STABILIZATION for MAPPING CLASS GROUPS of 3-MANIFOLDS the Main Result of This Paper Is a Homological Stability Theorem for Mappi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CERF THEORY for GRAPHS Allen Hatcher and Karen Vogtmann
CERF THEORY FOR GRAPHS Allen Hatcher and Karen Vogtmann ABSTRACT. We develop a deformation theory for k-parameter families of pointed marked graphs with xed fundamental group Fn. Applications include a simple geometric proof of stability of the rational homology of Aut(Fn), compu- tations of the rational homology in small dimensions, proofs that various natural complexes of free factorizations of Fn are highly connected, and an improvement on the stability range for the integral homology of Aut(Fn). §1. Introduction It is standard practice to study groups by studying their actions on well-chosen spaces. In the case of the outer automorphism group Out(Fn) of the free group Fn on n generators, a good space on which this group acts was constructed in [3]. In the present paper we study an analogous space on which the automorphism group Aut(Fn) acts. This space, which we call An, is a sort of Teichmuller space of nite basepointed graphs with fundamental group Fn. As often happens, specifying basepoints has certain technical advantages. In particu- lar, basepoints give rise to a nice ltration An,0 An,1 of An by degree, where we dene the degree of a nite basepointed graph to be the number of non-basepoint vertices, counted “with multiplicity” (see section 3). The main technical result of the paper, the Degree Theorem, implies that the pair (An, An,k)isk-connected, so that An,k behaves something like the k-skeleton of An. From the Degree Theorem we derive these applications: (1) We show the natural stabilization map Hi(Aut(Fn); Z) → Hi(Aut(Fn+1); Z)isan isomorphism for n 2i + 3, a signicant improvement on the quadratic dimension range obtained in [5]. -
Stable Homology of Automorphism Groups of Free Groups
Annals of Mathematics 173 (2011), 705{768 doi: 10.4007/annals.2011.173.2.3 Stable homology of automorphism groups of free groups By Søren Galatius Abstract Homology of the group Aut(Fn) of automorphisms of a free group on n generators is known to be independent of n in a certain stable range. Using tools from homotopy theory, we prove that in this range it agrees with homology of symmetric groups. In particular we confirm the conjecture that stable rational homology of Aut(Fn) vanishes. Contents 1. Introduction 706 1.1. Results 706 1.2. Outline of proof 708 1.3. Acknowledgements 710 2. The sheaf of graphs 710 2.1. Definitions 710 2.2. Point-set topological properties 714 3. Homotopy types of graph spaces 718 3.1. Graphs in compact sets 718 3.2. Spaces of graph embeddings 721 3.3. Abstract graphs 727 3.4. BOut(Fn) and the graph spectrum 730 4. The graph cobordism category 733 4.1. Poset model of the graph cobordism category 735 4.2. The positive boundary subcategory 743 5. Homotopy type of the graph spectrum 750 5.1. A pushout diagram 751 5.2. A homotopy colimit decomposition 755 5.3. Hatcher's splitting 762 6. Remarks on manifolds 764 References 766 S. Galatius was supported by NSF grants DMS-0505740 and DMS-0805843, and the Clay Mathematics Institute. 705 706 SØREN GALATIUS 1. Introduction 1.1. Results. Let F = x ; : : : ; x be the free group on n generators n h 1 ni and let Aut(Fn) be its automorphism group. -
[Math.GT] 9 Jul 2003
LOW-DIMENSIONAL HOMOLOGY GROUPS OF MAPPING CLASS GROUPS: A SURVEY MUSTAFA KORKMAZ Abstract. In this survey paper, we give a complete list of known re- sults on the first and the second homology groups of surface mapping class groups. Some known results on higher (co)homology are also men- tioned. 1. Introduction n Let Σg,r be a connected orientable surface of genus g with r boundary n components and n punctures. The mapping class group of Σg,r may be defined in different ways. For our purpose, it is defined as the group of the n n isotopy classes of orientation-preserving diffeomorphisms Σg,r → Σg,r. The diffeomorphisms and the isotopies are assumed to fix each puncture and the n points on the boundary. We denote the mapping class group of Σg,r by n Γg,r. Here, we see the punctures on the surface as distinguished points. If r and/or n is zero, then we omit it from the notation. We write Σ for the n surface Σg,r when we do not want to emphasize g,r,n. The theory of mapping class groups plays a central role in low-dimensional n topology. When r = 0 and 2g + n ≥ 3, the mapping class group Γg acts properly discontinuously on the Teichm¨uller space which is homeomorphic to some Euclidean space and the stabilizer of each point is finite. The quotient of the Teichm¨uller space by the action of the mapping class group is the moduli space of complex curves. Recent developments in low-dimensional topology made the algebraic structure of the mapping class group more important. -
11/29/2011 Principal Investigator: Margalit, Dan
