(Echinodermata, Asteroidea) from Sagami Bay, Japan

Total Page:16

File Type:pdf, Size:1020Kb

(Echinodermata, Asteroidea) from Sagami Bay, Japan Biogeography 22. 58–60. Sep. 20, 2020 The Northernmost Distribution Record of Pentaceraster alveolatus (Echinodermata, Asteroidea) from Sagami Bay, Japan Hisanori Kohtsuka 1*, Hirokazu Yamada 2, Kazuhiko Yamada 2 and Yoichi Kogure 3 1 Misaki Marine Biological Station, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa 851-0121, Japan 2 Kannonzaki Nature Museum, 4-1120 Kamoi, Yokosuka, Kanagawa 239-0813, Japan 3 Japan Sea National Fisheries Research Institute, Japan Fisheries Research and Education Agency, 1-5939-22 Suido, Chuo, Niigata, Niigata 951-8121, Japan Abstract: A single specimen of an oreasterid sea star Pentaceraster alveolatus (Perrier, 1875) was collected from the shallow water of Sagami Bay, Kanagawa Prefecture, Japan in May 2019. This specimen is the new distributional and northernmost record of P. alveolatus which so far has been known from the tropical and subtropical waters south of the Kii Peninsula, Wakayama Prefecture. We described the new locality and external features of this sea star that is rarely encountered species in middle latitudinal warm-water settings in Japan. Key words: Pentaceraster alveolatus, Asteroidea, Sagami Bay, northernmost record Introduction Pentaceraster alveolatus: Döderlein, 1916: p. 428, Figs K, L; Fisher, 1919: p. 348, Pl. 101, Fig. 1; A. M. Clark & Rowe, An oreasterid sea star Pentaceraster alveolatus (Perrier, 1971: 34, p. 56; A. M. Clark, 1993: 310. 1875) is distributed in the west Pacific region including New Material examined. OMNH-Iv 8418, inlet under the Jogashi- Caledonia, Melanesia, Indonesia, the Philippines (A. M. ma Ohashi Bridge in Jogasima, Misaki, Miura-city, Kanagawa Clark, 1993), and southern Japan (Saba et al., 2002). In Japa- prefecture, Japan, subtidal zone, skin diving, May 17, 2019, nese waters, this sea star has been recorded along the Pacific collected by Hirokazu Yamada. The living specimen was coast influenced by the warm Kuroshiro Current, such as main reared in the tank at Misaki Marine Biological Station until island of Okinawa, Yaku Island (Saba et al., 2002), and the September 27, 2019. Kii Peninsula that is the known northern limit of occurrence Description. Disc relatively large. Five arms (Fig. 1A, B). (Kubota, 2016; Kubota et al., 2007). Ratio between radial length (R: 97 mm) and interbrachial dis- In May 2019, a single specimen of P. alveolatus was col- tance (r: 37 mm) approximates to 2.6. Breadth of arm approx- lected from the subtidal zone of Sagami Bay at Jogashima, imately 40 mm at arm base. Flat actinal and raised abactinal Misaki, Kanagawa Prefecture, which indicates the noteworthy side; height of center of disk 35 mm. northward range extension of this species. In this paper, we Five large hemispherical spines on center of abactinal disk describe the locality and external features of this sea star based (Fig. 1C); seven to nine relatively large hemispherical spines on the specimen representing a new northern limit of the dis- in carinal plate with a few smaller spines interspersed between tribution for P. alveolatus in Japan. them (Fig. 1D). Two rows of spines on each side of carinal The specimen used in this report are immersion specimens plate; a small number of spines in outer row. fixed in 99% ethanol aqueous solution, deposited in Osaka A large number of conspicuous white papulae in gaps be- Museum of Natural History (OMNH). tween each spine, clearly delineating papular area. Madrepo- rite triangle with rounded corners in shape, approximately 5 mm in length, situated in interbrachial area: 15 mm away from Pentaceraster alveolatus (Perrier, 1875) center of disk. Bivalve shaped pedicellariae on side of mouth Japanese name: Kobuhitode-modoki (Fig. 1E). (Fig. 1) Outer part of disk edged by marginal plates; each supero- marginal and the inferomarginal plate having prominent bulge Pentaceros alveolatus Perrier, 1875: p. 243. (Fig. 1F). Adambulacral plate contains 5-7 furrow spines and −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− two rows of 2-4 and 2-3 thicker and shorter subambulacral *Corresponding author: [email protected] spines, respectively (Fig. 1G). – 58 – Hisanori