Primulaceae) in the European Alps

Total Page:16

File Type:pdf, Size:1020Kb

Primulaceae) in the European Alps Original Paper 623 Phylogeography of the High Alpine Cushion Plant Androsace alpina (Primulaceae) in the European Alps P. Schönswetter1, A. Tribsch2, and H. Niklfeld1 1 Department of Plant Chorology and Vegetation Science, Institute of Botany, University of Vienna, Vienna, Austria 2 Department of Systematics and Evolution of Higher Plants, Institute of Botany, University of Vienna, Rennweg14, 1030 Vienna, Austria Received: January 31, 2003; Accepted: November 11, 2003 Abstract: Recent studies elucidating the glacial history of alpine the centre of the Pleistocene ice shields covering the Alps and plants have yielded controversial results. While some have fav- Scandinavia also harbour such taxa. The nunatak hypothesis, oured glacial survival on mountain tops above the glaciers claiming that plants could survive on mountain tops protrud- (nunataks), others did not find support for this hypothesis. Fur- ing from the ice shield (reviewed in Dahl, 1987), was formulat- thermore, all of the published phylogeographic patterns are ed to explain this pattern. The alternative tabula rasa (latin for strikingly different. In order to provide more data for a future ªempty tableº) hypothesis argues for sole periglacial survival comparative phylogeographical approach, we investigated 53 (reviewed in Nordal, 1987; Birks, 1993). populations of the high alpine cushion plant Androsace alpina (Primulaceae), endemic to the European Alps, using amplified Whereas many contributions exist toward understanding gla- fragment length polymorphism (AFLP). While Principal Co-ordi- cial survival of tree species in southern European refugia (re- nate Analysis (PCoA) of populations revealed four genetically- viewed by, e.g., Taberlet et al., 1998; Newton et al., 1999; defined phylogeographical groups corresponding to geographic Comes and Kadereit, 2001), arctic and alpine plants have been regions, Neighbour Joining analysis (NJ) separated only three neglected until recently. A series of studies dealing with arctic groups. Mantel tests were used to assess the goodness-of-fit be- taxa (Brochmann et al., 1996; Gabrielsen et al., 1997; Tollefsrud tween the grouping in PCoA and the genetic similarity matrix, et al., 1998) found no evidence for the nunatak hypothesis, and and these showed high similarity between the two eastern phy- it was thus concluded that ªglacial survival does not matterº logeographical groups. This, together with other lines of evi- (Gabrielsen et al., 1997; Tollefsrud et al., 1998). Only in the dence, is interpreted as an indication for colonization of the last few years have alpine plants become the focus of inter- eastern part of the distributional range of A. alpina from wester- est (Stehlik et al., 2001a, b, 2002a, b; Stehlik, 2002; Holder- ly adjacent populations. The phylogeographical groups can all egger et al., 2002; Kropf et al., 2002, 2003; Schönswetter et be related to potential refugia for alpine plants, based on geo- al., 2002, 2003, in press; Tribsch et al., 2002). Stehlik et al. logical and palaeoclimatological data. However, due to the com- (2001a; 2002 b) provided evidence for nunatak survival in the paratively weak phylogeographical structure, our data do not centralmost parts of the Alps for the high alpine Eritrichum allow us to rule out glacial survival on nunataks in central parts nanum. Even in the low alpine Erinus alpinus (Stehlik et al., of the Pleistocene ice shield. 2002 a), glacial survival on nunataks in the northern Swiss Alps may account for its present phylogeographic pattern. Key words: AFLP, Androsace alpina, glacial survival, nunatak, However, results from Phyteuma globulariifolium (Schönswet- phylogeography, Pleistocene. ter et al., 2002), and Ranunculus glacialis (Schönswetter et al., in press), which have an altitudinal distribution similar to E. nanum, favour survival in unglaciated refugia and peripheral nunatak areas close to the southern and eastern margin of the Introduction Alps. Peripheral nunataks were situated close to the margin of the ice shield and provided potential habitats below the Pleis- Where did plants growing at high altitudes in mountain ranges tocene snow line (Schönswetter et al., 2002, in press). In con- like the European Alps survive the glaciations of the Pleisto- trast, central nunataks were restricted to interior parts of the cene? This question has been addressed by biogeographers ice shield. The classical nunatak debate traditionally only dis- many times (reviewed in Brockmann-Jerosch and Brock- tinguished unglaciated refugia and central nunataks (Stehlik, mann-Jerosch, 1926; Stehlik, 2000). It was observed that the 2000); peripheral nunataks, however, obviously offered condi- distribution of ªglacial