Surface Features of a Mononegavirales Matrix Protein Indicate Sites of Membrane Interaction

Total Page:16

File Type:pdf, Size:1020Kb

Surface Features of a Mononegavirales Matrix Protein Indicate Sites of Membrane Interaction Surface features of a Mononegavirales matrix protein indicate sites of membrane interaction Victoria A. Moneya,b, Helen K. McPheec,1, Jackie A. Moselyc,1, John M. Sandersonc,2, and Robert P. Yeob,d,2 aThe Maurice Wilkins Centre for Molecular Biodiscovery and the School of Biological Sciences, University of Auckland, Thomas Building, 3a Symonds Street, Auckland Central 1010, New Zealand; cDepartment of Chemistry and bCentre for Bioactive Chemistry, University Science Laboratories, Durham University, South Road, Durham, DH1 3LE, United Kingdom; and dSchool for Medicine and Health, Queen’s Campus, Durham University, Stockton-on-Tees, TS17 6BH, United Kingdom Edited by Robert A. Lamb, Northwestern University, Evanston, IL, and approved January 14, 2009 (received for review June 13, 2008) The matrix protein (M) of respiratory syncytial virus (RSV), the related function of the M. M are also implicated in host cell prototype viral member of the Pneumovirinae (family Paramyxo- transcriptional cut-off (10), possibly via a direct interaction with viridae, order Mononegavirales), has been crystallized and the RNA (11). structure determined to a resolution of 1.6 Å. The structure com- A number of matrix-like proteins are known to bind membranes prises 2 compact ␤-rich domains connected by a relatively unstruc- or lipid vesicles in vitro, most likely through a combination of tured linker region. Due to the high degree of side-chain order in hydrophobic and electrostatic interactions (12–14). Expression of the structure, an extensive contiguous area of positive surface certain Ms in eukaryotic cells in the absence of other viral proteins charge covering Ϸ600 Å2 can be resolved. This unusually large can induce formation of virus-like particles (VLPs). The efficiency patch of positive surface potential spans both domains and the of VLP generation can be increased if the M is coexpressed with a linker, and provides a mechanism for driving the interaction of the viral glycoprotein (15–18). Ms share a tendency to oligomerize, a protein with a negatively-charged membrane surface or other feature likely to be important in the self-assembly and budding virion components such as the nucleocapsid. This patch is comple- processes (19). In tissue culture, RSV induces formation of long mented by regions of high hydrophobicity and a striking planar slender projections from the surface of the cell known as viral arrangement of tyrosine residues encircling the C-terminal domain. filaments. It was found that removal of the lipid membrane from Comparison of the RSV M sequence with other members of the viral filaments left an M containing sheath (5); it is possible that M Pneumovirinae shows that regions of divergence correspond to oligomerization and self-assembly is the driving force behind the surface exposed loops in the M structure, with the majority of viral formation of viral filaments. In this article we report the structure species-specific differences occurring in the N-terminal domain. of the full-length RSV M protein solved at a resolution of 1.6 Å, and discuss the implications of this structure for the function of the CD ͉ crystal structure ͉ respiratory syncytial virus ͉ sequence alignment protein. espiratory syncytial virus (RSV) is the prototype member of Results and Discussion Rthe Pneumovirinae, a subfamily of the Paramyxoviridae (or- Structure of the RSV M. The RSV M was purified by using nickel der Mononegavirales). Morphologically, the extracellular virion affinity chromatography. During the cloning process, a methi- consists of a lipid bilayer