International Centre for Theoretical Physics

Total Page:16

File Type:pdf, Size:1020Kb

International Centre for Theoretical Physics IC/81+/237 INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS SUPERTWISTORS AUD SUPERSPACE M. Kotrla and J. Niederle INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION 1984 Ml RAM ARE-TRIESTE Mmm: •<•-•» 4 TC/8V23T I, INTRODUCTION It is well known that tvo fundamental physical theories - the general theory of relativity and the Yang-Mills theory - can he clearly formulated International Atomic Energy Agency geometrically in the framework of the Riemannian spaces and fibre bundles. On and the other hand, the geometrical interpretation of the supersymmetric and of the United nations Educational Scientific and Cultural Organization supergravitational theories - the promising candidates for unified theories of all fundamental interactions of particles - is far from being clear and complete. INTERNATIONAL CENTRE FOE THEORETICAL PHYSICS Thus in order to clarify the geometrical structure of these theories a super- symmetric extension of the twistor approach will be developed. In what follows we shall restrict ourselves to the flat case since the space of twistors is particularly simply defined for 4-dimensional complex conformally flat space-time. SUPERTWISTORS AHD SUFERSPACE * The twistor theory (for reviews see [l] and papers in [2]) gives an alternative description of space-time and of various objects defined on it be means of complex analysis and holomorphic geometry. The description is particularly simple whenever one is dealing with a theory having the conformal symmetry. M. Kotrla The aim of the so-called twistor programme [3] is to give a new description Institute of Physics, Czechoslovak Academy of Sciences, of rel&tivlstie as well as quantum physics in terms of twi3tors. So far, two Prague, Czechoslovakia big successes of the twistor theory have been reached: a nice description of and free mas3less fields with an arbitrary spin [l],[2], [U] and a general method for solving Yang-Mills [2],[5],[6] as well as the non-linear Einstein [2],[7] field J. Niederle ** equations in the self-dual case. International Centre for Theoretical Physics, Trieste, Italy In 19T8 Ferber [8] introduced the supersynmietrie generalization of twistors and International Bchool for Advanced Studies, Trieste, Italy. the supertwistors. They are defined as elements of a complex projective super- space on which the conformal supersymmetry SU(2,2|N) acts linearly. By using supersupertwistors, non-linear realizations of the conformal supersymmetry on superspace and representations of the conformal supersymmetry on the space of ABSTRACT chiral superfields have been constructed. Then it was observed "by Witten [9] that the N = 3 supersymmetric Yang-Mills equation can be interpreted in terms In the paper the usual correspondence between twistors and of supertwistors in the same way as the self-dual Yang-Mills theories were by geometrical objects in the Minkowski space is generalized to the twistors. An extension of the approach was recently discussed to Include also supertwistor case by means of flag supermanifolds. This super- the supersymmetric Yang-Mills theories for II = 1,2 and h [10]. twistor correspondence Is treated in detail. The chiral and non- chiral superspaces are constructed and their properties studied by In this article we shall define supertwistors a little bit more abstractly means of supertwistors. than in [8] and show first the correspondence betveen the supertwistor space and the complex superspace containing our space-time in detail and then that the results analogous to those of the twistor theory hold. MIRAHARE - TRIESTE November 19SU The correspondence is essential for formulations of supersymmetric theories in terms of supertwistors. However, before discussing it we shall recall some • To be submitted for publication. basic facts about the usual twistors and the correspondence between twistors and ** Permaner.t address: Institute of Physics, Czechoslovak Academy geometrical objects in the MinkowskI space. of Sciences,18040 Prague, Czechoslovakia. II. TWISTOKS AMD TWISIOR CORRESPONDENCE tine and twistor space T, respectively CM and P{T), is given by the basic relation TwistoiE can be introduced "by several essentially equivalent ways [lj. Thus for example in physics the twistors are usually defined as quantities U) = 1 X Tat li.Jj P describing the states of free massless particles whereas in mathematics as It which expresses the condition for Z £ P(T) given ny Z = C Y 2 1° * Y * C,Z = elements of the complex vector space T "x. C in which the covering = ((A TI ,)£T } to be incident with x 6 CM. Namely each point Z of P(T) group SU(2,2) of the identity-connected