Kohtsuka, Hirokazu Yamada, Kazuhiko Yamada and Yoichi Kogure Fig. 1. Pentaceraster alveolatus of living specimen (OMNH-Iv 8418). A: abactinal view. B: actinal view. C: abactinal view of central body; white arrow indicating a madreporite. D: abactinal view of arm. E: mouth plates; black arrows indicating pedicellariae. F: side view of arm tip. G: adambu- lacral spines; f: furrow spines, s: subambulacral spines. Scale bars: A, B = 30 mm; C, D, F = 10 mm; E, G = 5 mm. Color in life. Abactinal surface grayish-green. Tip of the 2002). arm and disk margin brown. Conspicuous hemispherical spine The present specimen was identified as Pentaceraster alve- yellow. Area among the spines without papula greenish brown. olatus (Perrier, 1875) based on the external features: R/r of 2.6, Actinal surface generally grayish-white, with the exception of five large hemispherical spines on the center of the abactinal pale purple central mouth area. side, relatively large spines on the carinal plates, a well-divid- Remarks. The sea star belonging to Oreasteridae has stel- ed papular area, and the structure of the adambulacral spines. late, pentagonal, or rarely spherical body, the surface of which These external features are consistent with those described by is often covered with thick skin having granules. The disk is Fisher (1919). large with raised abactinal and flattened actinal side. Most of The type locality of this species is New Caledonia (Perrier, the species have huge cone-shaped hump and spines on the 1875). Other specimens were known from shallow waters at abactinal side. The abactinal skeleton is composed of large, depth of 1-54 m in Australia, Melanesia, Indonesia, the Philip- reticulated plates, which forms wide papular area (Saba et al., pines, southern China, the main island of Okinawa, and Yak- – 59 – Pentaceraster alveolatus from Sagami Bay ushima Island of Kagoshima Prefecture (A. M. Clark, 1993; Kogure, Y., 2018. A checklist of sea stars (Echinodermata, Liao & A. M. Clark, 1995; Rowe & Gates, 1995; Saba et al., Asteroidea) from Japanese waters. Bulletin of the Biogeo- 2002). More recently, several specimens were obtained at Shi- graphical Society of Japan, 73: 70–86. (in Japanese with rahama, Wakayama Prefecture (Kubota, 2016; Kubota et al., English abstract) 2007). This report is the northernmost record of this sea star, Liao, Y. & Clark, A. M., 1995. The Echinoderms of southern as well as the new locality in Japan. China. 614 pp. Science Press, Beijing. Concerning the taxonomy of Pentaceraster sea stars, Mah, C. L., 2019. World Asteroidea database. Available online Döderlein (1936) pointed out that it is difficult to distinguish at http: // www. marinespecies. Org / aphia. php?p = taxde- P. alveolatus (Perrier, 1875) from P. multispinus (von Mar- tails&id = 370898 on 2019-07-21 tens, 1866). Furthermore, A. M. Clark & Rowe (1971) found Perrier, E., 1875. Revision de la collection de Stellérides du it difficult to distinguish P. alveolatus from P. regulus (Müller Muséum d’ Histoire Naturelle de Paris, 84 pp. Paris. & Troschel, 1842). The genus Pentaceraster is a group that Rowe, F. W. E. & Gates, J., 1995. Zoological Catalogue of needs to be reviewed taxonomically; it is desirable to organize Australia. Echinodermata. 510 pp. CSIRO Australia, Mel- the species classification based on both the traditional mor- bourne. phology and molecular phylogeny. Saba, M., Irimura, S., and Soyama, I., 2002. Sea Stars and Brittle Stars in Japanese Waters. 135 pp., TBS Britannica, Acknowledgements Tokyo. (in Japanese) We would like to thank Dr. Masanori Okanishi of Misaki (Received June 17, 2020; Accepted July 21, 2020) Marine Biological Station, the University of Tokyo, for his review, and Dr. So Ishida of the Osaka Museum of Natural History for his cooperation in the registration of the speci- mens. We extend our gratitude to the reviewers for their useful suggestions. References Clark, A. M., 1993. An index of names of recent Asteroidea Part 2: Valvatida. In Jangoux, M. and Lawrence, J. M. (Eds), Echinoderm Studies, 4: 187–366. A. A. Balkema, Rotter- dam. Clark, A. M. & Rowe, F. W. E., 1971. Monograph of shal- low-water Indo-West Pacific echinoderms. Trusties of the British Museum of Natural History London, 238 pp, 31 pls. Döderlein, L., 