisms, closely packed together.
    [Show full text]
  • An Intestinal Gregarine of Nothria Conchylega (Polychaeta, Onuphidae)
    Journal of Invertebrate Pathology 104 (2010) 172–179 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Description of Trichotokara nothriae n. gen. et sp. (Apicomplexa, Lecudinidae) – An intestinal gregarine of Nothria conchylega (Polychaeta, Onuphidae) Sonja Rueckert *, Brian S. Leander Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Departments of Botany and Zoology, University of British Columbia, #3529 – 6270 University Blvd., Vancouver, BC, Canada V6T 1Z4 article info abstract Article history: The trophozoites of a novel gregarine apicomplexan, Trichotokara nothriae n. gen. et sp., were isolated and Received 12 November 2009 characterized from the intestines of the onuphid tubeworm Nothria conchylega (Polychaeta), collected at Accepted 11 March 2010 20 m depth from the North-eastern Pacific Coast. The trophozoites were 50–155 lm long with a mid-cell Available online 23 March 2010 indentation that formed two prominent bulges (anterior bulge, 14–48 lm wide; posterior bulge, 15– 55 lm wide). Scanning electron microscopy (SEM) demonstrated that approximately 400 densely packed, Keywords: longitudinal epicytic folds (5 folds/lm) inscribe the surface of the trophozoites, and a prominently elon- Alveolata gated mucron (14–60 lm long and 6–12 lm wide) was covered with hair-like projections (mean length, Apicomplexa 1.97 m; mean width, 0.2 m at the base). Although a septum occurred at the junction between the cell Lecudinidae l l Lecudina proper and the mucron in most trophozoites, light microscopy (LM) demonstrated that the cell proper Parasite extended into the core of the mucron as a thin prolongation.
    [Show full text]
  • A New Species of Hepatozoon (Apicomplexa: Adeleorina) from Python Regius (Serpentes: Pythonidae) and Its Experimental Transmission by a Mosquito Vector
    J. Parasitol., 93(?), 2007, pp. 1189–1198 ᭧ American Society of Parasitologists 2007 A NEW SPECIES OF HEPATOZOON (APICOMPLEXA: ADELEORINA) FROM PYTHON REGIUS (SERPENTES: PYTHONIDAE) AND ITS EXPERIMENTAL TRANSMISSION BY A MOSQUITO VECTOR Michal Sloboda, Martin Kamler, Jana Bulantova´*, Jan Voty´pka*†, and David Modry´† Department of Parasitology, University of Veterinary and Pharmaceutical Sciences, Palacke´ho 1-3, 612 42 Brno, Czech Republic. e-mail: [email protected] ABSTRACT: Hepatozoon ayorgbor n. sp. is described from specimens of Python regius imported from Ghana. Gametocytes were found in the peripheral blood of 43 of 55 snakes examined. Localization of gametocytes was mainly inside the erythrocytes; free gametocytes were found in 15 (34.9%) positive specimens. Infections of laboratory-reared Culex quinquefasciatus feeding on infected snakes, as well as experimental infection of juvenile Python regius by ingestion of infected mosquitoes, were performed to complete the life cycle. Similarly, transmission to different snake species (Boa constrictor and Lamprophis fuliginosus) and lizards (Lepidodactylus lugubris) was performed to assess the host specificity. Isolates were compared with Hepatozoon species from sub-Saharan reptiles and described as a new species based on the morphology, phylogenetic analysis, and a complete life cycle. Hemogregarines are the most common intracellular hemo- 3 genera (Telford et al., 2004). Low host specificity of Hepa- parasites found in reptiles. The Hemogregarinidae, Karyolysi- tozoon spp. is supported by experimental transmissions between dae, and Hepatozoidae are distinguished based on the different snakes from different families. Ball (1967) observed experi- developmental patterns in definitive (invertebrate) hosts oper- mental parasitemia with Hepatozoon rarefaciens in the Boa ating as vectors; all 3 families have heteroxenous life cycles constrictor (Boidae); the vector was Culex tarsalis, which had (Telford, 1984).