component of the eonformal group of the (i.e. each projective twistor) can be interpreted as the set of points in CM Minkowski space acts according to the fundamental representation. incident with it, i.e. with the set of complex xa0' satisfying (2.3) with ^ a The coordinates of a twistor Z S T will be denoted by Z , and TtfiI fixed. Inversely, the set of solutions of (2.3) in Z with x Z=(Z)=(Z,Z,Z,Z). By choosing a proper basis twistor Z can be held fixed may be interpreted as the set of projective twistors Z in P(T) J a expressed as Z (u) , ID , TT t, TT .), where io , TT , are spinors and cospinors,- incident with point x of CM. In more detail a null twistor Z (provided respectively of the Lorentz group contained in SU(2,2) . •- Moreover there exists •n , i 0) can be interpreted as a null-line in CM. A non-null twistor of P(T) a hermitean form (...) invariant with respect to SU(2,2), For twistor as a totally null plane in CM, i.e. as a complex 2-plane in CM all^tangent a (Z ) = ( and r= (Y11) , it is of the form vectors of which are null, mutually orthogonal and of the form p° na , where TI is fixed and p varies. This plane in CM is called an a-plane. (Similarly a a a' (Z,Y) = 5° Xa, T7 v a B-plane in CM is defined as that whose tangent vectors have the form p IT , where now it is the unprimed spinor p that it fixed and TT that varies. The 6-plane in CM corresponds to a projective plane in P(T)J The points in CM where Z = (IT SO ) is the complex conjugate twistor to Z . corresponds to a projective line in P(T) etc. A twistor Z (or Za) is said to be positive, negative or null The correspondence between the projective twistor space P{T) and the according as (Z,Z) = Z Za is positive, negative or zero. compactified complex Minkowski space CM mapping points of P(T) onto o-planes in CM and points in CM onto projective lines in P(T) may be described more Following Penrose [1], we now set the correspondence between twistors abstractly by using flag and Grassmannian manifolds (for definitions see e.g. 111]). and objects in the Minkowski space. In order to interpret this correspondence geometrically we need to pass to the projective twistor space P(T) and to the Let F be the following flag manifold compactified complex Minkowski space CM. Space P(T) is defined as space CP whose points are the equivalence classes of proportional twistors, i.e. F = V(T) := (£.2) (2.U) Space CM is a compact complex It-space the poins of which are composed not only of the points of the complex Minkowski space but in addition of the points of and G the Grassraannian manifold a complex 3-surface - a light-cone - defining the "points at infinity" of complex Minkowski space. Thus denoting "by xa and x the vectorial and spinori&l 1 (2.5) components of a point x in CM, the correspondence between the Minkowski space- (€) := { L2 \ L2 are subspaees in t" , <Li<Lim which is isormorphic to the compactified complex Minkowski space CM. Let u *) However, the twistor is not a pair of spinors, since under translation with the parameters a we have HI™ -»• in +ia IT , n , -•• IT ,. and v be natural projections defined by -3- -h- . F (2.6) en (X X) = X (3.1) H>* f2l (It (2)°fll (2) Then the correspondence between CM and F(T) is given by which is invariant under transformations from SU(2,2|H). The infinitesimal transformations from EU(2,2|H) are of the form tf (2.7) (for details see [12]). The twistor correspondence is essential for finding solutions of massless (3.2) field'equations and (anti)self-dual Yang-Mills field equations by means of \ / tvistors [it], [5]. where a, b, 1, D, G, S £ (A)Q, E, p 6 (A)1> conjugation is defined via the involution on A, a and b are hermitian, S antihermitian and D and Q real. III. SUFERTVISTORS AHD SUPEE5PACES In the twistor theory space CM is isomorphic to Grassmannian manifold In the paper [8] supertwistors were introduced analogously to twistors, i.e. 0 j ), i.e. to the set of 2-dimensional subspaces in T ^ t . A similar as quantities describing free massless particles, but in a superspace. In this situation happens for supertwistors. However, since in this case some extra odd section we shall use an abstract definition of supertvistors which provides to dimensions appear, we have more possibilities. introduce various superspaces containing the Minkowski space. Thus let us consider complex 2/k-dimensional subspaces (0^ k^ M) of the super- ,H Let us denote by a space of supertwistors for N-extended super- twistor space D % d . A 2/k-subspace of S is a 2/k-dimensional plane symmetry. I is a vector space isomorphic to I (for details see the going through the origin and thus determined by 2 even and (N-k) odd homogenous Appendix) on which tue fundamental representation of confonnal supergroup equations.