envelope, within which are embedded onine to arginine change occurred, and we refer to the resultant 3 glycoproteins, 2 of which (F and G) are important in cell formofMasM254R. The crystal structure of M254R was solved by attachment and viral entry into target cells. The third, the SH using MIRAS techniques to a resolution of 1.6 Å, representing protein, contributes to pathology in the host (1). Internally, the first example of an intact M from the Mononegavirales. virions contain helical nucleocapsids that consist of N protein Despite evidence for higher order oligomers [supporting infor- tightly bound to the negative-sense nonsegmented genomic mation (SI) Fig. S1] such as dimers, tetramers, and hexamers, in RNA. The nucleocapsid in turn is associated with components of solution, the crystallized form is monomeric. Crystallographic the viral RNA-dependent RNA polymerase (L, P, M2-1, and data are presented in Table S1. The overall fold consists of 2 M2-2 proteins), forming the holo-nucleocapsid (2–4). Between clear domains connected by a 13-residue linker region. The the holo-nucleocapsid and the outer envelope there is a layer of N-terminal domain comprises residues 1 to 126, whereas the matrix protein (M), which is associated peripherally with the C-terminal domain consists of residues 140 to 255 (Fig. 1 A and membrane (5). The other family members of the Mononegavi- B). Only residues 99 and 100 could not be assigned a clear rales (Rhabdoviridae, Filoviridae, and Bornaviridae) all subscribe location within the electron density. The N-terminal domain to this basic arrangement of the virion, although the overall consists of a twisted ␤-sandwich comprised of 2 ␤-sheets, 1 of 3 morphology can vary between the families. For example, and 1 of 4 strands, positioned almost perpendicular to each Paramyxoviridae virions are pleiomorphic, whereas the Rhab- other. The overall topology of this domain is of a curved doviridae have a regular bullet shape structure, and the Filov- horseshoe-like arrangement with ␤-sheet 1 forming the concave, iridae have a more filamentous shape. Extracellular RSV virions form by a budding process that occurs at the plasma membrane within specialized lipid domains Author contributions: V.A.M., J.M.S., and R.P.Y. designed research; V.A.M., H.K.M., J.A.M., J.M.S., and R.P.Y. performed research; V.A.M., H.K.M., J.A.M., J.M.S., and R.P.Y. analyzed (5, 6) and M appears to drive the final assembly process, which data; and V.A.M., J.M.S., and R.P.Y. wrote the paper. is the incorporation of the holo-nucleocapsid and initiation of The authors declare no conflict of interest. the budding process (7, 8). Before budding, there is a coordi- This article is a PNAS Direct Submission. nated assembly of viral components; and it is evident that the Data deposition: The atomic coordinates and structure factors for the RSV M protein have glycoproteins and M proteins are important determinants of the been deposited in the Protein Data Bank, www.rcsb.org [PDB ID codes 2vqp (coordinates) location on the plasma membrane at which the virus buds (9). It and r2vqpsf (structure factors)]. is also possible that the interaction between M and the glycop- 1H.K.M. and J.A.M. contributed equally to this work. roteins, possibly mediated with the cytoplasmic tails, are impor- 2To whom correspondence may be addressed. E-mail: [email protected] or tant in the budding process. Genome silencing to prevent [email protected]. transcription and replication by the viral polymerase before This article contains supporting information online at www.pnas.org/cgi/content/full/ MICROBIOLOGY incorporation of the holo-nucleocapsid in the nascent virion is a 0805740106/DCSupplemental. www.pnas.org͞cgi͞doi͞10.1073͞pnas.0805740106 PNAS ͉ March 17, 2009 ͉ vol. 106 ͉ no. 11 ͉ 4441–4446 Downloaded by guest on September 30, 2021 Fig. 1. Three-dimensional structure of the RSV M protein. The crystal structure of M254R (resolution 1.6 Å) shows 2 domains composed largely of ␤-sheets. Statistical information for the X-ray data are provided in SI Materials and Methods.