Causal Dynamical Triangulations and the Quest for Quantum Gravity?

Total Page:16

File Type:pdf, Size:1020Kb

Causal Dynamical Triangulations and the Quest for Quantum Gravity? Appendices: Mathematical Methods for Basic and Foundational Quantum Gravity Unstarred Appendices support Part I’s basic account. Starred Appendices support Parts II and III on interferences between Problem of Time facets. Double starred ones support the Epilogues on global aspects and deeper levels of mathematical structure being contemplated as Background Independent. If an Appendix is starred, the default is that all of its sections are starred likewise; a few are marked with double stars. Appendix A Basic Algebra and Discrete Mathematics A.1 Sets and Relations For the purposes of this book, take a set X to just be a collection of distinguishable objects termed elements. Write x ∈ X if x is an element of X and Y ⊂ X for Y a subset of X, ∩ for intersection, ∪ for union and Yc = X\Y for the complement of Y in X. Subsets Y1 and Y2 are mutually exclusive alias disjoint if Y1 ∩ Y2 =∅: the empty set. In this case, write Y1 ∪ Y2 as Y1 Y2: disjoint union.Apartition of a set X is a splitting of its elements into subsets pP that are mutually exclusive = and collectively exhaustive: P pP X. Finally, the direct alias Cartesian product of sets X and Z, denoted X × Z, is the set of all ordered pairs (x, z) for x ∈ X, z ∈ Z. For sets X and Z,afunction alias map ϕ : X → Z is an assignation to each x ∈ X of a unique image ϕ(x) = z ∈ Z. Such a ϕ is injective alias 1to1if ϕ(x1) = ϕ(x2) ⇒ x1 = x2, surjective alias onto if given z ∈ Z there is an x ∈ X such that ϕ(x) = z, and bijective if it is both injective and surjective. For Y ⊂ X, the corresponding inclusion map is the injection j : Y → X with j(y)= y ∀ y ∈ Y. X is countable if it is finite or admits a bijection ϕ : X → N: the natural numbers. On the other hand the set of real numbers R is uncountable. |X| is the number of elements in the set X in the finite case, or the extension of this to the notion of cardinality of the set more generally. A binary relation R onasetX is a property that each pair of elements of X may or may not possess. We use aRbto denote ‘a and b ∈ X are related by R’. Simple examples include =,<,≤, ⊂ and ⊆. Some basic properties that an R on X might possess are as follows (∀ a,b,c ∈ X). Reflexivity: aRa. Symmetry: aRb⇒ bRa. Antisymmetry: aRb and bRa⇒ a = b. Transitivity: aRb and bRc⇒ aRc. To- tality: that one or both of aRb or bRa holds, i.e. all pairs are related. Commonly useful combinations of these include the following. 1) Equivalence relation, ∼,ifR is reflexive, symmetric and transitive. 2) Partial ordering, ,ifR is reflexive, antisymmetric and transitive, e.g. ≤ or ⊂: © Springer International Publishing AG 2017 647 E. Anderson, The Problem of Time, Fundamental Theories of Physics 190, DOI 10.1007/978-3-319-58848-3 648 A Basic Algebra and Discrete Mathematics Fig. A.1 Equipping sets with a variety of structures. The main structures considered in this book are presented in straight font, and we use italic font to denote some of the associated morphisms. Reversing the arrows gives examples of forgetting structures. τ is a topology, Dist is a metric space metric, diff are differentiable structures, γ and are connections, and U and m are Riemannian metrics; γ and U are conformally invariant versions ordering by ‘is a subset of’. 3) Total ordering, alias a chain,ifR is both a partial order and total. A fairly standard Foundational System for Mathematics involves equipping sets X with further layers of structure ς; we denote this by X,ς. For example, a set equipped with a partial order is a poset X, . One can furthermore equip an al- ready established equipped space s (rather than just a set) with extra layers of struc- ture s,ς. Such equipping is what is meant in Chap. 10 and Epilogue II.C by ‘levels of mathematical structure’, within the traditional (if in some ways restrictive) con- text that the base level consists of Set Theory. See Fig. A.1 for further examples of equipping. A (homo)morphism is a map μ : s1 → s2 that is structure-preserving. In partic- ular, if a such is bijective (equivalently invertible) it is an isomorphism,ifs1 = s2 it is an endomorphism, and if both of these apply, it is an automorphism. A forgetful map is one that ‘forgets’ (or ‘strips off’) some of the