relicsº (i.e., rare, disjunct, or palaeoen- tions more suitable for growth and survival of higher plants. demic taxa) is not confined to areas that remained ice-free during the last glaciation, but rather that mountain ranges in The general aim of the present study was to provide detailed phylogeographic data from an exclusively high alpine to subni- val plant, to test further the still controversial nunatak hypoth- Plant Biology 5 (2003): 623 ±630 esis. Our objectives were (1) to attempt to identify Pleistocene Georg Thieme Verlag Stuttgart ´ New York refugia by comparing the phylogeographic pattern with poten- ISSN 1435-8603 ´ DOI 10.1055/s-2003-44686 tial refugia described in Schönswetter et al. (2002), and (2) to 624 Plant Biology 5 (2003) P. Schönswetter, A. Tribsch, and H. Niklfeld Fig.1 Distribution of Androsace alpina (shad- ed) and sampled populations (numbered, see Table 1) in the Alps. Groupings based on ge- netic results are indicated by the following symbols: rhombi = SW, squares = W, trian- gles = E1, dots = E2. The maximum extent of the Pleistocene ice shield duringthe last gla- cial period (Würm) is illustrated with a black line (modified from van Husen, 1987; Jäckli, 1970; and Voges, 1995). distinguish between peripheral survival and survival on cen- Materials and Methods tral nunataks. Nunatak survivors, if not completely swamped by re-migrating genotypes (Gabrielsen et al., 1997; Tollefsrud The species et al., 1998; Holderegger et al., 2002), should exhibit a patchy distribution of groups of related genotypes in formerly glaciat- Androsace alpina is a typical alpine pioneer species with appar- ed central areas of the Alps. These groups should be potentially ently low competitive abilities, as it is strictly bound to open differentiated from and surrounded by peripheral genotypes. vegetation (P. Schönswetter, pers. obs.). In many aspects, it is An example for this kind of glacial survival in the western similar to high alpine Ranunculus glacialis, that Grabherr et al. central Alps is provided by Stehlik et al. (2002 b). In contrast, (1986) regarded as ªalpine ruderalº. The population size of A. one would expect re-migration of (now mostly extinct) refu- alpina varies considerably, from small populations on summits gial populations from peripheral refugia to result in large, rel- and ridges with fewer than ten individuals to very large popu- atively uniform areas populated by closely related genotypes lations, e.g. in glacier forefields, with thousands of plants (P. (Schönswetter et al., 2002, in press). Schönswetter, pers. obs.). This is also reflected by the sampled populations (Table 1). A pollen/ovule-ratio of 1600±1800 (H. Androsace alpina (Primulaceae) belongs to the three highest- Weiss, unpubl.) for the southwesternmost population 1 and dwelling vascular plant taxa in the European Alps, frequently population 46 near the eastern distribution limit (Fig.1) sug- growing at or even above the snow line (at ca. 3000 m asl) gests (facultative) xenogamy (Cruden, 1977). Androsace alpina and sometimes reaching 4200 m asl (Ellenberg, 1996). The is also highly self-compatible, as seed set does not differ signif- species is endemic to the Alps (Fig.1). It is most frequent in icantly between plants packed in silk bags to prevent xenoga- the highest, most central parts (Mt. Blanc to Hohe Tauern), be- my and open-pollinated individuals used as reference (Schöns- coming rarer towards the southwest and the east. Judging by wetter, unpublished data; t-test, p = 0.154). The size of the its present habitat preferences, A. alpina hypothetically would seeds varies from 1.5 to 2.2 mm, their specific weight is > 1 have been able to survive the hostile conditions on nunataks (Müller-Schneider, 1986), and they lack morphological adapta- within the Pleistocene ice shield. This, together with its re- tions for dispersal over longer distances. striction to siliceous bedrock, makes A. alpina a good model or- ganism to test hypotheses on glacial refugia. Due to the geolo- Sampling gy of the Alps, with a central siliceous core flanked by periph- eral limestone ranges over long distances, there are only a few Fifty-three populations (Table 1) throughout the distributional well circumscribed potential peripheral refugia providing sili- area of A. alpina were sampled, with five individuals in each ceous bedrock which was unglaciated, or at least situated be- population (exceptions: populations 13, 31, 49, and 52 with low the Pleistocene snowline (Schönswetter et al., 2002). Gla- four and 47 and 50 with three individuals). Voucher specimens cial survival of A. alpina in the Po plain near presumed refugia of all sampled populations are deposited in the herbarium of was improbable, as it was covered by boreal forests and steppe the Institute of Botany of the University of Vienna (WU).
