Unexplored Diversity of the Mesophotic Echinoderm Fauna of the Easter Island Ecoregion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Handbook of Texas Cretaceous Fossils
University of Texas Bulletin No. 2838: October 8, 1928 HANDBOOK OF TEXAS CRETACEOUS FOSSILS B y W. S. ADKINS Bureau of Economic Geology J. A. Udden, Director E. H. Sellards, Associate Director PUBLISHED BY THE UNIVERSITY FOUR TIMES A MONTH, AND ENTERED AS SECOND-CLASS MATTER AT THE POSTOFFICE AT AUSTIN, TEXAS. UNDER THE ACT OF AUGUST 24. 1912 The benefits of education and of useful knowledge, generally diffused through a community, are essential to the preservation of a free govern m en t. Sam Houston Cultivated mind is the guardian genius of democracy. It is the only dictator that freemen acknowl edge and the only security that free men desire. Mirabeau В. Lamar CONTENTS P age Introduction __________________________________________________ 5 Summary of Formation Nomenclature_______________________ 6 Zone Markers and Correlation_______________________________ 8 Types of Texas Cretaceous Fossils___________________________ 36 Bibliography ________________________________________________ 39 L ist and Description of Species_________________________________ 46 P lants ______________________________________________________ 46 Thallophytes ______________________________________________ 46 Fungi __________________________________________________ 46 Algae __________________________________________________ 47 Pteridophytes ____________________________________________ 47 Filices __________________________________________________ 47 Spermatophytes __________________________________________ 47 Gymnospermae _________________________________________ -
Download Full Article 1.7MB .Pdf File
https://doi.org/10.24199/j.mmv.1934.8.08 September 1934 Mem. Nat. Mus. Vict., viii, 1934. THE CAINOZOIG CIDARIDAE OF AUSTRALIA. By Frederick Chapman, A.L.S., F.G.S., Commonwealth Palaeon- tologist, and Francis A. Cudmore, Hon. Palaeontologist, National Museum. Plates XII-XV. Nearly 60 years ago Professor P. M. Duncan described the first Australian Cainozoic cidaroid before the Geological Society of London. During the next 20 years Professors R. Tate and J. W. Gregory published references to our fossil cidaroids, but further descriptive work was not attempted until the present authors undertook to examine the accumulated material in the National Museum, the Tate Collection at Adelaide University Museum, the Commonwealth Palaeontological Collection, and the private collections made by the late Dr. T. S. Hall, F. A. Singleton, the Rev. Geo. Cox and the authors. The classification of the Cidaridae is founded mainly upon living species and it is partly based on structures which are only rarely preserved in fossils. Fossil cidaroid tests are usually imperfect. On abraded tests the conjugation of ambulacral pores is obscure. The apical system is preserved only in one specimen among those examined. The spines are rarely attached to the test and pedicellariae are wanting. Therefore, in dealing with our specimens we have been guided mainly by the appear- ance and structure of ambulacral and interambulacral areas. Certain features used in our classification vary with the growth stage of the test : for instance, the number of coronal plates in vertical series, the number of ambulacral plates adjacent to the largest coronal plate, and sometimes the number of granules on the inner end of ambulacral plates. -
Biscuit Clypeaster Subdepressus (Echinodermata: Clypeasteroida)
Embryonic, Larval, and Juvenile Development of the Sea Biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida) Bruno C. Vellutini1,2*, Alvaro E. Migotto1,2 1 Centro de Biologia Marinha, Universidade de Sa˜o Paulo, Sa˜o Sebastia˜o, Sa˜o Paulo, Brazil, 2 Departamento de Zoologia, Instituto de Biocieˆncias, Universidade de Sa˜o Paulo, Sa˜o Paulo, Sa˜o Paulo, Brazil Abstract Sea biscuits and sand dollars diverged from other irregular echinoids approximately 55 million years ago and rapidly dispersed to oceans worldwide. A series of morphological changes were associated with the occupation of sand beds such as flattening of the body, shortening