layers of struc- ture: φ :s,ς→s. There is corresponding loss of structure preservation in the maps associated with the latter equipped space. The obvious reversal of each of the equipping maps in Fig. A.1 readily provides an example of forgetful map. Let us end by noting that whereas many further mathematical entities are often thought of as arising by imposing further layers of structure on a set as per above, this is not the only way of doing mathematics. E.g. Category Theory [611, 612, 631] and Topos Theory [126, 260] offer extensions and alternatives in this regard. While these are very briefly outlined in Appendix W, all detailed applications in this book can be taken to be based upon sets. A.2 Groups 649 A.2 Groups A group g, ◦ is a set g equipped with an operation ◦ , such that ∀ g1,g2,g3 ∈ g, i) g1 ◦ g2 ∈ g (closure), ii) {g1 ◦ g2}◦g3 = g1 ◦{g2 ◦ g3} (associativity), iii) ∃ e ∈ g such that e ◦ g1 = g1 = g1 ◦ e (identity), and ∃ −1 ∈ ◦ −1 = = −1 ◦ iv) g1 g for each g1 such that g1 g1 e g1 g1 (inverse). Groups (see [69, 213] for further reading) are one of the most widely useful math- ematical structures in Physics [526]. They encode the mathematics of transforma- tions and symmetries. This book often uses g as a shorthand for g, ◦. |g| denotes the order of g, i.e. the number of elements of g. If additionally g1 ◦ g2 = g2 ◦ g1 (commutativity), g is said to be Abelian (after mathematician Niels Abel). H is a subgroup of g, denoted H ≤ g,ifH ⊆ g, and H is closed with respect to the same group operation ◦ that g possesses while containing the identity and all its elements’ inverses. If g, ◦ and K, ∗ are groups, the (direct) product group g × K is defined by having (g, k) as its elements: the Cartesian product of the sets of g and K, with group operation (g1,k1) (g2,k2) = (g1 ◦ g2,k1 ∗ k2). Two groups g, ◦ and K, ∗ are isomorphic, denoted by =∼, if there is a bijection ϕ that preserves the group structure: ϕ(g ◦ k) = ϕ(g) ∗ ϕ(k) ∀ g ∈ g,k∈ K.1 Examples of groups include 1) R, +,2)R/{0}, ×. 3) The cyclic groups Zn, which are Abelian and with the sole relation gn = e, and 4) the permutations of a finite set X form a group, Perm(X). 5) The automorphisms for each s form a group, Aut(s); Perm(X) is the simplest case, corresponding to s = X finite. 6) Lie groups (named after 19th century mathematician Sophus Lie) such as Appendix E’s standard examples and Appendix V’s larger ones. 7) Given a group g, its centre Z(g) is another group: the subgroup of g formed by the elements of g which commute with all the other elements: {c ∈ g | cg = gc ∀ g ∈ g}. Exercise Set IV is dedicated to groups. Groups are of yet further interest through acting on other mathematical or physi- cal objects (sets of points, figures, physical matter...) A group action on a set X is a → : × → map α g X X (often denoted by gg in this book) such that i) {g1 ◦ g2}x = g1 ◦{g2x} (compatibility) and ii) ex = x ∀ x ∈ X (identity). Subcases include left action gx, right action xg, and conjugate action gxg−1. By a natural group action, we just mean one which does not require a choice as to how to relate X and g due to there being one ‘obvious way’ in which it acts. E.g. Perm(X) acts naturally on X,orann × n matrix group acts naturally on the 1This is the well-known group isomorphism subcase of Appendix A.1’s more general notion of isomorphism, and is useful in classifying groups. 650 A Basic Algebra and Discrete Mathematics corresponding n-vectors. An action is faithful if g1 = g2 ⇒ g1x = g2x for some x ∈ X, whereas it is free if this is so for all x ∈ X. So free ⇒ faithful, but not vice versa. Finally, an action is transitive if for every x,y ∈ X there is a g such that gx = y. For g a group acting on a set X, and x ∈ X,thegroup orbit Orb(x) := {gx | g ∈ g}: the set of images of x, and the stabilizer alias isotropy group alias little group Stab(x) := {g ∈ g | gx = x}:thesetofg ∈ g that fix x. := denotes ‘is defined by’. A subgroup N that is invariant under conjugate action—g N g−1 = N for every g ∈ g—is called a normal subgroup of g, denoted by N g. The quotient of one group by another, g/H, only makes sense if H g. In this case, g/H := {gH | g ∈ g} is itself a group: the quotient group . Finally, the semidirect product group g = N H is given by = ∗ ◦ (n1,h1) (n2,h2) (n1 ϕh1 (n2), h1 h2) for N, ∗ g, H, ◦ a subgroup of g and ϕ : H → Aut(N) a group homomor- phism.