Recommended publications
  • D-Instantons and Twistors
    Home Search Collections Journals About Contact us My IOPscience D-instantons and twistors This article has been downloaded from IOPscience. Please scroll down to see the full text article. JHEP03(2009)044 (http://iopscience.iop.org/1126-6708/2009/03/044) The Table of Contents and more related content is available Download details: IP Address: 132.166.22.147 The article was downloaded on 26/02/2010 at 16:55 Please note that terms and conditions apply. Published by IOP Publishing for SISSA Received: January 5, 2009 Accepted: February 11, 2009 Published: March 6, 2009 D-instantons and twistors JHEP03(2009)044 Sergei Alexandrov,a Boris Pioline,b Frank Saueressigc and Stefan Vandorend aLaboratoire de Physique Th´eorique & Astroparticules, CNRS UMR 5207, Universit´eMontpellier II, 34095 Montpellier Cedex 05, France bLaboratoire de Physique Th´eorique et Hautes Energies, CNRS UMR 7589, Universit´ePierre et Marie Curie, 4 place Jussieu, 75252 Paris cedex 05, France cInstitut de Physique Th´eorique, CEA, IPhT, CNRS URA 2306, F-91191 Gif-sur-Yvette, France dInstitute for Theoretical Physics and Spinoza Institute, Utrecht University, Leuvenlaan 4, 3508 TD Utrecht, The Netherlands E-mail: [email protected], [email protected], [email protected], [email protected] Abstract: Finding the exact, quantum corrected metric on the hypermultiplet moduli space in Type II string compactifications on Calabi-Yau threefolds is an outstanding open problem. We address this issue by relating the quaternionic-K¨ahler metric on the hy- permultiplet moduli space to the complex contact geometry on its twistor space. In this framework, Euclidean D-brane instantons are captured by contact transformations between different patches.
    [Show full text]
  • Causal Dynamical Triangulations and the Quest for Quantum Gravity?
    Appendices: Mathematical Methods for Basic and Foundational Quantum Gravity Unstarred Appendices support Part I’s basic account. Starred Appendices support Parts II and III on interferences between Problem of Time facets. Double starred ones support the Epilogues on global aspects and deeper levels of mathematical structure being contemplated as Background Independent. If an Appendix is starred, the default is that all of its sections are starred likewise; a few are marked with double stars. Appendix A Basic Algebra and Discrete Mathematics A.1 Sets and Relations For the purposes of this book, take a set X to just be a collection of distinguishable objects termed elements. Write x ∈ X if x is an element of X and Y ⊂ X for Y a subset of X, ∩ for intersection, ∪ for union and Yc = X\Y for the complement of Y in X. Subsets Y1 and Y2 are mutually exclusive alias disjoint if Y1 ∩ Y2 =∅: the empty set. In this case, write Y1 ∪ Y2 as Y1 Y2: disjoint union.Apartition of a set X is a splitting of its elements into subsets pP that are mutually exclusive = and collectively exhaustive: P pP X. Finally, the direct alias Cartesian product of sets X and Z, denoted X × Z, is the set of all ordered pairs (x, z) for x ∈ X, z ∈ Z. For sets X and Z,afunction alias map ϕ : X → Z is an assignation to each x ∈ X of a unique image ϕ(x) = z ∈ Z. Such a ϕ is injective alias 1to1if ϕ(x1) = ϕ(x2) ⇒ x1 = x2, surjective alias onto if given z ∈ Z there is an x ∈ X such that ϕ(x) = z, and bijective if it is both injective and surjective.