of primary spines, multiplication of podia, and retention of the lantern of Aristotle into adulthood. To investigate the developmental basis of such morphological changes we documented the ontogeny of Clypeaster subdepressus. We obtained gametes from adult specimens by KCl injection and raised the embryos at 260C. Ciliated blastulae hatched 7.5 h after sperm entry. During gastrulation the archenteron elongated continuously while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larvae began to feed in 3 d and were *20 d old at metamorphosis; starved larvae died 17 d after fertilization. Postlarval juveniles had neither mouth nor anus nor plates on the aboral side, except for the remnants of larval spicules, but their bilateral symmetry became evident after the resorption of larval tissues. Ossicles of the lantern were present and organized in 5 groups. Each group had 1 tooth, 2 demipyramids, and 2 epiphyses with a rotula in between. Early appendages consisted of 15 spines, 15 podia (2 types), and 5 sphaeridia. -
New Species, Corallivory, in Situ Video Observations and Overview of the Goniasteridae (Valvatida, Asteroidea) in the Hawaiian Region
Zootaxa 3926 (2): 211–228 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3926.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:39FE0179-9D06-4FC2-9465-CE69D79B933F New species, corallivory, in situ video observations and overview of the Goniasteridae (Valvatida, Asteroidea) in the Hawaiian Region CHRISTOPHER L. MAH Dept. of Invertebrate Zoology, Smithsonian Institution, Washington, D.C. 20007 Abstract Two new species of Goniasteridae, Astroceramus eldredgei n. sp. and Apollonaster kelleyi n. sp. are described from the Hawaiian Islands region. Prior to this occurrence, Apollonaster was known only from the North Atlantic. The Goniasteri- dae is the most diverse family of asteroids in the Hawaiian region. Additional in situ observations of several goniasterid species, including A. eldredgei n. sp. are reported. These observations extend documentation of deep-sea corallivory among goniasterid asteroids. New species occurrences presented herein suggested further biogeographic affinities be- tween tropical Pacific and Atlantic goniasterid faunas. Key words: Goniasteridae, Valvatida, deep-sea, Hawaiian Islands, predation Introduction Recent discoveries of new genera and species from deep-sea habitats along with new in situ video observations have provided us with new ecological insight into these poorly understood and formerly inaccessible settings (e.g., Mah et al. 2010, 2014; Mah & Foltz 2014). Hawaiian deep-sea Asteroidea are taxonomically diverse and occur in an active area of oceanographic and biological research (Chave and Malahoff 1998). New data on asteroids in this area presents an opportunity to review and highlight this diverse fauna. -
Late Cretaceous-Early Palaeogene Echinoderms and the K/T Boundary in the Southeast Netherlands and Northeast Belgium — Part 6: Conclusions
pp 507-580 15-01-2007 14:51 Pagina 505 Late Cretaceous-Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium — Part 6: Conclusions John W.M. Jagt Jagt, J.W.M. Late Cretaceous-Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium — Part 6: Conclusions. — Scripta Geol., 121: 505-577, 8 figs., 9 tables, Leiden, December 2000. John W.M. Jagt, Natuurhistorisch Museum Maastricht, Postbus 882, NL-6200 AW Maastricht, The Netherlands, E-mail: [email protected] Key words: Echinodermata, Late Cretaceous, Early Palaeogene, palaeobiology, K/T boundary, extinc- tion. The palaeobiology of echinoderms occurring in the Meerssen and Geulhem members is discussed and changes in diversity across the K/T boundary are documented. Using literature data on the ecology of extant faunas, the various echinoderm groups are considered. Naturally, such data can only be applied with due caution to fossil forms, whose skeletal morphology is often incompletely known. This holds especially true for asteroids, ophiuroids, and crinoids, which, upon death, rapidly disinte- grate into jumbles of dissociated ossicles. Bioturbation, scavenging, and current winnowing all con- tribute to blurring the picture still further. However, data on extant forms do allow a preliminary sub- division of fossil species into various ecological groups, which are discussed herein. Combining recently published data on K/T boundary sections in Jylland and Sjælland (Denmark) with the pic- ture drawn here for the Maastricht area results in the following best constrained scenario. The demise of the highly diverse latest Maastrichtian echinoderm faunas, typical of shallow-water settings with local palaeorelief and associated unconsolidated bottoms, was rapid, suggestive of a catastrophic event (e.g. -