    [Show full text]
  • Control of Intestinal Protozoa in Dogs and Cats
    Control of Intestinal Protozoa 6 in Dogs and Cats ESCCAP Guideline 06 Second Edition – February 2018 1 ESCCAP Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire, WR14 3SZ, United Kingdom First Edition Published by ESCCAP in August 2011 Second Edition Published in February 2018 © ESCCAP 2018 All rights reserved This publication is made available subject to the condition that any redistribution or reproduction of part or all of the contents in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise is with the prior written permission of ESCCAP. This publication may only be distributed in the covers in which it is first published unless with the prior written permission of ESCCAP. A catalogue record for this publication is available from the British Library. ISBN: 978-1-907259-53-1 2 TABLE OF CONTENTS INTRODUCTION 4 1: CONSIDERATION OF PET HEALTH AND LIFESTYLE FACTORS 5 2: LIFELONG CONTROL OF MAJOR INTESTINAL PROTOZOA 6 2.1 Giardia duodenalis 6 2.2 Feline Tritrichomonas foetus (syn. T. blagburni) 8 2.3 Cystoisospora (syn. Isospora) spp. 9 2.4 Cryptosporidium spp. 11 2.5 Toxoplasma gondii 12 2.6 Neospora caninum 14 2.7 Hammondia spp. 16 2.8 Sarcocystis spp. 17 3: ENVIRONMENTAL CONTROL OF PARASITE TRANSMISSION 18 4: OWNER CONSIDERATIONS IN PREVENTING ZOONOTIC DISEASES 19 5: STAFF, PET OWNER AND COMMUNITY EDUCATION 19 APPENDIX 1 – BACKGROUND 20 APPENDIX 2 – GLOSSARY 21 FIGURES Figure 1: Toxoplasma gondii life cycle 12 Figure 2: Neospora caninum life cycle 14 TABLES Table 1: Characteristics of apicomplexan oocysts found in the faeces of dogs and cats 10 Control of Intestinal Protozoa 6 in Dogs and Cats ESCCAP Guideline 06 Second Edition – February 2018 3 INTRODUCTION A wide range of intestinal protozoa commonly infect dogs and cats throughout Europe; with a few exceptions there seem to be no limitations in geographical distribution.
    [Show full text]
  • Wildlife Parasitology in Australia: Past, Present and Future
    CSIRO PUBLISHING Australian Journal of Zoology, 2018, 66, 286–305 Review https://doi.org/10.1071/ZO19017 Wildlife parasitology in Australia: past, present and future David M. Spratt A,C and Ian Beveridge B AAustralian National Wildlife Collection, National Research Collections Australia, CSIRO, GPO Box 1700, Canberra, ACT 2601, Australia. BVeterinary Clinical Centre, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Vic. 3030, Australia. CCorresponding author. Email: [email protected] Abstract. Wildlife parasitology is a highly diverse area of research encompassing many fields including taxonomy, ecology, pathology and epidemiology, and with participants from extremely disparate scientific fields. In addition, the organisms studied are highly dissimilar, ranging from platyhelminths, nematodes and acanthocephalans to insects, arachnids, crustaceans and protists. This review of the parasites of wildlife in Australia highlights the advances made to date, focussing on the work, interests and major findings of researchers over the years and identifies current significant gaps that exist in our understanding. The review is divided into three sections covering protist, helminth and arthropod parasites. The challenge to document the diversity of parasites in Australia continues at a traditional level but the advent of molecular methods has heightened the significance of this issue. Modern methods are providing an avenue for major advances in documenting and restructuring the phylogeny of protistan parasites in particular, while facilitating the recognition of species complexes in helminth taxa previously defined by traditional morphological methods. The life cycles, ecology and general biology of most parasites of wildlife in Australia are extremely poorly understood. While the phylogenetic origins of the Australian vertebrate fauna are complex, so too are the likely origins of their parasites, which do not necessarily mirror those of their hosts.
    [Show full text]
  • Seroprevalence and Clinical Outcomes of Neospora Caninum, Toxoplasma Gondii and Besnoitia Besnoiti Infections in Water Buffaloes (Bubalus Bubalis)
    animals Article Seroprevalence and Clinical Outcomes of Neospora caninum, Toxoplasma gondii and Besnoitia besnoiti Infections in Water Buffaloes (Bubalus bubalis) Lavinia Ciuca, Giuliano Borriello , Antonio Bosco, Luigi D’Andrea * , Giuseppe Cringoli, Paolo Ciaramella, Maria Paola Maurelli, Antonio Di Loria , Laura Rinaldi and Jacopo Guccione Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, 80137 Naples, Italy; [email protected] (L.C.); [email protected] (G.B.); [email protected] (A.B.); [email protected] (G.C.); [email protected] (P.C.); [email protected] (M.P.M.); [email protected] (A.D.L.); [email protected] (L.R.); [email protected] (J.G.) * Correspondence: [email protected] Received: 26 February 2020; Accepted: 19 March 2020; Published: 22 March 2020 Simple Summary: Over the recent years, increasing demand for buffalo products and consequently expanding its productivity has generated concerns regarding diseases that reduce fertility or cause abortion but the attention has been focused mostly on infectious diseases. Thus, exploration on the capacity of parasitic pathogens in relation to reproductive losses in this species are needed. This was the first study investigating, simultaneously, the role and changes induced by Neospora caninum, Toxoplasma gondii and Besnoitia besnoiti in water buffaloes in southern Italy. The outcome of this study revealed a high exposure of water buffaloes to both N. caninum and T. gondii, whereas all the animals resulted negative to B. besnoiti. The mono-infection with N. caninum seems mainly associated with abortion and presence of retained foetal membranes, while mono-infection with T.