    [Show full text]
  • Twistor Theory at Fifty: from Rspa.Royalsocietypublishing.Org Contour Integrals to Twistor Strings Michael Atiyah1,2, Maciej Dunajski3 and Lionel Review J
    Downloaded from http://rspa.royalsocietypublishing.org/ on November 10, 2017 Twistor theory at fifty: from rspa.royalsocietypublishing.org contour integrals to twistor strings Michael Atiyah1,2, Maciej Dunajski3 and Lionel Review J. Mason4 Cite this article: Atiyah M, Dunajski M, Mason LJ. 2017 Twistor theory at fifty: from 1School of Mathematics, University of Edinburgh, King’s Buildings, contour integrals to twistor strings. Proc. R. Edinburgh EH9 3JZ, UK Soc. A 473: 20170530. 2Trinity College Cambridge, University of Cambridge, Cambridge http://dx.doi.org/10.1098/rspa.2017.0530 CB21TQ,UK 3Department of Applied Mathematics and Theoretical Physics, Received: 1 August 2017 University of Cambridge, Cambridge CB3 0WA, UK Accepted: 8 September 2017 4The Mathematical Institute, Andrew Wiles Building, University of Oxford, Oxford OX2 6GG, UK Subject Areas: MD, 0000-0002-6477-8319 mathematical physics, high-energy physics, geometry We review aspects of twistor theory, its aims and achievements spanning the last five decades. In Keywords: the twistor approach, space–time is secondary twistor theory, instantons, self-duality, with events being derived objects that correspond to integrable systems, twistor strings compact holomorphic curves in a complex threefold— the twistor space. After giving an elementary construction of this space, we demonstrate how Author for correspondence: solutions to linear and nonlinear equations of Maciej Dunajski mathematical physics—anti-self-duality equations e-mail: [email protected] on Yang–Mills or conformal curvature—can be encoded into twistor cohomology. These twistor correspondences yield explicit examples of Yang– Mills and gravitational instantons, which we review. They also underlie the twistor approach to integrability: the solitonic systems arise as symmetry reductions of anti-self-dual (ASD) Yang–Mills equations, and Einstein–Weyl dispersionless systems are reductions of ASD conformal equations.
    [Show full text]
  • Quantum Gravity Past, Present and Future
    Quantum Gravity past, present and future carlo rovelli vancouver 2017 loop quantum gravity, Many directions of investigation string theory, Hořava–Lifshitz theory, supergravity, Vastly different numbers of researchers involved asymptotic safety, AdS-CFT-like dualities A few offer rather complete twistor theory, tentative theories of quantum gravity causal set theory, entropic gravity, Most are highly incomplete emergent gravity, non-commutative geometry, Several are related, boundaries are fluid group field theory, Penrose nonlinear quantum dynamics causal dynamical triangulations, Several are only vaguely connected to the actual problem of quantum gravity shape dynamics, ’t Hooft theory non-quantization of geometry Many offer useful insights … loop quantum causal dynamical gravity triangulations string theory asymptotic Hořava–Lifshitz safety group field AdS-CFT theory dualities twistor theory shape dynamics causal set supergravity theory Penrose nonlinear quantum dynamics non-commutative geometry Violation of QM non-quantized geometry entropic ’t Hooft emergent gravity theory gravity Several are related Herman Verlinde at LOOP17 in Warsaw No major physical assumptions over GR&QM No infinity in the small loop quantum causal dynamical Infinity gravity triangulations in the small Supersymmetry string High dimensions theory Strings Lorentz Violation asymptotic Hořava–Lifshitz safety group field AdS-CFT theory dualities twistor theory Mostly still shape dynamics causal set classical supergravity theory Penrose nonlinear quantum dynamics non-commutative geometry Violation of QM non-quantized geometry entropic ’t Hooft emergent gravity theory gravity Discriminatory questions: Is Lorentz symmetry violated at the Planck scale or not? Are there supersymmetric particles or not? Is Quantum Mechanics violated in the presence of gravity or not? Are there physical degrees of freedom at any arbitrary small scale or not? Is geometry discrete i the small? Lorentz violations Infinite d.o.f.