(A) Divergent (wall eyed) stereoview of M254R colored according to domain with the linker shown in cyan, the N-terminal domain in blue and the C-terminal domain in red. Residue R254 is shown in ball-and-stick representation. (B)A topology diagram of the protein. The linker between the N- and C-terminal domains is shown in magenta. Residues (numbers refer to Met as ϩ1) in ␤-sheets are represented by broad arrows and helices as cylinders. (C) Electrostatic surface potential (calculated with APBS) for M254R, presented in a color range from red to blue (Ϫ5toϩ5 kT/e); uncharged residues are uncolored. inner face flanked by loop regions, and ␤-sheet 2 forming the acids Thr-136 and Leu-137 (see Fig. S1). These weak interdo- convex, outer face. The C-terminal domain consists of a flat- main interactions further suggest that the protein may exist in tened ␤-barrel, comprising 2 3-stranded anti-parallel ␤-sheets. alternative quaternary structures in solution, and that the inter- The regions linking the sheets between strands 2 and 3, and domain packing observed in the crystal may be metastable, strands 5 and 6, are largely helical in nature (Fig. 1B). There is driven mainly by sequestering of the hydrophobic residues, which no evidence for any complexed metal ions or for a potential zinc form the major part of the interface, away from the bulk solvent. finger motif. The 254R substitution in the protein lies at the very Flexibility of this type has been speculated as being important for end of the C-terminal domain in an area largely devoid of the M of the influenza virus, as well as for EBOV VP40 and VSV secondary structure; therefore, it is unlikely to have a significant M, and is thought to be necessary to accommodate the different effect on the protein structure or function. functions of the M throughout the viral life cycle. The linker region is largely lacking in secondary structure features, with the exception of a short helical region. The Structure Comparison. The tertiary structure of M254R is globally presence of this linker is consistent with structures obtained for similar to that of the EBOV VP40 protein (24), showing the same fragments of the Ebola virus (EBOV) VP40 and vesicular overall fold with a Z score of 6.6 and a rmsd of 3.7 Å.
Recommended publications
  • A Preliminary Study of Viral Metagenomics of French Bat Species in Contact with Humans: Identification of New Mammalian Viruses
    A preliminary study of viral metagenomics of French bat species in contact with humans: identification of new mammalian viruses. Laurent Dacheux, Minerva Cervantes-Gonzalez, Ghislaine Guigon, Jean-Michel Thiberge, Mathias Vandenbogaert, Corinne Maufrais, Valérie Caro, Hervé Bourhy To cite this version: Laurent Dacheux, Minerva Cervantes-Gonzalez, Ghislaine Guigon, Jean-Michel Thiberge, Mathias Vandenbogaert, et al.. A preliminary study of viral metagenomics of French bat species in contact with humans: identification of new mammalian viruses.. PLoS ONE, Public Library of Science, 2014, 9 (1), pp.e87194. 10.1371/journal.pone.0087194.s006. pasteur-01430485 HAL Id: pasteur-01430485 https://hal-pasteur.archives-ouvertes.fr/pasteur-01430485 Submitted on 9 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License A Preliminary Study of Viral Metagenomics of French Bat Species in Contact with Humans: Identification of New Mammalian Viruses Laurent Dacheux1*, Minerva Cervantes-Gonzalez1,
    [Show full text]
  • 2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
    Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A.