Recommended publications
  • Fair Use of This PDF File of Herbaceous
    Fair Use of this PDF file of Herbaceous Perennials Production: A Guide from Propagation to Marketing, NRAES-93 By Leonard P. Perry Published by NRAES, July 1998 This PDF file is for viewing only. If a paper copy is needed, we encourage you to purchase a copy as described below. Be aware that practices, recommendations, and economic data may have changed since this book was published. Text can be copied. The book, authors, and NRAES should be acknowledged. Here is a sample acknowledgement: ----From Herbaceous Perennials Production: A Guide from Propagation to Marketing, NRAES- 93, by Leonard P. Perry, and published by NRAES (1998).---- No use of the PDF should diminish the marketability of the printed version. This PDF should not be used to make copies of the book for sale or distribution. If you have questions about fair use of this PDF, contact NRAES. Purchasing the Book You can purchase printed copies on NRAES’ secure web site, www.nraes.org, or by calling (607) 255-7654. Quantity discounts are available. NRAES PO Box 4557 Ithaca, NY 14852-4557 Phone: (607) 255-7654 Fax: (607) 254-8770 Email: [email protected] Web: www.nraes.org More information on NRAES is included at the end of this PDF. Acknowledgments This publication is an update and expansion of the 1987 Cornell Guidelines on Perennial Production. Informa- tion in chapter 3 was adapted from a presentation given in March 1996 by John Bartok, professor emeritus of agricultural engineering at the University of Connecticut, at the Connecticut Perennials Shortcourse, and from articles in the Connecticut Greenhouse Newsletter, a publication put out by the Department of Plant Science at the University of Connecticut.
    [Show full text]
  • Atlas of Rare Endemic Vascular Plants of the Arctic
    Atlas of Rare Endemic Vascular Plants of the Arctic Technical Report No. 3 About CAFF Theprogram for the Conservation of Arctic Flora and Fauna (CAFF) of the Arctic Council was established lo address the special needs of Arctic ecosystems, species and thcir habitats in the rapid ly developing Arctic region. Itwas initiated as one of'four programs of the Arctic Environmental Protcction Strategy (AEPS) which was adopted by Canada, Denmark/Greenland, Finland, lceland, Norway, Russia, Swcdcn and the United States through a Ministeria! Declaration at Rovaniemi, Finland in 1991. Other programs initi­ ated under the AEPS and overlaken hy the Are.tie Council are the ArcticMonitoring and assessment Programme (AMAP), the program for Emergency Prevention, Preparcd­ ness and Response (EPPR) and the program for Protection of the Arctic Marine Envi­ ronment (PAME). Sinceits inaugural mccti.ng in Ottawa, Canada in 1992, the CAFF program has provided scientists, conscrvation managers and groups, and indigenous people of the north with a distinct forum in which lo tackle a wide range of Arctic conservation issues at the cir­ cumpolar level. CAFF's main goals, which are achieved in keeping with the concepts of sustainable developrnertt and utilisation, are: • to conserve Arctic Jlora and fauna, thcir diversity and thcir habitats; • to protect the Arctic ecosystems from threats; • to improve conservation management laws, reg ulations and practices for the Arclic; • to integrale Arctic interests into global conservation fora. CAFF operates rhrough a system of Designated Agencies and National Representatives responsible for CAFF in thcir rcspcctivc countries. CAFF also has an International Work­ ing Group wh.ith has met annually to assess progrcss and to develop Annual WorkPlans.
