Annual Report

Total Page:16

File Type:pdf, Size:1020Kb

Annual Report 2018 Annual Report NATIONAL ACADEMY OF ENGINEERING ENGINEERING THE FUTURE 1 Letter from the President 3 In Service to the Nation 3 Mission Statement 4 NAE Strategic Plan Implementation 5 NAE Annual Meeting 5 2018 NAE Annual Meeting Forum: Privacy and Security in the 21st Century – Who Knows and Who Controls? 7 Program Reports 7 Postsecondary Engineering Education Understanding the Engineering Education–Workforce Continuum Engagement of Engineering Societies in Undergraduate Engineering Education 8 PreK–12 Engineering Education LinkEngineering Educator Capacity Building in PreK–12 Engineering Education 8 Media Relations 9 Grand Challenges for Engineering NAE Grand Challenges Scholars Program 10 Center for Engineering Ethics and Society (CEES) The Online Ethics Center for Engineering and Science Overcoming Challenges to Infusing Ethics in the Development of Engineers Integrated Network for Social Sustainability 11 Diversity of the Engineering Workforce EngineerGirl 13 Frontiers of Engineering Armstrong Endowment for Young Engineers—Gilbreth Lectures 14 Manufacturing, Design, and Innovation Adaptability of the Engineering and Technical Workforce Deans Roundtable 16 2018 NAE Awards Recipients 18 2018 New Members and Foreign Members 21 NAE Anniversary Members 26 A Message from NAE Vice President Corale Brierley 27 2018 Honor Roll of Donors 27 Lifetime Giving Societies 27 Einstein Society 30 Golden Bridge Society 32 Heritage Society 33 Annual Giving Societies 33 Catalyst Society 33 Rosette Society 33 Challenge Society 34 Charter Society 36 Challenge Update 37 Other Individual Donors 39 Tributes 39 Loyalty Society 41 Foundations, Corporations, and Other Organizations 44 National Academy of Engineering Fund 46 Statement of Financial Position 47 Statement of Activities 48 Statement of Cash Flows 49 Notes to Financial Statements 67 Officers 67 Councillors 68 Staff 68 NAE Publications Letter from the President It has been a great honor and privilege to serve as the NAE’s president these past six years. As I stated when I took office in July 2013, my focus was on three strategic goals for engineering: (1) the importance of talent in our engineering workforce, (2) globalization and the global role of the NAE, and (3) visibility and understanding of engineering. I believe we have made commendable progress on these goals through a variety of dynamic programs. 2018 Highlights The Grand Challenges Scholars Program (GCSP) simultaneously addresses all three goals by building on a vision for engineering with a new template for engineering education and practice. Its dramatic continuing expansion both nationally and internationally is supported by the NAE GCSP Network Office. Since 2013 there C. D. Mote, Jr. has been a nearly fivefold increase in the total number of programs—in 2018 alone the number of participating schools rose 29 percent. In addition, the biennial Global Grand Challenges Summit series engages international leaders in engineering industry, entrepreneurship, and education as well as the next generation of engineers in collaborative efforts to address the challenges facing our world and planet. Attendance continues to grow at this event, and, most encouragingly, about half of its participants are students. A 2018 NRC study sponsored by the three academies produced the consensus report Sexual Harassment of Women: Climate, Culture, and Consequences in Academic Sciences, Engineering, and Medicine, establishing the seriousness of harassment both for the individual victims and for the professions too. Among other findings, the study showed the importance of an organization’s policies and the perception of its practices on sexual harassment. The leadership must communicate and demonstrate that the policies and procedures needed to create a culture that is welcoming to women are taken seriously, followed, and enforced in all cases. Recognizing that the NAE has no code of ethics for its members, the NAE Council initiated a process to establish one. Its efforts are being complemented by those of the councils of its sister academies to ensure a welcoming environment for all women. The focus of the 2018 annual meeting was cybersecurity, which is everyone’s concern. In the plenary session, new NAE member Diane Greene, then CEO of Google Cloud, talked about the security of the Cloud and large-scale global data centers, and Mike Walker of Microsoft reviewed personal security for computers, phones, and internet-connected devices. They clarified just how anxious we should be. During the technical forum the next day, Mr. Walker joined three other expert panelists in presenting their perspectives on Privacy and Security in the 21st Century – Who Knows and Who Controls: Lea Kissner from Google, Aanchal Gupta from Facebook, and Batya Friedman from the University of Washington. Their remarks and a lively discussion afterward confirmed that, notwithstanding impressive technological advances, many questions remain about how best to secure the personal and professional devices on which we rely. We appreciate greatly sponsorship for this meeting from Amazon, Facebook, Google, and Microsoft. Their generous assistance made this program possible. The Campaign for the NAE: Leadership in a World of Accelerating Change As people, organizations, and countries grapple with rapid technological, economic, and other changes the world over, the NAE’s work continues to both guide and complement that of companies, government, and universities while remaining utterly unique and independent. We are not driven by profit or politics. Our rigorous objectivity and our convening power give us a competitive advantage 1 across sectors