1916. Uber die Gattung Oreaster und verwan- dte. Zoologische Jahrbücher, 40: 409–440. Fisher, W. K., 1919. Starfishes of the Philippine seas and adja- cent waters. Bulletin of the United States National Museum, 100 (3): 1–547. Kubota, S., 2016. Reappearance of a living, small individual of Pentaceraster alveolatus (Asteroidea; Oreasteridae) at “Kitahama” beach of the Seto Marine Biological Laborato- ry, Kyoto University, Shirahama Town, Wakayama Prefec- ture, Japan. Nankiseibutu, 58 (2): 224–225. (in Japanese) Kubota, S., Kashiyama, Y. & Tanase, H., 2007. Pentaceraster alveolatus (Asteroidea; Oreasteridae) washed ashore at Banshozaki and Kitahama beach of the Seto Marine Bio- logical Laboratory, Kyoto University in Shirahama Town, Wakayama Prefecture, Japan. Journal of Japan Driftologi- cal Society, 5: 45–46. – 60 –.
Recommended publications
  • Handbook of Texas Cretaceous Fossils
    University of Texas Bulletin No. 2838: October 8, 1928 HANDBOOK OF TEXAS CRETACEOUS FOSSILS B y W. S. ADKINS Bureau of Economic Geology J. A. Udden, Director E. H. Sellards, Associate Director PUBLISHED BY THE UNIVERSITY FOUR TIMES A MONTH, AND ENTERED AS SECOND-CLASS MATTER AT THE POSTOFFICE AT AUSTIN, TEXAS. UNDER THE ACT OF AUGUST 24. 1912 The benefits of education and of useful knowledge, generally diffused through a community, are essential to the preservation of a free govern­ m en t. Sam Houston Cultivated mind is the guardian genius of democracy. It is the only dictator that freemen acknowl­ edge and the only security that free­ men desire. Mirabeau В. Lamar CONTENTS P age Introduction __________________________________________________ 5 Summary of Formation Nomenclature_______________________ 6 Zone Markers and Correlation_______________________________ 8 Types of Texas Cretaceous Fossils___________________________ 36 Bibliography ________________________________________________ 39 L ist and Description of Species_________________________________ 46 P lants ______________________________________________________ 46 Thallophytes ______________________________________________ 46 Fungi __________________________________________________ 46 Algae __________________________________________________ 47 Pteridophytes ____________________________________________ 47 Filices __________________________________________________ 47 Spermatophytes __________________________________________ 47 Gymnospermae _________________________________________
    [Show full text]
  • New Species, Corallivory, in Situ Video Observations and Overview of the Goniasteridae (Valvatida, Asteroidea) in the Hawaiian Region
    Zootaxa 3926 (2): 211–228 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3926.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:39FE0179-9D06-4FC2-9465-CE69D79B933F New species, corallivory, in situ video observations and overview of the Goniasteridae (Valvatida, Asteroidea) in the Hawaiian Region CHRISTOPHER L. MAH Dept. of Invertebrate Zoology, Smithsonian Institution, Washington, D.C. 20007 Abstract Two new species of Goniasteridae, Astroceramus eldredgei n. sp. and Apollonaster kelleyi n. sp. are described from the Hawaiian Islands region. Prior to this occurrence, Apollonaster was known only from the North Atlantic. The Goniasteri- dae is the most diverse family of asteroids in the Hawaiian region. Additional in situ observations of several goniasterid species, including A. eldredgei n. sp. are reported. These observations extend documentation of deep-sea corallivory among goniasterid asteroids. New species occurrences presented herein suggested further biogeographic affinities be- tween tropical Pacific and Atlantic goniasterid faunas. Key words: Goniasteridae, Valvatida, deep-sea, Hawaiian Islands, predation Introduction Recent discoveries of new genera and species from deep-sea habitats along with new in situ video observations have provided us with new ecological insight into these poorly understood and formerly inaccessible settings (e.g., Mah et al. 2010, 2014; Mah & Foltz 2014). Hawaiian deep-sea Asteroidea are taxonomically diverse and occur in an active area of oceanographic and biological research (Chave and Malahoff 1998). New data on asteroids in this area presents an opportunity to review and highlight this diverse fauna.