    [Show full text]
  • (Dr. Sc. Nat.) Vorgelegt Der Mathematisch-Naturwissenschaftl
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2012 Flowers, sex, and diversity: Reproductive-ecological and macro-evolutionary aspects of floral variation in the Primrose family, Primulaceae de Vos, Jurriaan Michiel Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-88785 Dissertation Originally published at: de Vos, Jurriaan Michiel. Flowers, sex, and diversity: Reproductive-ecological and macro-evolutionary aspects of floral variation in the Primrose family, Primulaceae. 2012, University of Zurich, Facultyof Science. FLOWERS, SEX, AND DIVERSITY. REPRODUCTIVE-ECOLOGICAL AND MACRO-EVOLUTIONARY ASPECTS OF FLORAL VARIATION IN THE PRIMROSE FAMILY, PRIMULACEAE Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftliche Fakultät der Universität Zürich von Jurriaan Michiel de Vos aus den Niederlanden Promotionskomitee Prof. Dr. Elena Conti (Vorsitz) Prof. Dr. Antony B. Wilson Dr. Colin E. Hughes Zürich, 2013 !!"#$"#%! "#$%&$%'! (! )*'+,,&$-+''*$.! /! '0$#1'2'! 3! "4+1%&5!26!!"#"$%&'(#)$*+,-)(*#! 77! "4+1%&5!226!-*#)$%.)(#!'&*#!/'%#+'.0*$)/)"$1'(12%-).'*3'0")"$*.)4&4'*#' "5*&,)(*#%$4'+(5"$.(3(-%)(*#'$%)".'(#'+%$6(#7.'2$(1$*.".! 89! "4+1%&5!2226!.1%&&'%#+',!&48'%'9,%#)()%)(5":'-*12%$%)(5"'"5%&,%)(*#'*3' )0"';."&3(#!'.4#+$*1"<'(#'0")"$*.)4&*,.'%#+'0*1*.)4&*,.'2$(1$*.".! 93! "4+1%&5!2:6!$"2$*+,-)(5"'(12&(-%)(*#.'*3'0"$=*!%14'(#'0*1*.)4&*,.' 2$(1$*.".>'5%$(%)(*#'+,$(#!'%#)0".(.'%#+'$"2$*+,-)(5"'%..,$%#-"'(#' %&2(#"'"#5($*#1"#).! 7;7! "4+1%&5!:6!204&*!"#")(-'%#%&4.(.'*3'!"#$%&''."-)(*#'!"#$%&''$"5"%&.' $%12%#)'#*#/1*#*204&4'%1*#!'1*2$0*&*!(-%&&4'+(.)(#-)'.2"-(".! 773! "4+1%&5!:26!-*#-&,+(#!'$"1%$=.! 7<(! +"=$#>?&@.&,&$%'! 7<9! "*552"*?*,!:2%+&! 7<3! !!"#$$%&'#""!&(! Es ist ein zentrales Ziel in der Evolutionsbiologie, die Muster der Vielfalt und die Prozesse, die sie erzeugen, zu verstehen.
    [Show full text]
  • Winter Frosts Reduce Flower Bud Survival in High-Mountain Plants
    plants Article Winter Frosts Reduce Flower Bud Survival in High-Mountain Plants Johanna Wagner *, Karla Gruber, Ursula Ladinig, Othmar Buchner and Gilbert Neuner * Department of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, A-6020 Innsbruck, Austria; [email protected] (K.G.); [email protected] (U.L.); [email protected] (O.B.) * Correspondence: [email protected] (J.W.); [email protected] (G.N.); Tel.: +43-512-507-51026 (G.N.) Abstract: At higher elevations in the European Alps, plants may experience winter temperatures of −30 ◦C and lower at snow-free sites. Vegetative organs are usually sufficiently frost hardy to survive such low temperatures, but it is largely unknown if this also applies to generative structures. We investigated winter frost effects on flower buds in the cushion plants Saxifraga bryoides L. (subnival- nival) and Saxifraga moschata Wulfen (alpine-nival) growing at differently exposed sites, and the chionophilous cryptophyte Ranunculus glacialis L. (subnival-nival). Potted plants were subjected to short-time (ST) and long-time (LT) freezing between −10 and −30 ◦C in temperature-controlled freezers. Frost damage, ice nucleation and flowering frequency in summer were determined. Flower bud viability and flowering frequency decreased significantly with decreasing temperature and exposure time in both saxifrages. Already, −10 ◦C LT-freezing caused the first injuries. Below −20 ◦C, the mean losses were 47% (ST) and 75% (LT) in S. bryoides, and 19% (ST) and 38% (LT) in S. moschata. Winter buds of both saxifrages did not supercool, suggesting that damages were caused by freeze dehydration.