and around the globe in providing impartial, evidence-based advice on how to address the most pressing problems of the day. The NAE’s unparalleled reputation for integrity, national standing, and convening power and the trust that the engineering community places in NAE findings and counsel all require private funds. The need for objective, fact-based, independent advice for our nation is more important than ever, and philanthropy fuels our capacity to act with dispatch and agility as opportunities and challenges present themselves. A healthy foundation of private support is vital to ensure that the academy can proactively advise the nation and carry out programs that help promote and foster the engineering profession. Endorsed by the NAE Council, the planning phase of a major seven-year Campaign for the NAE began on January 1, 2016. The campaign leads from strength, seeking funding to support action-oriented programs that I call key enablers for addressing major challenges: EngineerGirl and the Grand Challenges Scholars Program for developing engineering talent; the Frontiers of Engineering for sustaining engineering excellence; the Center for Engineering Ethics and Society to ensure the integrity of the profession; and, underpinning them all, funding to empower the NAE to fulfill its mission to advise the nation and to nurture the engineering profession. Concluding Observations In this time of accelerating change, organizations must adapt while preserving their mission and the NAE is no exception. We are rising to this challenge with our five-year strategic plan and the major campaign. These will effectively guide the academy in its adaptations, especially with the thoughtful engagement and generous support of all our members as we address these demands and embrace new opportunities. I want to personally thank our members and friends for your trust in our work in 2018 and during my tenure. Your support and involvement allow the NAE to develop engineering talent and host unique programs that have global impact. I am delighted that Council member John L. Anderson, Distinguished Professor of Chemical Engineering at the Illinois Institute of Technology, will succeed me. With the prospect of his leadership, I am confident that the NAE will be in very good hands to address the opportunities and challenges that lie ahead. In the following pages you will find reports of the NAE’s work in 2018. These projects strategically underpin our mission to advance the well-being of the nation and future engineers. I am most grateful for your active, thoughtful engagement in and support for all the NAE’s efforts and for your generosity of spirit. C. D. Mote, Jr. President 2 NAE In Service to the Nation Every day our nation faces questions related to engineering and technology. What does the nation need to do to prosper in the global economy? What is the role of basic research and development in ensuring future economic development? How do we assess the importance of manufacturing in the United States to national prosperity? How can we ensure that students are aware of the nature of engineering and its importance to the nation, so they can make informed decisions about pursuing an engineering education and career? How do we ensure that undergraduate engineering education meets the needs of those students? How do we increase the diversity of the engineering workforce? As technology becomes an ever more critical discriminator for US success in the global marketplace for ideas, goods, and services, addressing these questions is increasingly important. Since 1964 the National Academy of Engineering (NAE) has provided independent, objective advice to the nation on engineering-related topics and policies. The NAE operates under the same congressional act of incorporation that established the National Academy of Sciences, signed in 1863 by President Abraham Lincoln,
Recommended publications
  • The Power of Abstraction
    The Power of Abstraction Barbara Liskov March 2013 MIT CSAIL Software is Complex Systems are big and they do complicated things and they may be distributed and/or concurrent Addressing Complexity Algorithms, data structures, protocols Addressing Complexity Algorithms, data structures, protocols Programming methodology Programming languages This Talk Programming methodology as it developed Programming languages Programming languages today The Situation in 1970 The software crisis! Programming Methodology How should programs be designed? How should programs be structured? The Landscape E. W. Dijkstra. Go To Statement Considered Harmful. Cacm, Mar. 1968 The Landscape N. Wirth. Program Development by Stepwise Refinement. Cacm, April 1971 The Landscape D. L. Parnas. Information Distribution Aspects of Design Methodology. IFIP Congress, 1971 “The connections between modules are the assumptions which the modules make about each other.” Modularity A program is a collection of modules Modularity A program is a collection of modules Each module has an interface, described by a specification Modularity A program is a collection of modules Each has an interface, described by a specification A module’s implementation is correct if it meets the specification A using module depends only on the specification Modularity A program is a collection of modules Each has an interface, described by a specification A module’s implementation is correct if it meets the specification A using module depends only on the specification E.g. a sort routine sort(a) Benefits of Modularity Local reasoning Modifiability Independent development The Situation in 1970 Procedures were the only type of module Not powerful enough, e.g., a file system Not used very much Complicated connections Partitions B.