Starfish Saponins, 19
3 266 STARFISH SAPONINS, 19. ‘ A NOVEL STEROIDAL GLYCOSIDE SULFATE FROM THE STARFISHES PROTOREASTER NODOSUS AND PENTACERASTER ALVEOLATUS2 RAFFAELERICCIO, FRANCO ZOLLO, ESTERFINAMORE, LUIGIhfINALE* Dipartitnetlin di CbitnicL~dtlle Sostanze ì%ttirali, Uiiivcrsiiù~ Via L. Rodimi 22. 80138 Napoli, Itufy. ---DOhïINImE3T, - GEORGESBAKGIB ANT, Cetitre ORSTOM, BP AS, Noimia, Ntw Cdrdoniu and JACQUE PUSSET Laboratoire dus Plunta h.Ii&irzalus, CNRS, B P 643, Not~t~éa,Neu, Cal&niLr ABSTRACT.-A new sulfated asterosaponin (l),containing the unprecedented (20R,22S)- Sa-cholesta-9(1 l), 24(25)-diene-3ß,Ga 20,22-tetraol aglycone, has been isolated from the Pacific starfishes Platmastw tiodosus and Pmtawu.ster alceolntm. The sulfate residue is at C-3 and the oligosaccharide chain, ß-D-fucopyranosyl(11+2)-ß-D-quinovopyranosyl(l++4) [-ß-D- quinovopyranosyl( 11+2)1-ß-D-xylopyranosyl( 1~3)-ß-D-quinovopyranosyl,is at C-6. We have reported previously the occurrence of a novel type of steroidal glycoside, nodososide, (24S)-24-0-E2-0-methyl-ß-D-xylopyranosyl-(1~2)-a-L-arabino-furano- syl)-5a-cholestane-3ß, 5,6ß,8,15a,24-hexol, along with several polyhydroxylated sterols, from the Pacific starfish Protoreaster nodosils L. (order Phanerozonia, family Oreasteridae) (1-3). We have now examined the more polar components and have iso- lated a new sulfated asterosaponin (11, which we named protoreasteroside, along with R -13 & H OH 2 R= ‘v ’For Part 18, seel Nat Pivd , 48, 97 1985) of the Progetto Finalizzato “Chimica Fine e Secondana” del GN O 10001373 thte g - -. - - - OH 1 268 Journal of Natural Products {Vol. -
Diversity and Phylogeography of Southern Ocean Sea Stars (Asteroidea)
Diversity and phylogeography of Southern Ocean sea stars (Asteroidea) Thesis submitted by Camille MOREAU in fulfilment of the requirements of the PhD Degree in science (ULB - “Docteur en Science”) and in life science (UBFC – “Docteur en Science de la vie”) Academic year 2018-2019 Supervisors: Professor Bruno Danis (Université Libre de Bruxelles) Laboratoire de Biologie Marine And Dr. Thomas Saucède (Université Bourgogne Franche-Comté) Biogéosciences 1 Diversity and phylogeography of Southern Ocean sea stars (Asteroidea) Camille MOREAU Thesis committee: Mr. Mardulyn Patrick Professeur, ULB Président Mr. Van De Putte Anton Professeur Associé, IRSNB Rapporteur Mr. Poulin Elie Professeur, Université du Chili Rapporteur Mr. Rigaud Thierry Directeur de Recherche, UBFC Examinateur Mr. Saucède Thomas Maître de Conférences, UBFC Directeur de thèse Mr. Danis Bruno Professeur, ULB Co-directeur de thèse 2 Avant-propos Ce doctorat s’inscrit dans le cadre d’une cotutelle entre les universités de Dijon et Bruxelles et m’aura ainsi permis d’élargir mon réseau au sein de la communauté scientifique tout en étendant mes horizons scientifiques. C’est tout d’abord grâce au programme vERSO (Ecosystem Responses to global change : a multiscale approach in the Southern Ocean) que ce travail a été possible, mais aussi grâce aux collaborations construites avant et pendant ce travail. Cette thèse a aussi été l’occasion de continuer à aller travailler sur le terrain des hautes latitudes à plusieurs reprises pour collecter les échantillons et rencontrer de nouveaux collègues. Par le biais de ces trois missions de recherches et des nombreuses conférences auxquelles j’ai activement participé à travers le monde, j’ai beaucoup appris, tant scientifiquement qu’humainement. -
Echinoidea: Clypeasteroida)