Recommended publications
  • D-Instantons and Twistors
    Home Search Collections Journals About Contact us My IOPscience D-instantons and twistors This article has been downloaded from IOPscience. Please scroll down to see the full text article. JHEP03(2009)044 (http://iopscience.iop.org/1126-6708/2009/03/044) The Table of Contents and more related content is available Download details: IP Address: 132.166.22.147 The article was downloaded on 26/02/2010 at 16:55 Please note that terms and conditions apply. Published by IOP Publishing for SISSA Received: January 5, 2009 Accepted: February 11, 2009 Published: March 6, 2009 D-instantons and twistors JHEP03(2009)044 Sergei Alexandrov,a Boris Pioline,b Frank Saueressigc and Stefan Vandorend aLaboratoire de Physique Th´eorique & Astroparticules, CNRS UMR 5207, Universit´eMontpellier II, 34095 Montpellier Cedex 05, France bLaboratoire de Physique Th´eorique et Hautes Energies, CNRS UMR 7589, Universit´ePierre et Marie Curie, 4 place Jussieu, 75252 Paris cedex 05, France cInstitut de Physique Th´eorique, CEA, IPhT, CNRS URA 2306, F-91191 Gif-sur-Yvette, France dInstitute for Theoretical Physics and Spinoza Institute, Utrecht University, Leuvenlaan 4, 3508 TD Utrecht, The Netherlands E-mail: [email protected], [email protected], [email protected], [email protected] Abstract: Finding the exact, quantum corrected metric on the hypermultiplet moduli space in Type II string compactifications on Calabi-Yau threefolds is an outstanding open problem. We address this issue by relating the quaternionic-K¨ahler metric on the hy- permultiplet moduli space to the complex contact geometry on its twistor space. In this framework, Euclidean D-brane instantons are captured by contact transformations between different patches.
    [Show full text]
  • Twistor Theory at Fifty: from Rspa.Royalsocietypublishing.Org Contour Integrals to Twistor Strings Michael Atiyah1,2, Maciej Dunajski3 and Lionel Review J
    Downloaded from http://rspa.royalsocietypublishing.org/ on November 10, 2017 Twistor theory at fifty: from rspa.royalsocietypublishing.org contour integrals to twistor strings Michael Atiyah1,2, Maciej Dunajski3 and Lionel Review J. Mason4 Cite this article: Atiyah M, Dunajski M, Mason LJ. 2017 Twistor theory at fifty: from 1School of Mathematics, University of Edinburgh, King’s Buildings, contour integrals to twistor strings. Proc. R. Edinburgh EH9 3JZ, UK Soc. A 473: 20170530. 2Trinity College Cambridge, University of Cambridge, Cambridge http://dx.doi.org/10.1098/rspa.2017.0530 CB21TQ,UK 3Department of Applied Mathematics and Theoretical Physics, Received: 1 August 2017 University of Cambridge, Cambridge CB3 0WA, UK Accepted: 8 September 2017 4The Mathematical Institute, Andrew Wiles Building, University of Oxford, Oxford OX2 6GG, UK Subject Areas: MD, 0000-0002-6477-8319 mathematical physics, high-energy physics, geometry We review aspects of twistor theory, its aims and achievements spanning the last five decades. In Keywords: the twistor approach, space–time is secondary twistor theory, instantons, self-duality, with events being derived objects that correspond to integrable systems, twistor strings compact holomorphic curves in a complex threefold— the twistor space. After giving an elementary construction of this space, we demonstrate how Author for correspondence: solutions to linear and nonlinear equations of Maciej Dunajski mathematical physics—anti-self-duality equations e-mail: [email protected] on Yang–Mills or conformal curvature—can be encoded into twistor cohomology. These twistor correspondences yield explicit examples of Yang– Mills and gravitational instantons, which we review. They also underlie the twistor approach to integrability: the solitonic systems arise as symmetry reductions of anti-self-dual (ASD) Yang–Mills equations, and Einstein–Weyl dispersionless systems are reductions of ASD conformal equations.