    [Show full text]
  • Twistor String Theory
    Progress and Prospects in Twistor String Theory Marcus Spradlin An Invitation to Twistor String Theory Formulas for scattering amplitudes in gauge theory exhibit simplicity that is completely obscure in the underlying Feynman diagrams. Invitation Page 2 An Invitation to Twistor String Theory Formulas for scattering amplitudes in gauge theory exhibit simplicity that is completely obscure in the underlying Feynman diagrams. In December 2003, Witten uncovered several new layers of previously hidden mathematical richness in gluon scattering amplitudes and argued that the unexpected simplicity could be understood in terms of twistor string theory. Invitation Page 3 An Invitation to Twistor String Theory Formulas for scattering amplitudes in gauge theory exhibit simplicity that is completely obscure in the underlying Feynman diagrams. In December 2003, Witten uncovered several new layers of previously hidden mathematical richness in gluon scattering amplitudes and argued that the unexpected simplicity could be understood in terms of twistor string theory. Today, twistor string theory has blossomed into a very diverse and active community, which boasts an impressive array of results. Invitation Page 4 An Invitation to Twistor String Theory Formulas for scattering amplitudes in gauge theory exhibit simplicity that is completely obscure in the underlying Feynman diagrams. In December 2003, Witten uncovered several new layers of previously hidden mathematical richness in gluon scattering amplitudes and argued that the unexpected simplicity could be understood in terms of twistor string theory. Today, twistor string theory has blossomed into a very diverse and active community, which boasts an impressive array of results. However, most of those results have little to do with twistors, and most have little to do with string theory! Invitation Page 5 An Invitation to Twistor String Theory Formulas for scattering amplitudes in gauge theory exhibit simplicity that is completely obscure in the underlying Feynman diagrams.
    [Show full text]
  • Condensed Matter Physics and the Nature of Spacetime
    Condensed Matter Physics and the Nature of Spacetime This essay considers the prospects of modeling spacetime as a phenomenon that emerges in the low-energy limit of a quantum liquid. It evaluates three examples of spacetime analogues in condensed matter systems that have appeared in the recent physics literature, and suggests how they might lend credence to an epistemological structural realist interpretation of spacetime that emphasizes topology over symmetry in the accompanying notion of structure. Keywords: spacetime, condensed matter, effective field theory, emergence, structural realism Word count: 15, 939 1. Introduction 2. Effective Field Theories in Condensed Matter Systems 3. Spacetime Analogues in Superfluid Helium and Quantum Hall Liquids 4. Low-Energy Emergence and Emergent Spacetime 5. Universality, Dynamical Structure, and Structural Realism 1. Introduction In the philosophy of spacetime literature not much attention has been given to concepts of spacetime arising from condensed matter physics. This essay attempts to address this. I look at analogies between spacetime and a quantum liquid that have arisen from effective field theoretical approaches to highly correlated many-body quantum systems. Such approaches have suggested to some authors that spacetime can be modeled as a phenomenon that emerges in the low-energy limit of a quantum liquid with its contents (matter and force fields) described by effective field theories (EFTs) of the low-energy excitations of this liquid. While directly relevant to ongoing debates over the ontological status of spacetime, this programme also has other consequences that should interest philosophers of physics. It suggests, for instance, a particular approach towards quantum gravity, as well as an anti-reductionist attitude towards the nature of symmetries in quantum field theory.
    [Show full text]
  • Team Orange General Relativity / Quantum Theory
    Entanglement Propagation in Gravity EPIG Team Orange General Relativity / Quantum Theory Albert Einstein Erwin Schrödinger General Relativity / Quantum Theory Albert Einstein Erwin Schrödinger General Relativity / Quantum Theory String theory Wheeler-DeWitt equation Loop quantum gravity Geometrodynamics Scale Relativity Hořava–Lifshitz gravity Acoustic metric MacDowell–Mansouri action Asymptotic safety in quantum gravity Noncommutative geometry. Euclidean quantum gravity Path-integral based cosmology models Causal dynamical triangulation Regge calculus Causal fermion systems String-nets Causal sets Superfluid vacuum theory Covariant Feynman path integral Supergravity Group field theory Twistor theory E8 Theory Canonical quantum gravity History of General Relativity and Quantum Mechanics 1916: Einstein (General Relativity) 1925-1935: Bohr, Schrödinger (Entanglement), Einstein, Podolsky and Rosen (Paradox), ... 1964: John Bell (Bell’s Inequality) 1982: Alain Aspect (Violation of Bell’s Inequality) 1916: General Relativity Describes the Universe on large scales “Matter curves space and curved space tells matter how to move!” Testing General Relativity Experimental attempts to probe the validity of general relativity: Test mass Light Bending effect MICROSCOPE Quantum Theory Describes the Universe on atomic and subatomic scales: ● Quantisation ● Wave-particle dualism ● Superposition, Entanglement ● ... 1935: Schrödinger (Entanglement) H V H V 1935: EPR Paradox Quantum theory predicts that states of two (or more) particles can have specific correlation properties violating ‘local realism’ (a local particle cannot depend on properties of an isolated, remote particle) 1964: Testing Quantum Mechanics Bell’s tests: Testing the completeness of quantum mechanics by measuring correlations of entangled photons Coincidence Counts t Coincidence Counts t Accuracy Analysis Single and entangled photons are to be detected and time stamped by single photon detectors.