    [Show full text]
  • Morphological Evolution and Systematics of Synthyris and Besseya (Veronicaceae): a Phylogenetic Analysis
    Systematic Botany (2004), 29(3): pp. 716±736 q Copyright 2004 by the American Society of Plant Taxonomists Morphological Evolution and Systematics of Synthyris and Besseya (Veronicaceae): A Phylogenetic Analysis LARRY HUFFORD2 and MICHELLE MCMAHON1 School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236 1Present address: Section of Ecology and Evolutionary Biology, Division of Biological Sciences, University of California, Davis, California 95616 2Author for correspondence ([email protected]) Communicating Editor: Wendy B. Zomlefer ABSTRACT. Phylogenetic analyses are used to examine the morphological diversity and systematics of Synthyris and Besseya. The placement of Synthyris and Besseya in Veronicaceae is strongly supported in parsimony analyses of nuclear ribosomal ITS DNA sequences. Parsimony and maximum likelihood (ML) criteria provide consistent hypotheses of clades of Synthyris and Besseya based on the ITS data. The combination of morphological characters and ITS data resolve additional clades of Synthyris and Besseya. The results show that Synthyris is paraphyletic to Besseya. In the monophyletic Synthyris clade, Besseya forms part of a Northwest clade that also includes the alpine S. canbyi, S. dissecta,andS. lanuginosa and mesic forest S. cordata, S. reniformis, S. platycarpa,andS. schizantha. The Northwest clade is the sister of S. borealis. An Intermountain clade, comprising S. ranunculina, S. laciniata, S. pinnati®da,andS. missurica, is the sister to the rest of the Synthyris clade. Constraint topologies are used to test prior hypotheses of relationships and morphological similarities. Parametric bootstrapping is used to compare the likelihood values of the best trees obtained in searches under constraints to that of the best tree found without constraints.
    [Show full text]
  • Apomixis Is Not Prevalent in Subnival to Nival Plants of the European Alps
    Annals of Botany 108: 381–390, 2011 doi:10.1093/aob/mcr142, available online at www.aob.oxfordjournals.org Apomixis is not prevalent in subnival to nival plants of the European Alps Elvira Ho¨randl1,*, Christoph Dobesˇ2, Jan Suda3,4, Petr Vı´t3,4, Toma´sˇ Urfus3,4, Eva M. Temsch1, Anne-Caroline Cosendai1, Johanna Wagner5 and Ursula Ladinig5 1Department of Systematic and Evolutionary Botany, Faculty of Life Sciences, University of Vienna, A-1030 Vienna, Austria, 2Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria, 3Department of Botany, Faculty of Science, Charles University in Prague, CZ-128 01 Prague, Czech Republic, 4Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Pru˚honice, Czech Republic and 5Institute of Botany, University of Innsbruck, A-6020 Innsbruck, Austria * For correspondence. E-mail [email protected] Received: 2 December 2010 Returned for revision: 14 January 2011 Accepted: 28 April 2011 Published electronically: 1 July 2011 † Background and Aims High alpine environments are characterized by short growing seasons, stochastic climatic conditions and fluctuating pollinator visits. These conditions are rather unfavourable for sexual reproduction of flowering plants. Apomixis, asexual reproduction via seed, provides reproductive assurance without the need of pollinators and potentially accelerates seed development. Therefore, apomixis is expected to provide selective advantages in high-alpine biota. Indeed, apomictic species occur frequently in the subalpine to alpine grassland zone of the European Alps, but the mode of reproduction of the subnival to nival flora was largely unknown. † Methods The mode of reproduction in 14 species belonging to seven families was investigated via flow cyto- metric seed screen.