Zootaxa 3857 (4): 501–526 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3857.4.3 http://zoobank.org/urn:lsid:zoobank.org:pub:76021E0C-7542-455B-82F4-C670A3DC8806 Phylogenetic re-evaluation of fossil and extant micro-echinoids with revision of Tridium, Cyamidia, and Lenicyamidia (Echinoidea: Clypeasteroida) RICH MOOI1, ANDREAS KROH2,4 & DINESH K. SRIVASTAVA3 1Department of Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, California 94118, USA. E-mail: [email protected] 2Naturhistorisches Museum Wien, Burgring 7, 1010 Vienna, Austria. E-mail: [email protected] 3Centre of Advanced Study in Geology, University of Lucknow, Lucknow 226 007, India. E-mail: [email protected] 4Corresponding author Abstract Tridium kieri Tandon & Srivastava, 1980, a clypeasteroid micro-echinoid from the Middle Eocene of Kachchh, India, has an apical system with just 3 gonopores. This condition is otherwise almost unknown among clypeasteroids, yet the mor- phology of Tridium is very similar to that of extant Fibularia, including members of another relatively poorly known ge- nus from the Indian subcontinent and Western Australia, Cyamidia Lambert & Thiéry, 1914. Re-examination of the type and additional material of T. kieri and Cyamidia paucipora Brunnschweiler, 1962, along with specimens identified as C. nummulitica nummulitica (Duncan & Sladen, 1884), allows for redescription of these forms. For the first time, maps of coronal plate architecture of Tridium and Cyamidia are developed, and SEM images of test surface details of the former are provided. -
The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328063815 The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS Article · January 2018 CITATIONS READS 0 6 5 authors, including: Ferdinard Olisa Megwalu World Fisheries University @Pukyong National University (wfu.pknu.ackr) 3 PUBLICATIONS 0 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Population Dynamics. View project All content following this page was uploaded by Ferdinard Olisa Megwalu on 04 October 2018. The user has requested enhancement of the downloaded file. Review Article Published: 17 Sep, 2018 SF Journal of Biotechnology and Biomedical Engineering The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization Rahman MA1*, Molla MHR1, Megwalu FO1, Asare OE1, Tchoundi A1, Shaikh MM1 and Jahan B2 1World Fisheries University Pilot Programme, Pukyong National University (PKNU), Nam-gu, Busan, Korea 2Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh Abstract The Sea stars (Asteroidea: Echinodermata) are comprising of a large and diverse groups of sessile marine invertebrates having seven extant orders such as Brisingida, Forcipulatida, Notomyotida, Paxillosida, Spinulosida, Valvatida and Velatida and two extinct one such as Calliasterellidae and Trichasteropsida. Around 1,500 living species of starfish occur on the seabed in all the world's oceans, from the tropics to subzero polar waters. They are found from the intertidal zone down to abyssal depths, 6,000m below the surface. Starfish typically have a central disc and five arms, though some species have a larger number of arms. The aboral or upper surface may be smooth, granular or spiny, and is covered with overlapping plates. -
Field Keys to Common Hawaiian Marine Animals and Plants
DOCUMENT RESUME ED 197 993 SE 034 171 TTTTE Field Keys to Common Hawaiian Marine Animals and Plants: INSTITUTTON Hawaii State Dept. of Education, Honolulu. Officeof In::tructional Services. SEPOPT NO RS-78-5247 PUB DATE Mar 78 NOT? 74p.: Not available in he*:dcopy due to colored pages throughout entire document. EDRS PRICE MFO1 Plus Postage. PC Not Available frcm EPRS. DESCRIPTORS *Animals: Biology: Elementary Secondary Education: Environmental Education: *Field Trips: *Marine Biology: Outdoor Education: *Plant Identification: Science Educat4on TDENTIFTERS Hawaii ABSTRACT Presented are keys for identifyingcommon Hawaiian marine algae, beach plants, reef corals,sea urci.ins, tidepool fishes, and sea cucumbers. Nearly all speciesconsidered can be distinguished by characte-istics visible to- thenaked eye. Line drawings illustrate most plants atd animals included,and a list of suggested readings follows each section. (WB) *********************************************************************** Reproductions supplied by FDPS are the best thatcan be lade from the original document. **************************t***************************************** Field Keys to Common Hawaiian Marine Animals and Plants Office of Instructional Services/General Education Branch Department of Education State of Hawaii RS 78-5247 March 1978 "PERMISSION TO REPRODUCE THIS U S DEPARTMENT OF HEALTH. MATERIAL HAS BEEN GRANTED BY EDUCATION &WELFARE NATIONAL INSTITUTE OF EDUCATION P. Tz_urylo THIS DOCUMENT HAS BEEN qEPRO. DuCED EXACTLY AS PECE1VEDPO.