    [Show full text]
  • Mathematics Meets Physics Relativity Theory, Functional Analysis Or the Application of Probabilistic Methods
    The interaction between mathematics and physics was the Studien zur Entwicklung von Mathematik und Physik in ihren Wechselwirkungen topic of a conference held at the Saxon Academy of Science in Leipzig in March 2010. The fourteen talks of the conference ysics have been adapted for this book and give a colourful picture of various aspects of the complex and multifaceted relations. Karl-Heinz Schlote The articles mainly concentrate on the development of this Martina Schneider interrelation in the period from the beginning of the 19th century until the end of WW II, and deal in particular with the fundamental changes that are connected with such processes as the emergence of quantum theory, general Mathematics meets physics relativity theory, functional analysis or the application of probabilistic methods. Some philosophical and epistemo- A contribution to their interaction in the logical questions are also touched upon. The abundance of 19th and the first half of the 20 th century forms of the interaction between mathematics and physics is considered from different perspectives: local develop- ments at some universities, the role of individuals and/or research groups, and the processes of theory building. Mathematics meets ph The conference reader is in line with the bilingual character of the conference, with the introduction and nine articles presented in English, and five in German. K.-H. Schlote M. Schneider ISBN 978-3-8171-1844-1 Verlag Harri Deutsch Mathematics meets physics Verlag Harri Deutsch – Schlote, Schneider: Mathematics meets physics –(978-3-8171-1844-1) Studien zur Entwicklung von Mathematik und Physik in ihren Wechselwirkungen Die Entwicklung von Mathematik und Physik ist durch zahlreiche Verknüpfungen und wechselseitige Beeinflussungen gekennzeichnet.
    [Show full text]
  • Corry L. David Hilbert and the Axiomatization of Physics, 1898-1918
    Archimedes Volume 10 Archimedes NEW STUDIES IN THE HISTORY AND PHILOSOPHY OF SCIENCE AND TECHNOLOGY VOLUME 10 EDITOR JED Z. BUCHWALD, Dreyfuss Professor of History, California Institute of Technology, Pasadena, CA, USA. ADVISORY BOARD HENK BOS, University of Utrecht MORDECHAI FEINGOLD, Virginia Polytechnic Institute ALLAN D. FRANKLIN, University of Colorado at Boulder KOSTAS GAVROGLU, National Technical University of Athens ANTHONY GRAFTON, Princeton University FREDERIC L. HOLMES, Yale University PAUL HOYNINGEN-HUENE, University of Hannover EVELYN FOX KELLER, MIT TREVOR LEVERE, University of Toronto JESPER LÜTZEN, Copenhagen University WILLIAM NEWMAN, Harvard University JÜRGEN RENN, Max-Planck-Institut für Wissenschaftsgeschichte ALEX ROLAND, Duke University ALAN SHAPIRO, University of Minnesota NANCY SIRAISI, Hunter College of the City University of New York NOEL SWERDLOW, University of Chicago Archimedes has three fundamental goals; to further the integration of the histories of science and technology with one another: to investigate the technical, social and prac- tical histories of specific developments in science and technology; and finally, where possible and desirable, to bring the histories of science and technology into closer con- tact with the philosophy of science. To these ends, each volume will have its own theme and title and will be planned by one or more members of the Advisory Board in consultation with the editor. Although the volumes have specific themes, the series it- self will not be limited to one or even to a few particular areas. Its subjects include any of the sciences, ranging from biology through physics, all aspects of technology, bro- adly construed, as well as historically-engaged philosophy of science or technology.