Final Report: 1122020 Final Report for Period: 09/2010 - 08/2011 Submitted on: 11/29/2011 Principal Investigator: Margalit, Dan . Award ID: 1122020 Organization: Georgia Tech Research Corp Submitted By: Margalit, Dan - Principal Investigator Title: Algebra and topology of the Johnson filtration Project Participants Senior Personnel Name: Margalit, Dan Worked for more than 160 Hours: Yes Contribution to Project: Post-doc Graduate Student Undergraduate Student Technician, Programmer Other Participant Research Experience for Undergraduates Organizational Partners Other Collaborators or Contacts Mladen Bestvina, University of Utah Kai-Uwe Bux, Bielefeld University Tara Brendle, University of Glasgow Benson Farb, University of Chicago Chris Leininger, University of Illinois at Urbana-Champaign Saul Schleimer, University of Warwick Andy Putman, Rice University Leah Childers, Pittsburg State University Allen Hatcher, Cornell University Activities and Findings Research and Education Activities: Proved various theorems, listed below. Wrote papers explaining the results. Wrote involved computer program to help explore the quotient of Outer space by the Torelli group for Out(F_n). Gave lectures on the subject of this Project at a conference for graduate students called 'Examples of Groups' at Ohio State University, June Page 1 of 5 Final Report: 1122020 2008. Mentored graduate students at the University of Utah in the subject of mapping class groups. Interacted with many students about the book I am writing with Benson Farb on mapping class groups. Gave many talks on this work. Taught a graduate course on my research area, using a book that I translated with Djun Kim. Organized a special session on Geometric Group Theory at MathFest. Finished book with Benson Farb, published by Princeton University Press. -
Algebraic Topology
Algebraic Topology Vanessa Robins Department of Applied Mathematics Research School of Physics and Engineering The Australian National University Canberra ACT 0200, Australia. email: [email protected] September 11, 2013 Abstract This manuscript will be published as Chapter 5 in Wiley's textbook Mathe- matical Tools for Physicists, 2nd edition, edited by Michael Grinfeld from the University of Strathclyde. The chapter provides an introduction to the basic concepts of Algebraic Topology with an emphasis on motivation from applications in the physical sciences. It finishes with a brief review of computational work in algebraic topology, including persistent homology. arXiv:1304.7846v2 [math-ph] 10 Sep 2013 1 Contents 1 Introduction 3 2 Homotopy Theory 4 2.1 Homotopy of paths . 4 2.2 The fundamental group . 5 2.3 Homotopy of spaces . 7 2.4 Examples . 7 2.5 Covering spaces . 9 2.6 Extensions and applications . 9 3 Homology 11 3.1 Simplicial complexes . 12 3.2 Simplicial homology groups . 12 3.3 Basic properties of homology groups . 14 3.4 Homological algebra . 16 3.5 Other homology theories . 18 4 Cohomology 18 4.1 De Rham cohomology . 20 5 Morse theory 21 5.1 Basic results . 21 5.2 Extensions and applications . 23 5.3 Forman's discrete Morse theory . 24 6 Computational topology 25 6.1 The fundamental group of a simplicial complex . 26 6.2 Smith normal form for homology . 27 6.3 Persistent homology . 28 6.4 Cell complexes from data . 29 2 1 Introduction Topology is the study of those aspects of shape and structure that do not de- pend on precise knowledge of an object's geometry. -
NOTES on the TOPOLOGY of MAPPING CLASS GROUPS Before
NOTES ON THE TOPOLOGY OF MAPPING CLASS GROUPS NICHOLAS G. VLAMIS Abstract. This is a short collection of notes on the topology of big mapping class groups stemming from discussions the author had at the AIM workshop \Surfaces of infinite type". We show that big mapping class groups are neither locally compact nor compactly generated. We also show that all big mapping class groups are homeomorphic to NN. Finally, we give an infinite family of big mapping class groups that are CB generated and hence have a well-defined quasi-isometry class. Before beginning, the author would like to make the disclaimer that the arguments contained in this note came out of discussions during a workshop at the American Institute of Mathematics and therefore the author does not claim sole credit, espe- cially in the case of Proposition 10 in which the author has completely borrowed the proof. For the entirety of the note, a surface is a connected, oriented, second countable, Hausdorff 2-manifold. The mapping class group of a surface S is denoted MCG(S). A mapping class group is big if the underlying surface is of infinite topological type, that is, if the fundamental group of the surface cannot be finitely generated. 1.1. Topology of mapping class groups. Let C(S) denote the set of isotopy classes of simple closed curves on S. Given a finite collection A of C(S), let UA = ff 2 MCG(S): f(a) = a for all a 2 Ag: We define the permutation topology on MCG(S) to be the topology with basis consisting of sets of the form f · UA, where A ⊂ C(S) is finite and f 2 MCG(S). -