    [Show full text]
  • MIT Turing Laureates Propose Creation of School of Computing an Open Letter to President Rafael Reif
    9/26/2017 The Tech OPINION LETTER TO THE EDITOR MIT Turing laureates propose creation of School of Computing An open letter to President Rafael Reif By MIT Turing Laureates | Sep. 20, 2017 Facebook Dear Rafael, Twitter There comes a time, in the course of scientic evolution, when a discipline is ready to emerge from the womb of its parent disciplines and take its own place in the world. For Reddit computer science, or more accurately, for the eld of computing, this moment is now. Print Born from a combination of mathematics and electrical engineering, with the original intent of speeding up calculations, computer science has grown to encompass all information processing and most communications and now to provide an alternative evolutionary path to intelligence. Computer science is rapidly becoming an essential part of most academic disciplines, and students are voting with their feet. One third of MIT undergraduates are majoring in computer science. This trend is unlikely to slow down anytime soon. We, the 7 active MIT Turing Award winners, therefore write this open letter to recommend that you consider the bold step of establishing a School of Computing at MIT. The new school, a brother to the Schools of Engineering and Science, will allow the eld of computing, with its many https://thetech.com/2017/09/20/turing-laureates-open-letter-to-reif 1/4 9/26/2017 The Tech facets and sub-elds, to grow and interact naturally with the Institute’s scientic and engineering environment. The Tech Submit Campus Life Stories Today the study of computation is housed primarily in the EECS department within the School of Engineering, but departments are limited in their ability to hire and grow.
    [Show full text]
  • Thriving in a Crowded and Changing World: C++ 2006–2020
    Thriving in a Crowded and Changing World: C++ 2006–2020 BJARNE STROUSTRUP, Morgan Stanley and Columbia University, USA Shepherd: Yannis Smaragdakis, University of Athens, Greece By 2006, C++ had been in widespread industrial use for 20 years. It contained parts that had survived unchanged since introduced into C in the early 1970s as well as features that were novel in the early 2000s. From 2006 to 2020, the C++ developer community grew from about 3 million to about 4.5 million. It was a period where new programming models emerged, hardware architectures evolved, new application domains gained massive importance, and quite a few well-financed and professionally marketed languages fought for dominance. How did C++ ś an older language without serious commercial backing ś manage to thrive in the face of all that? This paper focuses on the major changes to the ISO C++ standard for the 2011, 2014, 2017, and 2020 revisions. The standard library is about 3/4 of the C++20 standard, but this paper’s primary focus is on language features and the programming techniques they support. The paper contains long lists of features documenting the growth of C++. Significant technical points are discussed and illustrated with short code fragments. In addition, it presents some failed proposals and the discussions that led to their failure. It offers a perspective on the bewildering flow of facts and features across the years. The emphasis is on the ideas, people, and processes that shaped the language. Themes include efforts to preserve the essence of C++ through evolutionary changes, to simplify itsuse,to improve support for generic programming, to better support compile-time programming, to extend support for concurrency and parallel programming, and to maintain stable support for decades’ old code.