` THE PE PSON OP OPC,AN7ATION ORIGIN. TING IT POINTS Or vIEW OR OPINIONS SATED DO NOT NECESSARILY PE PPE. TO THE EDUCATIONAL RESOURCES SENTO<<IC I AL NATIONAL INSTITUTE 0, INFORMATION CENTER (ERIC)." EDuCA T,ON POSIT.ON OR CY O A N 11 2 The Honorable George R. Arlyoshl Governor, State of Hawaii BOARD OF EDUCATION Rev. -
Variation in Coral-Associated Cryptofaunal Communities Across Spatial Scales and Environmental Gradients
Coral Reefs (2018) 37:827–840 https://doi.org/10.1007/s00338-018-1709-7 REPORT Variation in coral-associated cryptofaunal communities across spatial scales and environmental gradients 1 1 2 Chelsie W. W. Counsell • Megan J. Donahue • Kyle F. Edwards • 1 3 Erik C. Franklin • Mark A. Hixon Received: 2 March 2018 / Accepted: 20 June 2018 / Published online: 5 July 2018 Ó Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Most of the diversity on coral reefs is in the wave height, and chlorophyll-a were significant drivers of cryptofauna, the hidden organisms that inhabit the inter- occurrence. Depth and percent live coral tissue were also stitial spaces of corals and other habitat-forming benthos. identified as important correlates for community compo- However, little is known about the patterns and drivers of sition with distinct responses across taxa. Analyzing spe- diversity in cryptofauna. We investigated how the crypto- cies-specific responses to environmental gradients faunal community associated with the branching coral documented a unique pattern for the guard crab Trapezia Pocillopora meandrina varies across spatial scales and intermedia, which had a higher probability of occurring on environmental gradients. We performed nondestructive smaller colonies (in contrast to 18 other common taxa). visual surveys of the cryptofaunal community on 751 P. The results of a principal coordinates analysis on com- meandrina colonies around the island of O‘ahu (30–73 munity composition and a co-occurrence analysis further colonies per site, 3–6 sites per region, five regions). We supported T. intermedia as having a unique distribution identified 91 species, including 48 fishes and 43 inverte- across colonies, even in comparison with four other Tra- brates. -
Anti-Inflammatory Components of the Starfish Astropecten Polyacanthus
Mar. Drugs 2013, 11, 2917-2926; doi:10.3390/md11082917 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Anti-Inflammatory Components of the Starfish Astropecten polyacanthus Nguyen Phuong Thao 1,2, Nguyen Xuan Cuong 1, Bui Thi Thuy Luyen 1,2, Tran Hong Quang 1, Tran Thi Hong Hanh 1, Sohyun Kim 3, Young-Sang Koh 3, Nguyen Hoai Nam 1, Phan Van Kiem 1, Chau Van Minh 1 and Young Ho Kim 2,* 1 Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Nghiado, Caugiay, Hanoi 10000, Vietnam; E-Mails: [email protected] (N.P.T.); [email protected] (N.X.C.); [email protected] (B.T.T.L.); [email protected] (T.H.Q.); [email protected] (T.T.H.H.); [email protected] (N.H.N.); [email protected] (P.V.K.); [email protected] (C.V.M.) 2 College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea 3 School of Medicine, Brain Korea 21 Program, and Institute of Medical Science, Jeju National University, Jeju 690-756, Korea; E-Mails: [email protected] (S.K.); [email protected] (Y.-S.K.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +82-42-82-5933; Fax: +82-42-823-6566. Received: 20 June 2013; in revised form: 17 July 2013 / Accepted: 19 July 2013 / Published: 13 August 2013 Abstract: Inflammation is important in biomedical research, because it plays a key role in inflammatory diseases including rheumatoid arthritis and other forms of arthritis, diabetes, heart disease, irritable bowel syndrome, Alzheimer’s disease, Parkinson’s disease, allergies, asthma, and even cancer.