    [Show full text]
  • Feline Immune Response to Infection with Cytauxzoon Felis and The
    FELINE IMMUNE RESPONSE TO INFECTION WITH CYTAUXZOON FELIS AND THE ROLE OF CD18 IN THE PATHOGENESIS OF CYTAUXZOONOSIS by KARELMA FRONTERA-ACEVEDO (Under the Direction of Kaori Sakamoto) ABSTRACT Cytauxzoonosis is a highly fatal, hemoprotozoal disease of cats in the Mid-Western, Mid- Atlantic, and Southeastern United States, caused by Cytauxzoon felis. Although the causative agent has been recognized since 1976, no study has profiled the immune response of infected cats, there is no definitive cure, and C. felis has not been successfully maintained in cell cultures in vitro, thwarting research efforts. One of the main histopathologic characteristics of this disease is the presence of giant, infected, intravascular macrophages, many of which are adhered to the vascular endothelium. The main goals of this project are: 1) to characterize the feline immune response to C. felis; 2) to develop a cell culture system in order to study C. felis in vitro; and 3) to determine whether CD18 plays a role in the pathogenesis of cytauxzoonosis. INDEX WORDS: Cat, Cytauxzoon felis, pathogenesis, protozoal disease, veterinary pathology FELINE IMMUNE RESPONSE TO INFECTION WITH CYTAUXZOON FELIS AND THE ROLE OF CD18 IN THE PATHOGENESIS OF CYTAUXZOONOSIS by KARELMA FRONTERA-ACEVEDO BS, University of Florida, 2004 DVM, Louisiana State University, 2008 A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY ATHENS, GEORGIA 2013 © 2013 Karelma Frontera-Acevedo All
    [Show full text]
  • The Revised Classification of Eukaryotes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D.
    [Show full text]
  • Haemocystidium Spp., a Species Complex Infecting Ancient Aquatic Turtles of the Family Podocnemididae First Report of These
    IJP: Parasites and Wildlife 10 (2019) 299–309 Contents lists available at ScienceDirect IJP: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Haemocystidium spp., a species complex infecting ancient aquatic turtles of the family Podocnemididae: First report of these parasites in Podocnemis T vogli from the Orinoquia Leydy P. Gonzáleza,b, M. Andreína Pachecoc, Ananías A. Escalantec, Andrés David Jiménez Maldonadoa,d, Axl S. Cepedaa, Oscar A. Rodríguez-Fandiñoe, ∗ Mario Vargas‐Ramírezd, Nubia E. Mattaa, a Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No 45-03, Bogotá, Colombia b Instituto de Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No 45-03, Bogotá, Colombia c Department of Biology/Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, USA d Instituto de Genética, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No 45-03, Bogotá, Colombia e Fundación Universitaria-Unitrópico, Dirección de Investigación, Grupo de Investigación en Ciencias Biológicas de la Orinoquía (GINBIO), Colombia ARTICLE INFO ABSTRACT Keywords: The genus Haemocystidium was described in 1904 by Castellani and Willey. However, several studies considered Haemoparasites it a synonym of the genera Plasmodium or Haemoproteus. Recently, molecular evidence has shown the existence Reptile of a monophyletic group that corresponds to the genus Haemocystidium. Here, we further explore the clade Simondia Haemocystidium spp. by studying parasites from Testudines. A total of 193 individuals belonging to six families of Chelonians Testudines were analyzed. The samples were collected in five localities in Colombia: Casanare, Vichada, Arauca, Colombia Antioquia, and Córdoba. From each individual, a blood sample was taken for molecular analysis, and peripheral blood smears were made, which were fixed and subsequently stained with Giemsa.
    [Show full text]