    [Show full text]
  • Loop Quantum Gravity, Twisted Geometries and Twistors
    Loop quantum gravity, twisted geometries and twistors Simone Speziale Centre de Physique Theorique de Luminy, Marseille, France Kolymbari, Crete 28-8-2013 Loop quantum gravity ‚ LQG is a background-independent quantization of general relativity The metric tensor is turned into an operator acting on a (kinematical) Hilbert space whose states are Wilson loops of the gravitational connection ‚ Main results and applications - discrete spectra of geometric operators - physical cut-off at the Planck scale: no trans-Planckian dofs, UV finiteness - local Lorentz invariance preserved - black hole entropy from microscopic counting - singularity resolution, cosmological models and big bounce ‚ Many research directions - understanding the quantum dynamics - recovering general relativity in the semiclassical limit some positive evidence, more work to do - computing quantum corrections, renormalize IR divergences - contact with EFT and perturbative scattering processes - matter coupling, . Main difficulty: Quanta are exotic different language: QFT ÝÑ General covariant QFT, TQFT with infinite dofs Speziale | Twistors and LQG 2/33 Outline Brief introduction to LQG From loop quantum gravity to twisted geometries Twistors and LQG Speziale | Twistors and LQG 3/33 Outline Brief introduction to LQG From loop quantum gravity to twisted geometries Twistors and LQG Speziale | Twistors and LQG Brief introduction to LQG 4/33 Other background-independent approaches: ‚ Causal dynamical triangulations ‚ Quantum Regge calculus ‚ Causal sets LQG is the one more rooted in
    [Show full text]
  • Twistor Theory at Fifty: from Contour Integrals to Twistor Strings
    Twistor theory at fifty: from contour integrals to twistor strings Michael Atiyah∗ School of Mathematics, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JZ, UK. and Trinity College, Cambridge, CB2 1TQ, UK. Maciej Dunajski† Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK. Lionel J Mason‡ The Mathematical Institute, Andrew Wiles Building, University of Oxford, ROQ Woodstock Rd, OX2 6GG September 6, 2017 Dedicated to Roger Penrose and Nick Woodhouse at 85 and 67 years. Abstract We review aspects of twistor theory, its aims and achievements spanning the last five decades. In the twistor approach, space–time is secondary with events being derived objects that correspond to com- arXiv:1704.07464v2 [hep-th] 8 Sep 2017 pact holomorphic curves in a complex three–fold – the twistor space. After giving an elementary construction of this space we demonstrate how solutions to linear and nonlinear equations of mathematical physics: anti-self-duality (ASD) equations on Yang–Mills, or conformal curva- ture can be encoded into twistor cohomology. These twistor corre- spondences yield explicit examples of Yang–Mills, and gravitational instantons which we review. They also underlie the twistor approach to integrability: the solitonic systems arise as symmetry reductions of ∗[email protected][email protected][email protected] 1 ASD Yang–Mills equations, and Einstein–Weyl dispersionless systems are reductions of ASD conformal equations. We then review the holomorphic string theories in twistor and am- bitwistor spaces, and explain how these theories give rise to remarkable new formulae for the computation of quantum scattering amplitudes.