    [Show full text]
  • Attenuation of Human Respiratory Syncytial Virus by Genome-Scale Codon-Pair Deoptimization
    Attenuation of human respiratory syncytial virus by genome-scale codon-pair deoptimization Cyril Le Nouëna,1, Linda G. Brocka, Cindy Luongoa, Thomas McCartya, Lijuan Yanga, Masfique Mehedia, Eckard Wimmerb,1, Steffen Muellerb,2, Peter L. Collinsa, Ursula J. Buchholza,3, and Joshua M. DiNapolia,3,4 aRNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and bDepartment of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794 Contributed by Eckard Wimmer, June 18, 2014 (sent for review February 14, 2014) Human respiratory syncytial virus (RSV) is the most important viral acid coding is unaffected, CPD strains provide the same reper- agent of serious pediatric respiratory-tract disease worldwide. A toire of epitopes for inducing cellular and humoral immunity as vaccine or generally effective antiviral drug is not yet available. the WT pathogen. Recently, the CPD approach has been used We designed new live attenuated RSV vaccine candidates by successfully to attenuate poliovirus, influenza A virus, Strepto- codon-pair deoptimization (CPD). Specifically, viral ORFs were recoded coccus pneumonia, and HIV type 1 (5, 10–13). by rearranging existing synonymous codons to increase the content In the present work, four CPD RSV genomes were designed, of underrepresented codon pairs. Amino acid coding was com- synthesized, and recovered by reverse genetics. The CPD pletely unchanged. Four CPD RSV genomes were designed in recombinant (r) RSVs were attenuated and temperature- which the indicated ORFs were recoded: Min A (NS1, NS2, N, P, sensitive in vitro. Furthermore, we demonstrated that the CPD M, and SH), Min B (G and F), Min L (L), and Min FLC (all ORFs except rRSVs were attenuated and immunogenic in mice and African M2-1 and M2-2).
    [Show full text]
  • NIH Public Access Author Manuscript Arch Virol
    NIH Public Access Author Manuscript Arch Virol. Author manuscript; available in PMC 2011 December 1. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Arch Virol. 2010 December ; 155(12): 2083±2103. doi:10.1007/s00705-010-0814-x. Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations Jens H. Kuhn Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), National Interagency Biodefense Campus (NIBC), B-8200 Research Plaza, Fort Detrick, Frederick, MD 21702, USA Tunnell Consulting, Inc., King of Prussia, PA, USA Stephan Becker Institut für Virologie, Philipps-Universitaät Marburg, Marburg, Germany Hideki Ebihara Rocky Mountain Laboratories Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA Thomas W. Geisbert Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA Karl M. Johnson University of New Mexico, Albuquerque, NM, USA Yoshihiro Kawaoka School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA W. Ian Lipkin Center for Infection and Immunity, Columbia University Medical Center, New York, NY, USA Ana I. Negredo Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain Sergey V. Netesov Novosibirsk State University, Novosibirsk, Novosibirsk Oblast, Russia Stuart T. Nichol Centers for Disease Control and Prevention, Atlanta, GA, USA Gustavo Palacios Center for Infection and Immunity, Columbia University Medical Center, New York, NY, USA Clarence J. Peters © Springer-Verlag (outside the USA) 2010 [email protected] .
    [Show full text]
  • A Novel Ebola Virus VP40 Matrix Protein-Based Screening for Identification of Novel Candidate Medical Countermeasures
    viruses Communication A Novel Ebola Virus VP40 Matrix Protein-Based Screening for Identification of Novel Candidate Medical Countermeasures Ryan P. Bennett 1,† , Courtney L. Finch 2,† , Elena N. Postnikova 2 , Ryan A. Stewart 1, Yingyun Cai 2 , Shuiqing Yu 2 , Janie Liang 2, Julie Dyall 2 , Jason D. Salter 1 , Harold C. Smith 1,* and Jens H. Kuhn 2,* 1 OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA; [email protected] (R.P.B.); [email protected] (R.A.S.); [email protected] (J.D.S.) 2 NIH/NIAID/DCR/Integrated Research Facility at Fort Detrick (IRF-Frederick), Frederick, MD 21702, USA; courtney.fi[email protected] (C.L.F.); [email protected] (E.N.P.); [email protected] (Y.C.); [email protected] (S.Y.); [email protected] (J.L.); [email protected] (J.D.) * Correspondence: [email protected] (H.C.S.); [email protected] (J.H.K.); Tel.: +1-585-697-4351 (H.C.S.); +1-301-631-7245 (J.H.K.) † These authors contributed equally to this work. Abstract: Filoviruses, such as Ebola virus and Marburg virus, are of significant human health concern. From 2013 to 2016, Ebola virus caused 11,323 fatalities in Western Africa. Since 2018, two Ebola virus disease outbreaks in the Democratic Republic of the Congo resulted in 2354 fatalities. Although there is progress in medical countermeasure (MCM) development (in particular, vaccines and antibody- based therapeutics), the need for efficacious small-molecule therapeutics remains unmet. Here we describe a novel high-throughput screening assay to identify inhibitors of Ebola virus VP40 matrix protein association with viral particle assembly sites on the interior of the host cell plasma membrane.