    [Show full text]
  • Disentangling Drivers of Plant Endemism and Diversification
    Perspectives in Plant Ecology, Evolution and Systematics 28 (2017) 19–27 Contents lists available at ScienceDirect Perspectives in Plant Ecology, Evolution and Systematics journal homepage: www.elsevier.com/locate/ppees Disentangling drivers of plant endemism and diversification in the European MARK Alps – A phylogenetic and spatially explicit approach ⁎ Jan Smyčkaa, , Cristina Roqueta, Julien Renauda, Wilfried Thuillera, Niklaus E. Zimmermannb, Sébastien Lavergnea a Université Grenoble Alpes, CNRS, Laboratoire d’Ecologie Alpine (LECA), 2233 rue de la Piscine, FR-38000 Grenoble, France b Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland ARTICLE INFO ABSTRACT Keywords: Plant endemism in the European Alps is clustered into particular geographic areas. Two contrasted and non Glacial refugia exclusive hypotheses have been suggested to explain these hotspots of endemism: (i) those areas were glacial High elevation refugia, where endemism reflects survival-recolonisation dynamics since the onset of Pleistocene glaciations, (ii) Mountains those are high elevation mountain areas, where endemism was fostered by local speciation events due to geo- Speciation graphic isolation and harsh environmental niches, or by low dispersal ability of inhabiting species. Dispersal Here, we quantitatively compared these two hypotheses using data of species distribution in the European Phylogenetic uncertainty Alps (IntraBioDiv database), species phylogenetic relationships, and species ecological and biological char- acteristics. We developed a spatially and phylogenetically explicit modelling framework to analyze spatial patterns of endemism and the phylogenetic structure of species assemblages. Moreover, we analyzed inter- relations between species trait syndromes and endemism. We found that high endemism occurrs in potential glacial refugia, but only those on calcareous bedrock, and also in areas with high elevation.
    [Show full text]
  • How Does Genome Size Affect the Evolution of Pollen Tube Growth Rate, a Haploid Performance Trait?
    Manuscript bioRxiv preprint doi: https://doi.org/10.1101/462663; this version postedClick April here18, 2019. to The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv aaccess/download;Manuscript;PTGR.genome.evolution.15April20 license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Effects of genome size on pollen performance 2 3 4 5 How does genome size affect the evolution of pollen tube growth rate, a haploid 6 performance trait? 7 8 9 10 11 John B. Reese1,2 and Joseph H. Williams2 12 Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 13 37996, U.S.A. 14 15 16 17 1Author for correspondence: 18 John B. Reese 19 Tel: 865 974 9371 20 Email: [email protected] 21 1 bioRxiv preprint doi: https://doi.org/10.1101/462663; this version posted April 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 22 ABSTRACT 23 Premise of the Study – Male gametophytes of most seed plants deliver sperm to eggs via a 24 pollen tube. Pollen tube growth rates (PTGRs) of angiosperms are exceptionally rapid, a pattern 25 attributed to more effective haploid selection under stronger pollen competition. Paradoxically, 26 whole genome duplication (WGD) has been common in angiosperms but rare in gymnosperms.
    [Show full text]
  • High-Elevation Limits and the Ecology of High-Elevation Vascular Plants: Legacies from Alexander Von Humboldt1
    a Frontiers of Biogeography 2021, 13.3, e53226 Frontiers of Biogeography REVIEW the scientific journal of the International Biogeography Society High-elevation limits and the ecology of high-elevation vascular plants: legacies from Alexander von Humboldt1 H. John B. Birks1,2* 1 Department of Biological Sciences and Bjerknes Centre for Climate Research, University of Bergen, PO Box 7803, Bergen, Norway; 2 Ecological Change Research Centre, University College London, Gower Street, London, WC1 6BT, UK. *Correspondence: H.J.B. Birks, [email protected] 1 This paper is part of an Elevational Gradients and Mountain Biodiversity Special Issue Abstract Highlights Alexander von Humboldt and Aimé Bonpland in their • The known uppermost elevation limits of vascular ‘Essay on the Geography of Plants’ discuss what was plants in 22 regions from northernmost Greenland known in 1807 about the elevational limits of vascular to Antarctica through the European Alps, North plants in the Andes, North America, and the European American Rockies, Andes, East and southern Africa, Alps and suggest what factors might influence these upper and South Island, New Zealand are collated to provide elevational limits. Here, in light of current knowledge a global view of high-elevation limits. and techniques, I consider which species are thought to be the highest vascular plants in twenty mountain • The relationships between potential climatic treeline, areas and two polar regions on Earth. I review how one upper limit of closed vegetation in tropical (Andes, can try to