    [Show full text]
  • An Octahedron of Complex Null Rays, and Conformal Symmetry Breaking
    An octahedron of complex null rays, and conformal symmetry breaking Maciej Dunajskia, Miklos L˚angvikb and Simone Spezialec a DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK b Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki, Finland, and Ash¨ojdensgrundskola, Sturegatan 6, 00510 Helsingfors, Finland c Centre de Physique Th´eorique, Aix Marseille Univ., Univ. de Toulon, CNRS, Marseille, France v1: January 23, 2019, v2: April 30, 2019 Abstract We show how the manifold T ∗SU(2; 2) arises as a symplectic reduction from eight copies of the twistor space. Some of the constraints in the twistor space correspond to an octahedral configuration of twelve complex light rays in the Minkowski space. We discuss a mechanism to break the conformal symmetry down ∗ to the twistorial parametrisation of T SL(2; C) used in loop quantum gravity. In memory of Sir Michael Atiyah (1929{2019) 1 Introduction A twistor space T = C4 is a complex{four dimensional vector space equipped with a pseudo{Hermitian inner product Σ of signature (2; 2), and the associated natural symplectic structure [1, 2]. In [3] Tod has shown that the symplectic form induced on a five{dimensional real surface of projective twistors which are isotropic with respect to Σ coincides with the symplectic form on the space of null geodesics in the 3+1{dimensional Minkowski space M. It the same paper it was demonstrated that the Souriau symplectic form [4] on the space of massive particles in M with spin arises as a symplectic reduction from T × T.
    [Show full text]
  • Why We Need Quantum Gravity and Why We Don't Have It
    Why we need quantum gravity and why we don’t have it Steve Carlip U.C. Davis Quantum Gravity: Physics and Philosophy IHES, Bures-sur-Yvette October 2017 The first appearance of quantum gravity Einstein 1916: gravitational waves ) quantum theory must modify gravity Start of a long journey . The search for quantum gravity has given us – Gauge-fixing and ghosts (Feynman, DeWitt) – The correct understanding of constrained systems (Dirac, Komar) – The effective action and effective potential formalism (DeWitt) – The Hamiltonian formulation of general relativity (Arnowitt, Deser, Misner) – A better understanding of observables in classical general relativity (many) – Black hole thermodynamics (Bekenstein, Hawking, and others) – Insights into cosmology (Hartle, Hawking, and others) – Insights into the renormalization group (Weinberg) – Slick was to calculate QCD amplitudes (many) – Holography, with all of its implications (’t Hooft, Susskind, Maldacena) –Twistor theory (Penrose) What it hasn’t given us is a quantum theory of gravity What is quantum gravity? Requirements • Quantum mechanical –usual apparatus of operators, states in a Hilbert space – perhaps modified at some scales – perhaps with issues of interpretation (“wave function of the Universe”) • Reduces to general relativity in some classical limit • Reduces to standard quantum mechanics in some weak gravity limit Other desirable properties • Explains black hole thermodynamics (probably) • Explains other “universal” properties (maybe) – Short distance dimensional reduction? – Minimum length?
    [Show full text]
  • 1 Nov 2013 Twistor Relative Locality
    Twistor relative locality Lee Smolin∗ Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2J 2Y5, Canada November 4, 2013 Abstract We present a version of relative locality based on the geometry of twistor space. This can also be thought of as a new kind of deformation of twistor theory based on the construction of a bundle of twistor spaces over momentum space. Locality in space-time is emergent and is deformed in a precise way when a connection on that bundle is non-flat. This gives a precise and controlled meaning to Penrose’s hypothe- sis that quantum gravity effects will deform twistor space in such a way as to maintain causality and relativistic invariance while weakening the notion that interactions take place at points in spacetime. Contents 1 Introduction 2 2 The undeformed theory 3 arXiv:1311.0186v1 [hep-th] 1 Nov 2013 2.1 Theaction ...................................... 4 2.2 Equationsofmotion ............................... 5 3 Deforming twistor geometry 6 4 Twistor quantization 8 4.1 Canonicaltheory ................................. 8 4.2 Canonicalquantization. .... 9 4.3 Pathintegralquantization . ..... 9 4.4 Emergenceofgravity.............................. .. 9 ∗[email protected] 1 1 Introduction Relative locality and twistor theory share the basic feature that space-time is derivative and is emergent from a more fundamental description of relativistic physics. In twistor theory that more fundamental geometry is twistor space, T , whose points correspond, roughly, to the trajectories of massless particles in Minkowski space-time[1]. In relative locality[2, 3] that more fundamental space is momentum space, P. Interestingly enough, both share an aspiration, which is that the locality of interac- tions in space-time, being emergent, can be weakened by deforming the geometry of the space on which each theory is defined.
    [Show full text]