    [Show full text]
  • A Bioinformatic Analysis of the Mononegavirales
    A BIOINFORMATIC ANALYSIS OF THE MONONEGAVIRALES TRANSCRIPTION/REPLICATION COMPLEX THROUGH THE DEVELOPMENT OF THE DISSIC PIPELINE by Sean Bruce Cleveland A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Microbiology MONTANA STATE UNIVERSITY Bozeman, Montana April, 2013 ©COPYRIGHT by Sean Bruce Cleveland 2013 All Rights Reserved ii APPROVAL of a dissertation submitted by Sean Bruce Cleveland This dissertation has been read by each member of the dissertation committee and has been found to be satisfactory regarding content, English usage, format, citation, bibliographic style, and consistency and is ready for submission to The Graduate School. Marcella A. McClure Approved for the Department of Microbiology Mark Jutila Approved for The Graduate School Dr. Ronald W. Larsen iii STATEMENT OF PERMISSION TO USE In presenting this dissertation in partial fulfillment of the requirements for a doctoral degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. I further agree that copying of this dissertation is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for extensive copying or reproduction of this dissertation should be referred to ProQuest Information and Learning, 300 North Zeeb Road, Ann Arbor, Michigan 48106, to whom I have granted “the exclusive right to reproduce and distribute my dissertation in and from microform along with the non- exclusive right to reproduce and distribute my abstract in any format in whole or in part.” Sean Bruce Cleveland April 2013 iv DEDICATION I dedicate this dissertation to my fiancé Jessica and my mother Shelby for their undying support and understanding all these years.
    [Show full text]
  • Downloads/ Hsp90interactors.Pdf), and Tend to Be Metastable, Being Rapidly Degraded Upon Hsp90 Inhibition
    viruses Review Chaperoning the Mononegavirales: Current Knowledge and Future Directions Victor Latorre †, Florian Mattenberger † and Ron Geller * Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, 46980 Valencia, Spain; [email protected] (V.L.); [email protected] (F.M.) * Correspondence: [email protected]; Tel.: +34-963-543-187 † These authors contributed equally to this work. Received: 16 November 2018; Accepted: 5 December 2018; Published: 8 December 2018 Abstract: The order Mononegavirales harbors numerous viruses of significant relevance to human health, including both established and emerging infections. Currently, vaccines are only available for a small subset of these viruses, and antiviral therapies remain limited. Being obligate cellular parasites, viruses must utilize the cellular machinery for their replication and spread. Therefore, targeting cellular pathways used by viruses can provide novel therapeutic approaches. One of the key challenges confronted by both hosts and viruses alike is the successful folding and maturation of proteins. In cells, this task is faced by cellular molecular chaperones, a group of conserved and abundant proteins that oversee protein folding and help maintain protein homeostasis. In this review, we summarize the current knowledge of how the Mononegavirales interact with cellular chaperones, highlight key gaps in our knowledge, and discuss the potential of chaperone inhibitors as antivirals. Keywords: Mononegavirales; chaperones; antivirals; Hsp70;
    [Show full text]
  • Genomics and Structure/Function Studies of Rhabdoviridae Proteins Involved in Replication and Transcription