    [Show full text]
  • Starfish Saponins, 19
    3 266 STARFISH SAPONINS, 19. ‘ A NOVEL STEROIDAL GLYCOSIDE SULFATE FROM THE STARFISHES PROTOREASTER NODOSUS AND PENTACERASTER ALVEOLATUS2 RAFFAELERICCIO, FRANCO ZOLLO, ESTERFINAMORE, LUIGIhfINALE* Dipartitnetlin di CbitnicL~dtlle Sostanze ì%ttirali, Uiiivcrsiiù~ Via L. Rodimi 22. 80138 Napoli, Itufy. ---DOhïINImE3T, - GEORGESBAKGIB ANT, Cetitre ORSTOM, BP AS, Noimia, Ntw Cdrdoniu and JACQUE PUSSET Laboratoire dus Plunta h.Ii&irzalus, CNRS, B P 643, Not~t~éa,Neu, Cal&niLr ABSTRACT.-A new sulfated asterosaponin (l),containing the unprecedented (20R,22S)- Sa-cholesta-9(1 l), 24(25)-diene-3ß,Ga 20,22-tetraol aglycone, has been isolated from the Pacific starfishes Platmastw tiodosus and Pmtawu.ster alceolntm. The sulfate residue is at C-3 and the oligosaccharide chain, ß-D-fucopyranosyl(11+2)-ß-D-quinovopyranosyl(l++4) [-ß-D- quinovopyranosyl( 11+2)1-ß-D-xylopyranosyl( 1~3)-ß-D-quinovopyranosyl,is at C-6. We have reported previously the occurrence of a novel type of steroidal glycoside, nodososide, (24S)-24-0-E2-0-methyl-ß-D-xylopyranosyl-(1~2)-a-L-arabino-furano- syl)-5a-cholestane-3ß, 5,6ß,8,15a,24-hexol, along with several polyhydroxylated sterols, from the Pacific starfish Protoreaster nodosils L. (order Phanerozonia, family Oreasteridae) (1-3). We have now examined the more polar components and have iso- lated a new sulfated asterosaponin (11, which we named protoreasteroside, along with R -13 & H OH 2 R= ‘v ’For Part 18, seel Nat Pivd , 48, 97 1985) of the Progetto Finalizzato “Chimica Fine e Secondana” del GN O 10001373 thte g - -. - - - OH 1 268 Journal of Natural Products {Vol.