    [Show full text]
  • Quantum Gravity Past, Present and Future
    Quantum Gravity past, present and future carlo rovelli vancouver 2017 loop quantum gravity, Many directions of investigation string theory, Hořava–Lifshitz theory, supergravity, Vastly different numbers of researchers involved asymptotic safety, AdS-CFT-like dualities A few offer rather complete twistor theory, tentative theories of quantum gravity causal set theory, entropic gravity, Most are highly incomplete emergent gravity, non-commutative geometry, Several are related, boundaries are fluid group field theory, Penrose nonlinear quantum dynamics causal dynamical triangulations, Several are only vaguely connected to the actual problem of quantum gravity shape dynamics, ’t Hooft theory non-quantization of geometry Many offer useful insights … loop quantum causal dynamical gravity triangulations string theory asymptotic Hořava–Lifshitz safety group field AdS-CFT theory dualities twistor theory shape dynamics causal set supergravity theory Penrose nonlinear quantum dynamics non-commutative geometry Violation of QM non-quantized geometry entropic ’t Hooft emergent gravity theory gravity Several are related Herman Verlinde at LOOP17 in Warsaw No major physical assumptions over GR&QM No infinity in the small loop quantum causal dynamical Infinity gravity triangulations in the small Supersymmetry string High dimensions theory Strings Lorentz Violation asymptotic Hořava–Lifshitz safety group field AdS-CFT theory dualities twistor theory Mostly still shape dynamics causal set classical supergravity theory Penrose nonlinear quantum dynamics non-commutative geometry Violation of QM non-quantized geometry entropic ’t Hooft emergent gravity theory gravity Discriminatory questions: Is Lorentz symmetry violated at the Planck scale or not? Are there supersymmetric particles or not? Is Quantum Mechanics violated in the presence of gravity or not? Are there physical degrees of freedom at any arbitrary small scale or not? Is geometry discrete i the small? Lorentz violations Infinite d.o.f.
    [Show full text]
  • Twistor String Theory
    Progress and Prospects in Twistor String Theory Marcus Spradlin An Invitation to Twistor String Theory Formulas for scattering amplitudes in gauge theory exhibit simplicity that is completely obscure in the underlying Feynman diagrams. Invitation Page 2 An Invitation to Twistor String Theory Formulas for scattering amplitudes in gauge theory exhibit simplicity that is completely obscure in the underlying Feynman diagrams. In December 2003, Witten uncovered several new layers of previously hidden mathematical richness in gluon scattering amplitudes and argued that the unexpected simplicity could be understood in terms of twistor string theory. Invitation Page 3 An Invitation to Twistor String Theory Formulas for scattering amplitudes in gauge theory exhibit simplicity that is completely obscure in the underlying Feynman diagrams. In December 2003, Witten uncovered several new layers of previously hidden mathematical richness in gluon scattering amplitudes and argued that the unexpected simplicity could be understood in terms of twistor string theory. Today, twistor string theory has blossomed into a very diverse and active community, which boasts an impressive array of results. Invitation Page 4 An Invitation to Twistor String Theory Formulas for scattering amplitudes in gauge theory exhibit simplicity that is completely obscure in the underlying Feynman diagrams. In December 2003, Witten uncovered several new layers of previously hidden mathematical richness in gluon scattering amplitudes and argued that the unexpected simplicity could be understood in terms of twistor string theory. Today, twistor string theory has blossomed into a very diverse and active community, which boasts an impressive array of results. However, most of those results have little to do with twistors, and most have little to do with string theory! Invitation Page 5 An Invitation to Twistor String Theory Formulas for scattering amplitudes in gauge theory exhibit simplicity that is completely obscure in the underlying Feynman diagrams.
    [Show full text]
  • Condensed Matter Physics and the Nature of Spacetime
    Condensed Matter Physics and the Nature of Spacetime This essay considers the prospects of modeling spacetime as a phenomenon that emerges in the low-energy limit of a quantum liquid. It evaluates three examples of spacetime analogues in condensed matter systems that have appeared in the recent physics literature, and suggests how they might lend credence to an epistemological structural realist interpretation of spacetime that emphasizes topology over symmetry in the accompanying notion of structure. Keywords: spacetime, condensed matter, effective field theory, emergence, structural realism Word count: 15, 939 1. Introduction 2. Effective Field Theories in Condensed Matter Systems 3. Spacetime Analogues in Superfluid Helium and Quantum Hall Liquids 4. Low-Energy Emergence and Emergent Spacetime 5. Universality, Dynamical Structure, and Structural Realism 1. Introduction In the philosophy of spacetime literature not much attention has been given to concepts of spacetime arising from condensed matter physics. This essay attempts to address this. I look at analogies between spacetime and a quantum liquid that have arisen from effective field theoretical approaches to highly correlated many-body quantum systems. Such approaches have suggested to some authors that spacetime can be modeled as a phenomenon that emerges in the low-energy limit of a quantum liquid with its contents (matter and force fields) described by effective field theories (EFTs) of the low-energy excitations of this liquid. While directly relevant to ongoing debates over the ontological status of spacetime, this programme also has other consequences that should interest philosophers of physics. It suggests, for instance, a particular approach towards quantum gravity, as well as an anti-reductionist attitude towards the nature of symmetries in quantum field theory.