    Genomics and structure/function studies of Rhabdoviridae proteins involved in replication and transcription. R. Assenberg, O Delmas, B Morin, C Graham, X de Lamballerie, C Laubert, B Coutard, J Grimes, J Neyts, R J Owens, et al. To cite this version: R. Assenberg, O Delmas, B Morin, C Graham, X de Lamballerie, et al.. Genomics and struc- ture/function studies of Rhabdoviridae proteins involved in replication and transcription.. Antivi- ral Research, Elsevier Masson, 2010, 87 (2), pp.149-61. 10.1016/j.antiviral.2010.02.322. pasteur- 01492926 HAL Id: pasteur-01492926 https://hal-pasteur.archives-ouvertes.fr/pasteur-01492926 Submitted on 21 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License *Manuscript Genomics and structure/function studies of Rhabdoviridae proteins involved in replication and transcription R. Assenberg1, O. Delmas2, B. Morin3, S. C. Graham1, X. De Lamballerie4, C. Laubert5, B. Coutard3, J. M. Grimes1, J. Neyts6, R. J. Owens1,
    [Show full text]
  • Structural Virology. Near-Atomic Cryo-EM Structure of the Helical Measles Virus Nucleocapsid
    Structural virology. Near-atomic cryo-EM structure of the helical measles virus nucleocapsid. Irina Gutsche, Ambroise Desfosses, Grégory Effantin, Wai-Li Ling, Melina Haupt, Rob W H Ruigrok, Carsten Sachse, Guy Schoehn To cite this version: Irina Gutsche, Ambroise Desfosses, Grégory Effantin, Wai-Li Ling, Melina Haupt, et al.. Structural virology. Near-atomic cryo-EM structure of the helical measles virus nucleocapsid.. Science, American Association for the Advancement of Science, 2015, 348 (6235), pp.704-7. hal-01162615 HAL Id: hal-01162615 https://hal.univ-grenoble-alpes.fr/hal-01162615 Submitted on 24 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH | REPORTS STRUCTURAL VIROLOGY The left-handed MeV Ncore-RNA helix is com- posed of 12.34 nucleoprotein subunits per turn, with a pitch of 49.54 Å and an outer diameter of 190 Å, in good agreement with previous studies Near-atomic cryo-EM structure of the (3–5)(tableS1).TheRNAthreadwindsaround the nucleoprotein bobbin, accommodated inside helical measles virus nucleocapsid the cleft between the outward-pointing NTD and the inward-oriented CTD, andshieldedfromabove Irina Gutsche,1,2* Ambroise Desfosses,3† Grégory Effantin,1,2 Wai Li Ling,4,5,6 by the N subunits from the successive helical turn Melina Haupt,7 Rob W.
    [Show full text]
  • Downloaded from Genbank
    bioRxiv preprint doi: https://doi.org/10.1101/443457; this version posted October 15, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Characterisation of the faecal virome of captive and wild Tasmanian 2 devils using virus-like particles metagenomics and meta- 3 transcriptomics 4 5 6 Rowena Chong1, Mang Shi2,3,, Catherine E Grueber1,4, Edward C Holmes2,3,, Carolyn 7 Hogg1, Katherine Belov1 and Vanessa R Barrs2,5* 8 9 10 1School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia. 11 2Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, 12 University of Sydney, NSW 2006, Australia. 13 3School of Life and Environmental Sciences and Sydney Medical School, Charles Perkins 14 Centre, University of Sydney, NSW 2006, Australia. 15 4San Diego Zoo Global, PO Box 120551, San Diego, CA 92112, USA. 16 5Sydney School of Veterinary Science, University of Sydney, NSW 2006, Australia. 17 18 *Correspondence: [email protected] 19 1 bioRxiv preprint doi: https://doi.org/10.1101/443457; this version posted October 15, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 20 Abstract 21 Background: The Tasmanian devil is an endangered carnivorous marsupial threatened by devil 22 facial tumour disease (DFTD).