Some Finiteness Results for Groups of Automorphisms of Manifolds 3
SOME FINITENESS RESULTS FOR GROUPS OF AUTOMORPHISMS OF MANIFOLDS ALEXANDER KUPERS Abstract. We prove that in dimension =6 4, 5, 7 the homology and homotopy groups of the classifying space of the topological group of diffeomorphisms of a disk fixing the boundary are finitely generated in each degree. The proof uses homological stability, embedding calculus and the arithmeticity of mapping class groups. From this we deduce similar results for the homeomorphisms of Rn and various types of automorphisms of 2-connected manifolds. Contents 1. Introduction 1 2. Homologically and homotopically finite type spaces 4 3. Self-embeddings 11 4. The Weiss fiber sequence 19 5. Proofs of main results 29 References 38 1. Introduction Inspired by work of Weiss on Pontryagin classes of topological manifolds [Wei15], we use several recent advances in the study of high-dimensional manifolds to prove a structural result about diffeomorphism groups. We prove the classifying spaces of such groups are often “small” in one of the following two algebro-topological senses: Definition 1.1. Let X be a path-connected space. arXiv:1612.09475v3 [math.AT] 1 Sep 2019 · X is said to be of homologically finite type if for all Z[π1(X)]-modules M that are finitely generated as abelian groups, H∗(X; M) is finitely generated in each degree. · X is said to be of finite type if π1(X) is finite and πi(X) is finitely generated for i ≥ 2. Being of finite type implies being of homologically finite type, see Lemma 2.15. Date: September 4, 2019. Alexander Kupers was partially supported by a William R. -
The Birman-Hilden Theory
THE BIRMAN{HILDEN THEORY DAN MARGALIT AND REBECCA R. WINARSKI Abstract. In the 1970s Joan Birman and Hugh Hilden wrote several papers on the problem of relating the mapping class group of a surface to that of a cover. We survey their work, give an overview of the subsequent developments, and discuss open questions and new directions. 1. Introduction In the early 1970s Joan Birman and Hugh Hilden wrote a series of now- classic papers on the interplay between mapping class groups and covering spaces. The initial goal was to determine a presentation for the mapping class group of S2, the closed surface of genus two (it was not until the late 1970s that Hatcher and Thurston [33] developed an approach for finding explicit presentations for mapping class groups). The key innovation by Birman and Hilden is to relate the mapping class group Mod(S2) to the mapping class group of S0;6, a sphere with six marked points. Presentations for Mod(S0;6) were already known since that group is closely related to a braid group. The two surfaces S2 and S0;6 are related by a two-fold branched covering map S2 ! S0;6: arXiv:1703.03448v1 [math.GT] 9 Mar 2017 The six marked points in the base are branch points. The deck transforma- tion is called the hyperelliptic involution of S2, and we denote it by ι. Every element of Mod(S2) has a representative that commutes with ι, and so it follows that there is a map Θ : Mod(S2) ! Mod(S0;6): The kernel of Θ is the cyclic group of order two generated by (the homotopy class of) the involution ι. -
Recognizing Surfaces
RECOGNIZING SURFACES Ivo Nikolov and Alexandru I. Suciu Mathematics Department College of Arts and Sciences Northeastern University Abstract The subject of this poster is the interplay between the topology and the combinatorics of surfaces. The main problem of Topology is to classify spaces up to continuous deformations, known as homeomorphisms. Under certain conditions, topological invariants that capture qualitative and quantitative properties of spaces lead to the enumeration of homeomorphism types. Surfaces are some of the simplest, yet most interesting topological objects. The poster focuses on the main topological invariants of two-dimensional manifolds—orientability, number of boundary components, genus, and Euler characteristic—and how these invariants solve the classification problem for compact surfaces. The poster introduces a Java applet that was written in Fall, 1998 as a class project for a Topology I course. It implements an algorithm that determines the homeomorphism type of a closed surface from a combinatorial description as a polygon with edges identified in pairs. The input for the applet is a string of integers, encoding the edge identifications. The output of the applet consists of three topological invariants that completely classify the resulting surface. Topology of Surfaces Topology is the abstraction of certain geometrical ideas, such as continuity and closeness. Roughly speaking, topol- ogy is the exploration of manifolds, and of the properties that remain invariant under continuous, invertible transforma- tions, known as homeomorphisms. The basic problem is to classify manifolds according to homeomorphism type. In higher dimensions, this is an impossible task, but, in low di- mensions, it can be done. Surfaces are some of the simplest, yet most interesting topological objects. -