    [Show full text]
  • Lquat Arctic Alpine Plants
    The Late -Quaternary History of Arctic and Alpine Plants and their future in a warming world Hilary H. Birks University of Bergen How do we reconstruct the history of flora and vegetation? Where do we find our evidence and how do we interpret it? The history of the history What were past climates like and how did they change? How did plants survive climate change? The most recent glacial climate – the Younger Dryas How did arctic and alpine plants react to Holocene warming? What does the future hold for Arctic and Alpine plants? 1 1. Evidence of past flora and its changes Fossils • Pollen - microscopic • Macrofossils – can be seen with naked eye. Seeds, fruits, leaves, etc. Molecular DNA analyses of living arctic alpines can complement the fossil record. Find different populations in space today and deduce past migrations Fossil DNA extraction from sediments or plant remains is becoming increasingly sophisticated Pollen grains and spores • Walls are sporopollenin, very resistant to decay • Preserve well in anaerobic environments, e.g. lake sediments, peats • Can be extracted from the sediment matrix using chemicals to remove the organic and inorganic sediment components • Counted under a high-power microscope • Frequent enough to allow percentage calculations of abundance 2 BUT - in glacial and late-glacial environments: • Wind-dispersed pollen types dominate the assemblages (grasses, sedges, Artemisia ) • Arctic and alpine herbs generally produce rather little pollen • They are frequently insect pollinated • In landscapes with plants
    [Show full text]
  • The European Alpine Seed Conservation and Research Network
    The International Newsletter of the Millennium Seed Bank Partnership August 2016 – January 2017 kew.org/msbp/samara ISSN 1475-8245 Issue: 30 View of Val Dosdé with Myosotis alpestris The European Alpine Seed Conservation and Research Network ELINOR BREMAN AND JONAS V. MUELLER (RBG Kew, UK), CHRISTIAN BERG AND PATRICK SCHWAGER (Karl-Franzens-Universitat Graz, Austria), BRIGITTA ERSCHBAMER, KONRAD PAGITZ AND VERA MARGREITER (Institute of Botany; University of Innsbruck, Austria), NOÉMIE FORT (CBNA, France), ANDREA MONDONI, THOMAS ABELI, FRANCESCO PORRO AND GRAZIANO ROSSI (Dipartimento di Scienze della Terra e dell’Ambiente; Universita degli studi di Pavia, Italy), CATHERINE LAMBELET-HAUETER, JACQUELINE DÉTRAZ- Photo: Dr Andrea Mondoni Andrea Dr Photo: MÉROZ AND FLORIAN MOMBRIAL (Conservatoire et Jardin Botaniques de la Ville de Genève, Switzerland). The European Alps are home to nearly 4,500 taxa of vascular plants, and have been recognised as one of 24 centres of plant diversity in Europe. While species richness decreases with increasing elevation, the proportion of endemic species increases – of the 501 endemic taxa in the European Alps, 431 occur in subalpine to nival belts. he varied geology of the pre and they are converting to shrub land and forest awareness of its increasing vulnerability. inner Alps, extreme temperature with reduced species diversity. Conversely, The Alpine Seed Conservation and Research T fluctuations at altitude, exposure to over-grazing in some areas (notably by Network currently brings together five plant high levels of UV radiation and short growing sheep) is leading to eutrophication and a science institutions across the Alps, housed season mean that the majority of alpine loss of species adapted to low nutrient at leading universities and botanic gardens: species are highly adapted to their harsh levels.
    [Show full text]
  • Threats to Australia's Grazing Industries by Garden
    final report Project Code: NBP.357 Prepared by: Jenny Barker, Rod Randall,Tony Grice Co-operative Research Centre for Australian Weed Management Date published: May 2006 ISBN: 1 74036 781 2 PUBLISHED BY Meat and Livestock Australia Limited Locked Bag 991 NORTH SYDNEY NSW 2059 Weeds of the future? Threats to Australia’s grazing industries by garden plants Meat & Livestock Australia acknowledges the matching funds provided by the Australian Government to support the research and development detailed in this publication. This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA. Weeds of the future? Threats to Australia’s grazing industries by garden plants Abstract This report identifies 281 introduced garden plants and 800 lower priority species that present a significant risk to Australia’s grazing industries should they naturalise. Of the 281 species: • Nearly all have been recorded overseas as agricultural or environmental weeds (or both); • More than one tenth (11%) have been recorded as noxious weeds overseas; • At least one third (33%) are toxic and may harm or even kill livestock; • Almost all have been commercially available in Australia in the last 20 years; • Over two thirds (70%) were still available from Australian nurseries in 2004; • Over two thirds (72%) are not currently recognised as weeds under either State or Commonwealth legislation.
    [Show full text]