    [Show full text]
  • The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328063815 The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS Article · January 2018 CITATIONS READS 0 6 5 authors, including: Ferdinard Olisa Megwalu World Fisheries University @Pukyong National University (wfu.pknu.ackr) 3 PUBLICATIONS 0 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Population Dynamics. View project All content following this page was uploaded by Ferdinard Olisa Megwalu on 04 October 2018. The user has requested enhancement of the downloaded file. Review Article Published: 17 Sep, 2018 SF Journal of Biotechnology and Biomedical Engineering The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization Rahman MA1*, Molla MHR1, Megwalu FO1, Asare OE1, Tchoundi A1, Shaikh MM1 and Jahan B2 1World Fisheries University Pilot Programme, Pukyong National University (PKNU), Nam-gu, Busan, Korea 2Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh Abstract The Sea stars (Asteroidea: Echinodermata) are comprising of a large and diverse groups of sessile marine invertebrates having seven extant orders such as Brisingida, Forcipulatida, Notomyotida, Paxillosida, Spinulosida, Valvatida and Velatida and two extinct one such as Calliasterellidae and Trichasteropsida. Around 1,500 living species of starfish occur on the seabed in all the world's oceans, from the tropics to subzero polar waters. They are found from the intertidal zone down to abyssal depths, 6,000m below the surface. Starfish typically have a central disc and five arms, though some species have a larger number of arms. The aboral or upper surface may be smooth, granular or spiny, and is covered with overlapping plates.
    [Show full text]
  • Seasonal Variability of the Red Tide-Forming Heterotrophic Dino
    Plankton Benthos Res 8(1): 9–30, 2013 Plankton & Benthos Research © The Plankton Society of Japan Seasonal variability of the red tide-forming heterotrophic dinoflagellate Noctiluca scintillans in the neritic area of Sagami Bay, Japan: its role in the nutrient-environment and aquatic ecosystem 1, 1 1 2,3 KOICHI ARA *, SACHIKO NAKAMURA , RYOTO TAKAHASHI , AKIHIRO SHIOMOTO 1 & JURO HIROMI 1 D epartment of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252– 0880, Japan 2 N ational Research Institute of Fisheries Science, Fisheries Research Agency, Kanazawa-ku, Yokohama, Kanagawa 236– 8648, Japan 3 P resent Address: Department of Aquatic Bioscience, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Hokkaido 099–2493, Japan Received 19 June 2012; Accepted 14 January 2013 Abstract: The role of the heterotrophic dinoflagellate Noctiluca scintillans in affecting the nutrient-environment and aquatic ecosystem was investigated in the neritic area of Sagami Bay, Kanagawa, Japan, from January 2002 to De- cember 2006, based on abundance, intracellular nutrient content, excretion rate and response of phytoplankton (dia- toms) to enrichment of nutrients extracted from N. scintillans cells. Seasonal variations in abundance and vertical distribution of N. scintillans were significantly related to the physical structure of the water column, water tempera- ture, chlorophyll a and primary productivity. Intracellular nutrient contents, except for Si(OH)4-Si, revealed clear sea- sonal fluctuations, which were significantly correlated to cell size variations. Thalassiosira rotula increased to higher + cell abundances at higher concentrations of nutrients, which were extracted from N. scintillans cells. NH4 -N and 3– + PO4 -P excretion rates were much higher during the first 1–3 h, and decreased rapidly with time.
    [Show full text]
  • Source Model of the 1703 Genroku Kanto Earthquake Tsunami Based on Historical Documents and Numerical Simulations: Modeling of A
    Yanagisawa and Goto Earth, Planets and Space (2017) 69:136 DOI 10.1186/s40623-017-0713-4 FULL PAPER Open Access Source model of the 1703 Genroku Kanto earthquake tsunami based on historical documents and numerical simulations: modeling of an ofshore fault along the Sagami Trough Hideaki Yanagisawa1* and Kazuhisa Goto2 Abstract The 1703 Genroku Kanto earthquake and the resulting tsunami caused catastrophic damage in the Kanto region of Japan. Previous modeling of the 1703 earthquake applied inversion analyses of the observed terrestrial crustal deformations along the coast of the southern Boso Peninsula and revealed that the tsunami was generated along the Sagami Trough. Although these models readily explained the observed crustal deformation, they were unable to model an ofshore fault along the Sagami Trough because of difculties related to the distance of the ofshore fault from the shoreline. In addition, information regarding the terrestrial crustal deformation is insufcient to constrain such inverted models. To model an ofshore fault and investigate the triggering of large tsunamis of the Pacifc coast of the Boso Peninsula, we studied historical documents related to the 1703 tsunami from Choshi City. Based on these historical documents, we estimated tsunami heights of 5.9, 11.4–11.7, 7.7, 10.8 and 4.8 m for the Choshi City regions of Isejiga-ura, Kobatake-ike, Nagasaki, Tokawa and≥ Na’arai, respectively.≥ Although≥ previous studies assumed that the tsunami heights ranged from 3.0 to 4.0 m in Choshi City, we revealed that the tsunami reached heights exceeded 11 m in the city. We further studied the fault model of the 1703 Genroku Kanto earthquake numerically using the newly obtained tsunami height data.