    [Show full text]
  • International Centre for Theoretical Physics
    IC/81+/237 INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS SUPERTWISTORS AUD SUPERSPACE M. Kotrla and J. Niederle INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION 1984 Ml RAM ARE-TRIESTE Mmm: •<•-•» 4 TC/8V23T I, INTRODUCTION It is well known that tvo fundamental physical theories - the general theory of relativity and the Yang-Mills theory - can he clearly formulated International Atomic Energy Agency geometrically in the framework of the Riemannian spaces and fibre bundles. On and the other hand, the geometrical interpretation of the supersymmetric and of the United nations Educational Scientific and Cultural Organization supergravitational theories - the promising candidates for unified theories of all fundamental interactions of particles - is far from being clear and complete. INTERNATIONAL CENTRE FOE THEORETICAL PHYSICS Thus in order to clarify the geometrical structure of these theories a super- symmetric extension of the twistor approach will be developed. In what follows we shall restrict ourselves to the flat case since the space of twistors is particularly simply defined for 4-dimensional complex conformally flat space-time. SUPERTWISTORS AHD SUFERSPACE * The twistor theory (for reviews see [l] and papers in [2]) gives an alternative description of space-time and of various objects defined on it be means of complex analysis and holomorphic geometry. The description is particularly simple whenever one is dealing with a theory having the conformal symmetry. M. Kotrla The aim of the so-called twistor programme [3] is to give a new description Institute of Physics, Czechoslovak Academy of Sciences, of rel&tivlstie as well as quantum physics in terms of twi3tors.
    [Show full text]
  • Team Orange General Relativity / Quantum Theory
    Entanglement Propagation in Gravity EPIG Team Orange General Relativity / Quantum Theory Albert Einstein Erwin Schrödinger General Relativity / Quantum Theory Albert Einstein Erwin Schrödinger General Relativity / Quantum Theory String theory Wheeler-DeWitt equation Loop quantum gravity Geometrodynamics Scale Relativity Hořava–Lifshitz gravity Acoustic metric MacDowell–Mansouri action Asymptotic safety in quantum gravity Noncommutative geometry. Euclidean quantum gravity Path-integral based cosmology models Causal dynamical triangulation Regge calculus Causal fermion systems String-nets Causal sets Superfluid vacuum theory Covariant Feynman path integral Supergravity Group field theory Twistor theory E8 Theory Canonical quantum gravity History of General Relativity and Quantum Mechanics 1916: Einstein (General Relativity) 1925-1935: Bohr, Schrödinger (Entanglement), Einstein, Podolsky and Rosen (Paradox), ... 1964: John Bell (Bell’s Inequality) 1982: Alain Aspect (Violation of Bell’s Inequality) 1916: General Relativity Describes the Universe on large scales “Matter curves space and curved space tells matter how to move!” Testing General Relativity Experimental attempts to probe the validity of general relativity: Test mass Light Bending effect MICROSCOPE Quantum Theory Describes the Universe on atomic and subatomic scales: ● Quantisation ● Wave-particle dualism ● Superposition, Entanglement ● ... 1935: Schrödinger (Entanglement) H V H V 1935: EPR Paradox Quantum theory predicts that states of two (or more) particles can have specific correlation properties violating ‘local realism’ (a local particle cannot depend on properties of an isolated, remote particle) 1964: Testing Quantum Mechanics Bell’s tests: Testing the completeness of quantum mechanics by measuring correlations of entangled photons Coincidence Counts t Coincidence Counts t Accuracy Analysis Single and entangled photons are to be detected and time stamped by single photon detectors.
