A&A 424, 935–950 (2004) Astronomy DOI: 10.1051/0004-6361:20040517 & c ESO 2004 Astrophysics Multi-element abundance Doppler imaging of the rapidly oscillating Ap star HR 3831 O. Kochukhov1,N.A.Drake2,3, N. Piskunov4, and R. de la Reza2 1 Institut für Astronomie, Universität Wien, Türkenschanzstraße 17, 1180 Wien, Austria e-mail:
[email protected] 2 Observatório Nacional/MCT, Rua General Jose Cristino 77, 20921-400, Rio de Janeiro, Brazil 3 Sobolev Astronomical Institute, St. Petersburg State University, Universitetsky pr. 28, Petrodvorets, 198504, St. Petersburg, Russia 4 Department of Astronomy and Space Physics, Uppsala University, Box 515, 751 20 Uppsala, Sweden Received 25 March 2004 / Accepted 24 May 2004 Abstract. We investigate magnetic field geometry and surface distribution of chemical elements in the rapidly oscillating Ap star HR 3831. Results of the model atmosphere analysis of the spectra of this star are combined with the Hipparcos parallax and evolutionary models to obtain new accurate estimates of the fundamental stellar parameters: Teff = 7650 K, log L/L = ◦ 1.09, M/M = 1.77 and an inclination angle i = 68 of the stellar axis of rotation. We find that the variation of the longitudinal magnetic field of HR 3831 and the results of our analysis of the magnetic intensification of Fe lines in the spectrum of this ◦ star are consistent with a dipolar magnetic topology with a magnetic obliquity β = 87 and a polar strength Bp = 2.5kG. We apply a multi-element abundance Doppler imaging inversion code for the analysis of the spectrum variability of HR 3831, and recover surface distributions of 17 chemical elements, including Li, C, O, Na, Mg, Si, Ca, Ti, Cr, Mn, Fe, Co, Ba, Y, Pr, Nd, Eu.