2 Non-Orientable Surfaces §
2 NON-ORIENTABLE SURFACES § 2 Non-orientable Surfaces § This section explores stranger surfaces made from gluing diagrams. Supplies: Glass Klein bottle • Scarf and hat • Transparency fish • Large pieces of posterboard to cut • Markers • Colored paper grid for making the room a gluing diagram • Plastic tubes • Mobius band templates • Cube templates from Exploring the Shape of Space • 24 Mobius Bands 2 NON-ORIENTABLE SURFACES § Mobius Bands 1. Cut a blank sheet of paper into four long strips. Make one strip into a cylinder by taping the ends with no twist, and make a second strip into a Mobius band by taping the ends together with a half twist (a twist through 180 degrees). 2. Mark an X somewhere on your cylinder. Starting at the X, draw a line down the center of the strip until you return to the starting point. Do the same for the Mobius band. What happens? 3. Make a gluing diagram for a cylinder by drawing a rectangle with arrows. Do the same for a Mobius band. 4. The gluing diagram you made defines a virtual Mobius band, which is a little di↵erent from a paper Mobius band. A paper Mobius band has a slight thickness and occupies a small volume; there is a small separation between its ”two sides”. The virtual Mobius band has zero thickness; it is truly 2-dimensional. Mark an X on your virtual Mobius band and trace down the centerline. You’ll get back to your starting point after only one trip around! 25 Multiple twists 2 NON-ORIENTABLE SURFACES § 5. -
GEOMETRY FINAL 1 (A): If M Is Non-Orientable and P ∈ M, Is M
GEOMETRY FINAL CLAY SHONKWILER 1 (a): If M is non-orientable and p ∈ M, is M − {p} orientable? Answer: No. Suppose M − {p} is orientable, and let (Uα, xα) be an atlas that gives an orientation on M − {p}. Now, let (V, y) be a coordinate chart on M (in some atlas) containing the point p. If (U, x) is a coordinate chart such that U ∩ V 6= ∅, then, since x and y are both smooth maps with smooth inverses, the composition x ◦ y−1 : y(U ∩ V ) → x(U ∩ V ) is a smooth map. Hence, the collection {(Uα, xα), (V, α)} gives an atlas on M. Now, since M − {p} is orientable, i ! ∂xα det j > 0 ∂xβ for all α, β. However, since M is non-orientable, there must exist coordinate charts where the Jacobian is negative on the overlap; clearly, one of each such pair must be (V, y). Hence, there exists β such that ! ∂yi det j ≤ 0. ∂xβ Suppose this is true for all β such that Uβ ∩V 6= ∅. Then, since y(q) = (y1(q), . , yn(q)), lety ˜ be such thaty ˜(p) = (y2(p), y1(p), y3(p), y4(p), . , yn(p)). Theny ˜ : V → y˜(V ) is a diffeomorphism, so (V, y˜) gives a coordinate chart containing p and ! ! ∂y˜i ∂yi det j = − det j ≥ 0 ∂xβ ∂xβ for all β such that Uβ ∩ V 6= ∅. Hence, unless equality holds in some case, {(Uα, xα), (V, y˜)} defines an orientation on M, contradicting the fact that M is non-orientable. Additionally, it’s clear that equality can never hold, since y : Uβ ∩ V → y(Uβ ∩ V ) is a diffeomorphism and, thus, has full rank. -
Experimental Statistics of Veering Triangulations
EXPERIMENTAL STATISTICS OF VEERING TRIANGULATIONS WILLIAM WORDEN Abstract. Certain fibered hyperbolic 3-manifolds admit a layered veering triangulation, which can be constructed algorithmically given the stable lamination of the monodromy. These triangulations were introduced by Agol in 2011, and have been further studied by several others in the years since. We obtain experimental results which shed light on the combinatorial structure of veering triangulations, and its relation to certain topological invariants of the underlying manifold. 1. Introduction In 2011, Agol [Ago11] introduced the notion of a layered veering triangulation for certain fibered hyperbolic manifolds. In particular, given a surface Σ (possibly with punctures), and a pseudo-Anosov homeomorphism ' ∶ Σ → Σ, Agol's construction gives a triangulation ○ ○ ○ ○ T for the mapping torus M' with fiber Σ and monodromy ' = 'SΣ○ , where Σ is the surface resulting from puncturing Σ at the singularities of its '-invariant foliations. For Σ a once-punctured torus or 4-punctured sphere, the resulting triangulation is well understood: it is the monodromy (or Floyd{Hatcher) triangulation considered in [FH82] and [Jør03]. In this case T is a geometric triangulation, meaning that tetrahedra in T can be realized as ideal hyperbolic tetrahedra isometrically embedded in M'○ . In fact, these triangulations are geometrically canonical, i.e., dual to the Ford{Voronoi domain of the mapping torus (see [Aki99], [Lac04], and [Gu´e06]). Agol's definition of T was conceived as a generalization of these monodromy triangulations, and so a natural question is whether these generalized monodromy triangulations are also geometric. Hodgson{Issa{Segerman [HIS16] answered this question in the negative, by producing the first examples of non- geometric layered veering triangulations.