    [Show full text]
  • Chemical Engineering Education Graduate Education in Chemical Engineering
    I • N • D • E • X GRADUATE EDUCATION ADVERTISEMENTS Akron, Uni versity of. .......... , .... ... .................. 321 Iowa State Uni versity .................. ... ....... ....... 360 Pensylvania State Uni versity ........................ 395 Alabama, University of ................................ 322 Johns Hopkins University .... .... .. .... .... .......... 361 Pittsburgh, University of .............................. 396 Alabama, Huntsville; Uni versity of.. .... .. ..... 323 Kansas, University of ............................... .... 362 Polytechnic University .. .... ... .... ........... .. ..... .. 397 Alberta, Uni versity of .. ........ .... .. .... ... ..... ..... .. 324 Kansas State University ............... ... ...... ........ 363 Princeton University ....................... .......... .. .. 398 Arizona, University of ....... .. .... .. .... ... .. ... ....... 325 Kentucky, Uni versity of ........................ .. ..... 364 Purdue University .. ........... ... ... ....... ... .... .... ... 399 Arizona State University ..... .. ... ...... ..... ......... 326 Lamar University .. ... ..... ..... ......... ........... .. ..... 430 Rensselaer Polytechnic Institute .... ...... .... ... .. 400 Auburn Uni versity .. ..... .. ... ..... .. .............. .... ... 327 Laval Universite ...................... ........... ...... .. .. 365 Rhode Island, University of.. .... ..... .. ... ..... .. ... 435 Bri gham Young Uni versity .............. ... .. ..... ... 427 Lehigh University .................................. .... ... 366 Rice University
    [Show full text]
  • 2008 Annual Report
    2008 Annual Report NATIONAL ACADEMY OF ENGINEERING ENGINEERING THE FUTURE 1 Letter from the President 3 In Service to the Nation 3 Mission Statement 4 Program Reports 4 Engineering Education 4 Center for the Advancement of Scholarship on Engineering Education 6 Technological Literacy 6 Public Understanding of Engineering Developing Effective Messages Media Relations Public Relations Grand Challenges for Engineering 8 Center for Engineering, Ethics, and Society 9 Diversity in the Engineering Workforce Engineer Girl! Website Engineer Your Life Project Engineering Equity Extension Service 10 Frontiers of Engineering Armstrong Endowment for Young Engineers-Gilbreth Lectures 12 Engineering and Health Care 14 Technology and Peace Building 14 Technology for a Quieter America 15 America’s Energy Future 16 Terrorism and the Electric Power-Delivery System 16 U.S.-China Cooperation on Electricity from Renewables 17 U.S.-China Symposium on Science and Technology Strategic Policy 17 Offshoring of Engineering 18 Gathering Storm Still Frames the Policy Debate 20 2008 NAE Awards Recipients 22 2008 New Members and Foreign Associates 24 2008 NAE Anniversary Members 28 2008 Private Contributions 28 Einstein Society 28 Heritage Society 29 Golden Bridge Society 29 Catalyst Society 30 Rosette Society 30 Challenge Society 30 Charter Society 31 Other Individual Donors 34 The Presidents’ Circle 34 Corporations, Foundations, and Other Organizations 35 National Academy of Engineering Fund Financial Report 37 Report of Independent Certified Public Accountants 41 Notes to Financial Statements 53 Officers 53 Councillors 54 Staff 54 NAE Publications Letter from the President Engineering is critical to meeting the fundamental challenges facing the U.S. economy in the 21st century.
    [Show full text]
  • Arxiv:1909.05204V3 [Cs.DC] 6 Feb 2020
    Cogsworth: Byzantine View Synchronization Oded Naor, Technion and Calibra Mathieu Baudet, Calibra Dahlia Malkhi, Calibra Alexander Spiegelman, VMware Research Most methods for Byzantine fault tolerance (BFT) in the partial synchrony setting divide the local state of the nodes into views, and the transition from one view to the next dictates a leader change. In order to provide liveness, all honest nodes need to stay in the same view for a sufficiently long time. This requires view synchronization, a requisite of BFT that we extract and formally define here. Existing approaches for Byzantine view synchronization incur quadratic communication (in n, the number of parties). A cascade of O(n) view changes may thus result in O(n3) communication complexity. This paper presents a new Byzantine view synchronization algorithm named Cogsworth, that has optimistically linear communication complexity and constant latency. Faced with benign failures, Cogsworth has expected linear communication and constant latency. The result here serves as an important step towards reaching solutions that have overall quadratic communication, the known lower bound on Byzantine fault tolerant consensus. Cogsworth is particularly useful for a family of BFT protocols that already exhibit linear communication under various circumstances, but suffer quadratic overhead due to view synchro- nization. 1. INTRODUCTION Logical synchronization is a requisite for progress to be made in asynchronous state machine repli- cation (SMR). Previous Byzantine fault tolerant (BFT) synchronization mechanisms incur quadratic message complexities, frequently dominating over the linear cost of the consensus cores of BFT so- lutions. In this work, we define the view synchronization problem and provide the first solution in the Byzantine setting, whose latency is bounded and communication cost is linear, under a broad set of scenarios.