    [Show full text]
  • The Bulletin of Zoological Nomenclature, Vol19, Part 3
    Volume 19. Part 3. 28$. May, 1962 pp. 129-192. THE BULLETIN OF ZOOLOGICAL NOMENCLATURE The Official Organ of THE INTERNATIONAL COMMISSION ON ZOOLOGICAL NOMENCLATURE Contents Page Notices prescribed by the International Congress of Zoology : Date of commencement by the International Commission on Zoological Nomenclature of voting on applications published in the Bulletin of Zoological Nomenclature 129 Notice of the possible use by the International Commission on Zoological Nomenclature of its plenary powers in certain cases 129 (icontinued inside back wrapper) LONDON: Printed by Order of the International Trust for Zoological Nomenclature and Sold on behalf of the International Commission on Zoological Nomenclature by the International Trust at its Publications Office, 19, Belgrave Square, London, S.W.I 1962 Price Three Pounds (All rights reserved) Original from and digitized by National University of Singapore Libraries INTERNATIONAL COMMISSION ON ZOOLOGICAL NOMENCLATURE A. The Officers of the Commission President-. Professor James Chester Bradley (Cornell University, Ithaca, N.T., U.S.A.) (12 August 1953) Vice-President: Senhor Dr. Afranio do Amaral (Sao Paulo, Brazil) (12 August 1953) Secretary: Mr. N. D. Riley (British Museum (Natural History), London) (23 July 1958) Assistant Secretary: Dr. W. E. China (British Museum (Natural History), Cromwell Road, London, S.W. 7) B. The Members of the Commission (Arranged in order of precedence by reference to date of election or of most recent re-election, as prescribed by the International Congress of Zoology) Senhor Dr. Afranio do Amakal (S. Paulo, Brazil) (12 August 1953) (Vice-President) Professor J. Chester Bradley (Cornell University, Ithaca, N.Y., U.S.A.) (12 August 1953) (President) Professor Harold E.
    [Show full text]
  • New Echinoderm Remains in the Buried Offerings of the Templo Mayor of Tenochtitlan, Mexico City
    New echinoderm remains in the buried offerings of the Templo Mayor of Tenochtitlan, Mexico City Carolina Martín-Cao-Romero1, Francisco Alonso Solís-Marín2, Andrea Alejandra Caballero-Ochoa4, Yoalli Quetzalli Hernández-Díaz1, Leonardo López Luján3 & Belem Zúñiga-Arellano3 1. Posgrado en Ciencias del Mar y Limnología, UNAM, México; [email protected], [email protected] 2. Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología (ICML), Universidad Nacional Autónoma de México, México; [email protected] 3. Proyecto Templo Mayor (PTM), Instituto Nacional de Antropología e Historia, México (INAH). 4. Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Apdo. 70-305, Ciudad de México, México, C.P. 04510; [email protected] Received 01-XII-2016. Corrected 02-V-2017. Accepted 07-VI-2017. Abstract: Between 1978 and 1982 the ruins of the Templo Mayor of Tenochtitlan were exhumed a few meters northward from the central plaza (Zócalo) of Mexico City. The temple was the center of the Mexica’s ritual life and one of the most famous ceremonial buildings of its time (15th and 16th centuries). More than 200 offerings have been recovered in the temple and surrounding buildings. We identified vestiges of 14 species of echino- derms (mostly as disarticulated plates). These include six species of sea stars (Luidia superba, Astropecten regalis, Astropecten duplicatus, Phataria unifascialis, Nidorellia armata, Pentaceraster cumingi), one ophiu- roid species (Ophiothrix rudis), two species of sea urchins (Eucidaris thouarsii, Echinometra vanbrunti), four species of sand dollars (Mellita quinquiesperforata, Mellita notabilis, Encope laevis, Clypeaster speciosus) and one species of sea biscuit (Meoma ventricosa grandis).