    [Show full text]
  • Loop Quantum Gravity, Twisted Geometries and Twistors
    Loop quantum gravity, twisted geometries and twistors Simone Speziale Centre de Physique Theorique de Luminy, Marseille, France Kolymbari, Crete 28-8-2013 Loop quantum gravity ‚ LQG is a background-independent quantization of general relativity The metric tensor is turned into an operator acting on a (kinematical) Hilbert space whose states are Wilson loops of the gravitational connection ‚ Main results and applications - discrete spectra of geometric operators - physical cut-off at the Planck scale: no trans-Planckian dofs, UV finiteness - local Lorentz invariance preserved - black hole entropy from microscopic counting - singularity resolution, cosmological models and big bounce ‚ Many research directions - understanding the quantum dynamics - recovering general relativity in the semiclassical limit some positive evidence, more work to do - computing quantum corrections, renormalize IR divergences - contact with EFT and perturbative scattering processes - matter coupling, . Main difficulty: Quanta are exotic different language: QFT ÝÑ General covariant QFT, TQFT with infinite dofs Speziale | Twistors and LQG 2/33 Outline Brief introduction to LQG From loop quantum gravity to twisted geometries Twistors and LQG Speziale | Twistors and LQG 3/33 Outline Brief introduction to LQG From loop quantum gravity to twisted geometries Twistors and LQG Speziale | Twistors and LQG Brief introduction to LQG 4/33 Other background-independent approaches: ‚ Causal dynamical triangulations ‚ Quantum Regge calculus ‚ Causal sets LQG is the one more rooted in
    [Show full text]
  • Twistor Theory at Fifty: from Contour Integrals to Twistor Strings
    Twistor theory at fifty: from contour integrals to twistor strings Michael Atiyah∗ School of Mathematics, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JZ, UK. and Trinity College, Cambridge, CB2 1TQ, UK. Maciej Dunajski† Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK. Lionel J Mason‡ The Mathematical Institute, Andrew Wiles Building, University of Oxford, ROQ Woodstock Rd, OX2 6GG September 6, 2017 Dedicated to Roger Penrose and Nick Woodhouse at 85 and 67 years. Abstract We review aspects of twistor theory, its aims and achievements spanning the last five decades. In the twistor approach, space–time is secondary with events being derived objects that correspond to com- arXiv:1704.07464v2 [hep-th] 8 Sep 2017 pact holomorphic curves in a complex three–fold – the twistor space. After giving an elementary construction of this space we demonstrate how solutions to linear and nonlinear equations of mathematical physics: anti-self-duality (ASD) equations on Yang–Mills, or conformal curva- ture can be encoded into twistor cohomology. These twistor corre- spondences yield explicit examples of Yang–Mills, and gravitational instantons which we review. They also underlie the twistor approach to integrability: the solitonic systems arise as symmetry reductions of ∗[email protected][email protected][email protected] 1 ASD Yang–Mills equations, and Einstein–Weyl dispersionless systems are reductions of ASD conformal equations. We then review the holomorphic string theories in twistor and am- bitwistor spaces, and explain how these theories give rise to remarkable new formulae for the computation of quantum scattering amplitudes.
    [Show full text]
  • An Octahedron of Complex Null Rays, and Conformal Symmetry Breaking
    An octahedron of complex null rays, and conformal symmetry breaking Maciej Dunajskia, Miklos L˚angvikb and Simone Spezialec a DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK b Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki, Finland, and Ash¨ojdensgrundskola, Sturegatan 6, 00510 Helsingfors, Finland c Centre de Physique Th´eorique, Aix Marseille Univ., Univ. de Toulon, CNRS, Marseille, France v1: January 23, 2019, v2: April 30, 2019 Abstract We show how the manifold T ∗SU(2; 2) arises as a symplectic reduction from eight copies of the twistor space. Some of the constraints in the twistor space correspond to an octahedral configuration of twelve complex light rays in the Minkowski space. We discuss a mechanism to break the conformal symmetry down ∗ to the twistorial parametrisation of T SL(2; C) used in loop quantum gravity. In memory of Sir Michael Atiyah (1929{2019) 1 Introduction A twistor space T = C4 is a complex{four dimensional vector space equipped with a pseudo{Hermitian inner product Σ of signature (2; 2), and the associated natural symplectic structure [1, 2]. In [3] Tod has shown that the symplectic form induced on a five{dimensional real surface of projective twistors which are isotropic with respect to Σ coincides with the symplectic form on the space of null geodesics in the 3+1{dimensional Minkowski space M. It the same paper it was demonstrated that the Souriau symplectic form [4] on the space of massive particles in M with spin arises as a symplectic reduction from T × T.
    [Show full text]