    [Show full text]
  • By Dean R. Johnson
    Alice Symposium 2009 Duke University “Who needs PowerPoint? I’ve got Alice!” By Dean R. Johnson I. Background of My Experience in Programming II. Experience with Alice A. Changes in Languages and Student Population B. Introducing Alice C. Enrollment Data III. History Lesson: Significant People in Computing A. Paper B. PowerPoint C. Alice 1. Lesson Plan 2. Grading Rubric IV. Sample Projects: Screenshots and descriptions of Student Work I. Background I started my study of Computer Science in 1982 as a high school senior when I enrolled in a one semester course titled “Computer Programming.” It was taught by my math teacher and at first seemed like a very mystifying idea. We wrote programs in BASIC b y “bubbling in” punch cards. After completing the program, we took the stack of cards to the back of the room handing them to our teacher. He was the only one allowed to insert the cards into the card reader. The PDP-11 interpreted our program and if it ran successfully, the dot matrix printer printed a table of the whole numbers from one to ten and their squares. It was amazing. The strange thing about this description is that it brings back such fond memories for me. It was during this brief exposure to programming that I was hooked for life. This is what drives me on a daily basis to do the best I can to expose students to the fascinating world of programming. I graduated from UW-Whitewater in 1986 with a Major in Mathematics and a Minor in Computer Science.
    [Show full text]
  • The Way Forward a New Literary History of America a Conv
    american academy of arts & sciences spring 2010 Bulletin vol. lxiii, no. 3 Page 7 A New Literary History of America Werner Sollors and Greil Marcus David Brady and Pamela S. Karlan Page 15 Challenges to Business and Society in the Twenty-First Century: The Way Forward Rajat K. Gupta and Roger W. Ferguson, Jr. Daniel Yankelovich Page 22 A Conversation on Evolving U.S. Policy toward Russia Robert Legvold and Thomas Graham inside: The Humanities: The Case for Data, Page 1 Book of Members, Page 6 From the Archives, Page 36 Calendar of Events Save the Date: Induction Weekend Friday, Sunday, Contents October 8, 2010 October 10, 2010 Evening Reception and Program– Sunday Symposium–Cambridge Cambridge Academy Projects For information and reservations, contact The Humanities: The Case for Data 1 Saturday, the Events Of½ce (phone: 617-576-5032; October 9, 2010 email: [email protected]). Book of Members 6 2010 Induction Ceremony–Cambridge Academy Meetings A New Literary History of America Werner Sollors and Greil Marcus 7 Challenges to Business and Society in the Twenty-First Century: The Way Forward Rajat K. Gupta and Roger W. Ferguson, Jr. 15 A Conversation on Evolving U.S. Policy toward Russia Robert Legvold and Thomas Graham 22 Noteworthy 32 From the Archives 36 Fellows and Friends Again Contribute More than $1.5 million to the Annual Fund In the recently completed ½scal year, the Academy’s Annual Fund surpassed last year’s total and the $1.5 million mark for the fourth consecutive year–nearly 1,200 donors helped to accomplish this goal.
    [Show full text]
  • 18 – 20 November 2012
    65th Annual meeting of the Division of Fluid Dynamics 18 – 20 November 2012 Table of Contents Welcome ................................................................................................................................... 2 65th Annual Meeting Committee .............................................................................................. 3 APS/DFD 2012 Officers and Committees ................................................................................. 4-5 DFD Events .............................................................................................................................. 6 Registration Desk Hours ................................................................................................ 6 Speaker Ready Room Hours ......................................................................................... 6 DFD Executive Committee Meeting .............................................................................. 6 Awards Ceremony ......................................................................................................... 6 Invited Lectures ............................................................................................................. 6 Conference Dinner ........................................................................................................ 6 Gallery of Fluid Motion ................................................................................................... 6 Poster Information ........................................................................................................