    [Show full text]
  • Metagenomic Snapshots of Viral Components in Guinean Bats
    microorganisms Communication Metagenomic Snapshots of Viral Components in Guinean Bats Roberto J. Hermida Lorenzo 1,†,Dániel Cadar 2,† , Fara Raymond Koundouno 3, Javier Juste 4,5 , Alexandra Bialonski 2, Heike Baum 2, Juan Luis García-Mudarra 4, Henry Hakamaki 2, András Bencsik 2, Emily V. Nelson 2, Miles W. Carroll 6,7, N’Faly Magassouba 3, Stephan Günther 2,8, Jonas Schmidt-Chanasit 2,9 , César Muñoz Fontela 2,8 and Beatriz Escudero-Pérez 2,8,* 1 Morcegos de Galicia, Magdalena G-2, 2o izq, 15320 As Pontes de García Rodríguez (A Coruña), Spain; [email protected] 2 WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; [email protected] (D.C.); [email protected] (A.B.); [email protected] (H.B.); [email protected] (H.H.); [email protected] (A.B.); [email protected] (E.V.N.); [email protected] (S.G.); [email protected] (J.S.-C.); [email protected] (C.M.F.) 3 Laboratoire des Fièvres Hémorragiques en Guinée, Université Gamal Abdel Nasser de Conakry, Commune de Matoto, Conakry, Guinea; [email protected] (F.R.K.); [email protected] (N.M.) 4 Estación Biológica de Doñana, CSIC, 41092 Seville, Spain; [email protected] (J.J.); [email protected] (J.L.G.-M.) 5 CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain 6 Public Health England, Porton Down, Wiltshire SP4 0JG, UK; [email protected] 7 Wellcome Centre for Human Genetics, Nuffield Department of Medicine, Oxford University, Oxford OX3 7BN, UK Citation: Hermida Lorenzo, R.J.; 8 German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, Cadar, D.; Koundouno, F.R.; Juste, J.; 38124 Braunschweig, Germany Bialonski, A.; Baum, H.; 9 Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20148 Hamburg, Germany García-Mudarra, J.L.; Hakamaki, H.; * Correspondence: [email protected] Bencsik, A.; Nelson, E.V.; et al.
    [Show full text]
  • Structures of the Mononegavirales Polymerases
    MINIREVIEW crossm Structures of the Mononegavirales Polymerases Bo Lianga aDepartment of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA ABSTRACT Mononegavirales, known as nonsegmented negative-sense (NNS) RNA vi- Downloaded from ruses, are a class of pathogenic and sometimes deadly viruses that include rabies virus (RABV), human respiratory syncytial virus (HRSV), and Ebola virus (EBOV). Unfortunately, no effective vaccines and antiviral therapeutics against many Mononegavirales are cur- rently available. Viral polymerases have been attractive and major antiviral therapeutic targets. Therefore, Mononegavirales polymerases have been extensively investigated for their structures and functions. Mononegavirales mimic RNA synthesis of their eukaryotic counterparts by utilizing multifunctional RNA polymerases to replicate entire viral ge- nomes and transcribe viral mRNAs from individual viral genes as well as synthesize http://jvi.asm.org/ 5= methylated cap and 3= poly(A) tail of the transcribed viral mRNAs. The catalytic subunit large protein (L) and cofactor phosphoprotein (P) constitute the Mononega- virales polymerases. In this review, we discuss the shared and unique features of RNA synthesis, the monomeric multifunctional enzyme L, and the oligomeric multi- modular adapter P of Mononegavirales. We outline the structural analyses of the Mononegavirales polymerases since the first structure of the vesicular stomatitis virus (VSV) L protein determined in 2015 and highlight multiple high-resolution cryo- on October 27, 2020 by guest electron microscopy (cryo-EM) structures of the polymerases of Mononegavirales, namely, VSV, RABV, HRSV, human metapneumovirus (HMPV), and human parainflu- enza virus (HPIV), that have been reported in recent months (2019 to 2020). We compare the structures of those polymerases grouped by virus family, illustrate the similarities and differences among those polymerases, and reveal the potential RNA synthesis mechanisms and models of highly conserved Mononegavirales.
    [Show full text]