    [Show full text]
  • Seismotectonic Modeling of the Repeating M 7-Class Disastrous Odawara Earthquake in the Izu Collision Zone, Central Japan
    Earth Planets Space, 56, 843–858, 2004 Seismotectonic modeling of the repeating M 7-class disastrous Odawara earthquake in the Izu collision zone, central Japan Katsuhiko Ishibashi Research Center for Urban Safety and Security/Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501, Japan (Received February 16, 2004; Revised July 15, 2004; Accepted July 21, 2004) Odawara City in central Japan, in the northernmost margin of the Philippine Sea (PHS) plate, suffered from severe earthquake disasters five times during the last 400 years with a mean repeat time of 73 years; in 1633, 1703, 1782, 1853 and 1923. In this region, non-volcanic Izu outer arc (IOA), the easternmost part of the PHS plate, has been subducted beneath Honshu (Japanese main island), and volcanic Izu inner arc (IIA) on the west of IOA has made multiple collision against Honshu. I hypothesize ‘West-Sagami-Bay Fracture’ (WSBF) beneath Odawara, a north-south striking tear fault within the PHS plate that has separated the descending IOA crust from the buoyant IIA crust, through examinations of multiple collision process and the PHS plate configuration. WSBF is considered a blind causative fault of the 1633, 1782 and 1853 M 7 Odawara earthquakes, and is inferred to have ruptured also during the 1703 and 1923 great Kanto earthquakes simultaneously with the interplate main fault. A presumable asperity on WSBF just beneath Odawara seems to control the temporal regularity of earthquake occurrence. Though WSBF has not yet been detected directly, it is considered an essential tectonic element in this region, which might be a fracture zone with a few or several kilometer thickness actually.
    [Show full text]
  • Population Size Structure and Abnormalities in the Number of Rays of the Sea Star Pentaceraster Cumingi (Valvatida: Oreasteridae) in Bahía Chamela, Mexican Pacific
    ISSN Printed: 0034-7744 ISSN digital: 2215-2075 DOI 10.15517/rbt.v69i1.43239 Population size structure and abnormalities in the number of rays of the Sea Star Pentaceraster cumingi (Valvatida: Oreasteridae) in Bahía Chamela, Mexican Pacific Cristian Moisés Galván-Villa1* & Francisco Alonso Solís-Marín2 1. Laboratorio de Ecosistemas Marinos y Acuicultura, Departamento de Ecología Aplicada, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ramón Padilla Sánchez No. 2100, Nextipac, Zapopan, Jalisco, México. C.P. 45200; [email protected] 2. Colección Nacional de Equinodermos “Dra Ma. Elena Caso Muñoz”, Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología (ICML), Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, Coyoacán, Ciudad de México, México. C.P. 04510; [email protected] * Correspondence Received 28-VII-2020. Corrected 20-XI-2020. Accepted 27-XI-2020. ABSTRACT. Introduction: The Panamic Cushion Star Pentaceraster cumingi is widely distributed along the Tropical Eastern Pacific. This species strictly produces only five arms, but sometimes, this number varies or show another kind of abnormality. Objective: We aimed to evaluate the population size structure and abnormali- ties occurrence in the radial pattern of P. cumingi in Bahía Chamela, Jalisco, Mexico. Methods: The population was monitored along four years (2016-2019), in two seasonal periods (warm and cold). During fieldwork, a random sample of individuals was collected. Every starfish was measured, weighted, and evaluated to identify any abnormality on its radial pattern. Results: The highest density of P. cumingi was found in October 2019 (2.03 ± 0.05 ind/m-2), the lower in March 2017 (0.66 ± 0.13 ind/m-2).