    [Show full text]
  • Ali Aydar Anita Borg Alfred Aho Bjarne Stroustrup Bill Gates
    Ali Aydar Ali Aydar is a computer scientist and Internet entrepreneur. He is the chief executive officer at Sporcle. He is best known as an early employee and key technical contributor at the original Napster. Aydar bought Fanning his first book on programming in C++, the language he would use two years later to build the Napster file-sharing software. Anita Borg Anita Borg (January 17, 1949 – April 6, 2003) was an American computer scientist. She founded the Institute for Women and Technology (now the Anita Borg Institute for Women and Technology). While at Digital Equipment, she developed and patented a method for generating complete address traces for analyzing and designing high-speed memory systems. Alfred Aho Alfred Aho (born August 9, 1941) is a Canadian computer scientist best known for his work on programming languages, compilers, and related algorithms, and his textbooks on the art and science of computer programming. Aho received a B.A.Sc. in Engineering Physics from the University of Toronto. Bjarne Stroustrup Bjarne Stroustrup (born 30 December 1950) is a Danish computer scientist, most notable for the creation and development of the widely used C++ programming language. He is a Distinguished Research Professor and holds the College of Engineering Chair in Computer Science. Bill Gates 2 of 10 Bill Gates (born October 28, 1955) is an American business magnate, philanthropist, investor, computer programmer, and inventor. Gates is the former chief executive and chairman of Microsoft, the world’s largest personal-computer software company, which he co-founded with Paul Allen. Bruce Arden Bruce Arden (born in 1927 in Minneapolis, Minnesota) is an American computer scientist.
    [Show full text]
  • A Short History of Computational Complexity
    The Computational Complexity Column by Lance FORTNOW NEC Laboratories America 4 Independence Way, Princeton, NJ 08540, USA [email protected] http://www.neci.nj.nec.com/homepages/fortnow/beatcs Every third year the Conference on Computational Complexity is held in Europe and this summer the University of Aarhus (Denmark) will host the meeting July 7-10. More details at the conference web page http://www.computationalcomplexity.org This month we present a historical view of computational complexity written by Steve Homer and myself. This is a preliminary version of a chapter to be included in an upcoming North-Holland Handbook of the History of Mathematical Logic edited by Dirk van Dalen, John Dawson and Aki Kanamori. A Short History of Computational Complexity Lance Fortnow1 Steve Homer2 NEC Research Institute Computer Science Department 4 Independence Way Boston University Princeton, NJ 08540 111 Cummington Street Boston, MA 02215 1 Introduction It all started with a machine. In 1936, Turing developed his theoretical com- putational model. He based his model on how he perceived mathematicians think. As digital computers were developed in the 40's and 50's, the Turing machine proved itself as the right theoretical model for computation. Quickly though we discovered that the basic Turing machine model fails to account for the amount of time or memory needed by a computer, a critical issue today but even more so in those early days of computing. The key idea to measure time and space as a function of the length of the input came in the early 1960's by Hartmanis and Stearns.
    [Show full text]
  • Probabilistic Models on Fibre Bundles by Shan Shan
    Probabilistic Models on Fibre Bundles by Shan Shan Department of Mathematics Duke University Date: Approved: Ingrid Daubechies, Supervisor Sayan Mukherjee, Chair Doug Boyer Colleen Robles Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Mathematics in the Graduate School of Duke University 2019 ABSTRACT Probabilistic Models on Fibre Bundles by Shan Shan Department of Mathematics Duke University Date: Approved: Ingrid Daubechies, Supervisor Sayan Mukherjee, Chair Doug Boyer Colleen Robles An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Mathematics in the Graduate School of Duke University 2019 Copyright c 2019 by Shan Shan All rights reserved Abstract In this thesis, we propose probabilistic models on fibre bundles for learning the gen- erative process of data. The main tool we use is the diffusion kernel and we use it in two ways. First, we build from the diffusion kernel on a fibre bundle a projected kernel that generates robust representations of the data, and we test that it outperforms regular diffusion maps under noise. Second, this diffusion kernel gives rise to a nat- ural covariance function when defining Gaussian processes (GP) on the fibre bundle. To demonstrate the uses of GP on a fibre bundle, we apply it to simulated data on a M¨obiusstrip for the problem of prediction and regression. Parameter tuning can also be guided by a novel semi-group test arising from the geometric properties of dif- fusion kernel. For an example of real-world application, we use probabilistic models on fibre bundles to study evolutionary process on anatomical surfaces.
    [Show full text]