    [Show full text]
  • Traces of Paleo-Earthquakes and Tsunamis Along the Eastern Nankai Trough and Sagami Trough, Pacific Coast of Central Japan*
    Jour. Geol. Soc. Japan, Vol. 120, Supplement, p. 165–184, August 2014 JOI: DN/JST.JSTAGE/geosoc/2014.0012 doi: 10.5575/geosoc.2014.0012 Traces of paleo-earthquakes and tsunamis along the eastern Nankai Trough and Sagami Trough, Pacific coast of central Japan* Osamu Fujiwara1 Overview Received February 17, 2014 Great earthquakes of M8 and above and accompanying tsunamis have Accepted April 15, 2014 repeatedly occurred in the Nankai and Sagami Trough regions. These * Tsunami Hazards and Risks, JGS-GSL Inter- events have caused severe damage to the coastal areas close to the national Symposium, Excursion Guidebook 1 Geological Survey of Japan, National Insti- troughs. As part of the response to the 2011 off the Pacific Coast of tute of Advanced Industrial Science and Tohoku Earthquake (or the Great East Japan Earthquake) and tsunami, Technology (AIST), Tsukuba Central 7, 1-1- 1 Higashi, Tsukuba, 305-8567, Japan. the Cabinet office of the central Japanese Government proposed new guidelines for assessing the risk of similar earthquakes and tsunamis Corresponding author; O. Fujiwara, affecting the Nankai and Sagami Trough regions. These new guidelines [email protected] call for the largest possible class of earthquake and tsunami to be taken into account even if the probability of such an event is low. Large earthquakes and tsunamis in this region would affect an area with high concentrations of population and industrial infrastructure. As a result of these changes, the last 2 years have seen a high public awareness of disaster mitigation measures in the region. One of the results has been that some local governments have begun upgrading their existing disaster prevention infrastructure, such as raising the height of existing dikes and reinforcing refuges to help protect the population in the case of future great earthquake and tsunami events.
    [Show full text]
  • Rapid Biodiversity Assessment of REPUBLIC of NAURU
    RAPID BIODIVERSITY ASSESSMENT OF REPUBLIC OF NAURU JUNE 2013 NAOERO GO T D'S W I LL FIRS SPREP Library/IRC Cataloguing-in-Publication Data McKenna, Sheila A, Butler, David J and Wheatley, Amanda. Rapid biodiversity assessment of Republic of Nauru / Sheila A. McKeena … [et al.] – Apia, Samoa : SPREP, 2015. 240 p. cm. ISBN: 978-982-04-0516-5 (print) 978-982-04-0515-8 (ecopy) 1. Biodiversity conservation – Nauru. 2. Biodiversity – Assessment – Nauru. 3. Natural resources conservation areas - Nauru. I. McKeena, Sheila A. II. Butler, David J. III. Wheatley, Amanda. IV. Pacific Regional Environment Programme (SPREP) V. Title. 333.959685 © SPREP 2015 All rights for commercial / for profit reproduction or translation, in any form, reserved. SPREP authorises the partial reproduction or translation of this material for scientific, educational or research purposes, provided that SPREP and the source document are properly acknowledged. Permission to reproduce the document and / or translate in whole, in any form, whether for commercial / for profit or non-profit purposes, must be requested in writing. Secretariat of the Pacific Regional Environment Programme P.O. Box 240, Apia, Samoa. Telephone: + 685 21929, Fax: + 685 20231 www.sprep.org The Pacific environment, sustaining our livelihoods and natural heritage in harmony with our cultures. RAPID BIODIVERSITY ASSESSMENT OF REPUBLIC OF NAURU SHEILA A. MCKENNA, DAVID J. BUTLER, AND AmANDA WHEATLEY (EDITORS) NAOERO GO T D'S W I LL FIRS CONTENTS Organisational Profiles 4 Authors and Participants 6 Acknowledgements
    [Show full text]