<<

INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction.

1. The sign or “target” for pages apparently lacking from the document photographed is “ Missing Page(s)” . If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.

2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame. If copyrighted materials were deleted you will find a target note listing the pages in the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photo­ graphed the photographer has followed a definite method in “sectioning" the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.

4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy.

University Microfilms International 300 N. ZEEB RD., ANN ARBOR. Ml 48106 8207258

Schmidtke, Paul Charles

CLASSIFICATION OF COMPOSITE SPECTRA BY MEANS OF PHOTOELECTRIC SCANNER INDICES

The Ohio State University Ph.D. 1981

University Microfilms

International 300 N. Zeeb Road, Ann Arbor, M I 48106 CLASSIFICATION OF COMPOSITE SPECTRA

BY MEANS OF PHOTOELECTRIC SCANNER INDICES

DISSERTATION

I

Presented in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy in the Graduate

School of The Ohio State University

By

Paul Charles Schmidtke, B.S,

* * * * *

The Ohio State University

1981

Reading Committee: Approved By

Walter E. Mitchell, Jr. Bradley M. Peterson Robert F. Wing Adviser Department of Astrbiiomy To my mother, Anna-Mae, and the encouragement she always gave me

"He made the also" Genesis 1:16

ii ACKNOWLEDGMENTS

I would like to express my gratitude to my adviser, Dr.

Robert Wing, for his guidance during this project. His com­ ments and suggestions were a great help many times.

I appreciate the critique by my reading committee, Drs.

Walter Mitchell and Bradley Peterson, during the preparation of this manuscript.

I would like to thank the staffs of Cerro Tololo

Inter-American Observatory and Lowell Observatory for their assistance. In particular, I owe a great debt to Dr.

Nathaniel White and to Ray Bertram, Jim Chastain, and Norm

Crowfoot.

I am grateful to Drs. Robert O’Connell, Helmut Tug, and

Wayne Warren, Jr. for their contributions.

I would like to recognize' the Graduate School of The

Ohio State University for a University Fellowship. The

Department of and the Radio Observatory also pro­ vided financial assistance in the form of teaching and research associateships.

Last, but certainly not the least, I want to thank my wife, Cheryl, for maintaining her faith in me. She may nev­ er realize how much her support has meant to me.

iii VITA

8 Oct 1951 Born - Hinsdale, Illinois

1973 Undergraduate Honors Research Participation Program, Argonne National Laboratory, Argonne, Illinois

1973 B.S. with High Honors, Rose-Hulman Institute of Technology, Terre Haute, Indiana

1973-1977 University Fellowship, Graduate School, The Ohio State University, Columbus, Ohio

1974-1976 Teaching Associate, Department of Astronomy, The Ohio State University, Columbus, Ohio

1977-1978 Research Associate, Radio Observatory, The Ohio State University, Columbus, Ohio

1978-1980 Research Associate, Perkins Observatory, Ohio Wesleyan University and The Ohio State University, Delaware, Ohio

1980- Scientific Programmer, Kitt Peak National Observatory, Tucson, Arizona

PUBLICATIONS

Dixon, R. S., Gearhart M. R., and Schmidtke, P. C. 1981, "Atlas of Sky Overlay Maps (for the Palomar Sky Survey)" (Columbus: The Ohio State University Radio Observatory).

Schmidtke, P. C. 1981, "Spectral Classification of Composite Spectrum Stars," Lowell Obs. Bull, (in press).

Schmidtke, P. C. 1979, "Lunar Occultations of Seyfert Nuclei," Occultation Newsletter 2, 71.

Schmidtke, P. C. 1979, "Composite Spectrum Stars Susceptible to Lunar Occultation," Pub. A.S.P. 91, 674.

Hartmann, L., Davis, R., Dupree, A. K., Raymond, J., Schmidtke, P. C., and Wing, R. F. 1979, Ap. J. (Letters), 233, L69.

iv TABLE OF CONTENTS

PAGE

ACKNOWLEDGMENTS ill

VITA iv

LIST OF TABLES vii

LIST OF FIGURES viii

I. INTRODUCTION 1 1.1. HISTORICAL SURVEY 1 I.l.A. GENERAL STUDIES OF COMPOSITE SPECTRUM STARS 1 I.l.B. EXAMPLES OF PHOTOELECTRIC SCANNER PHOTOMETRY 10 I.l.B.a. INDIVIDUAL STARS 10 I.l.B.b. INTEGRATED SPECTRA OF 11 I.l.C. RELATED TOPICS 13 1.2. PURPOSE OF INVESTIGATION 15 I.2.A. WHY? 16 I.2.B. HOW? 18 1.2.C. WHAT? 21

II. OBSERVATIONS AND REDUCTIONS 22 II.1. SELECTION OF STARS 22 II.2. SELECTION OF WAVELENGTHS 26 II.3. NIGHTLY OBSERVING TECHNIQUE 29 II.4. NIGHTLY REDUCTION TECHNIQUE 32 II.4.A. STANDARD VALUES 32 II.4.B. REDUCTION EQUATIONS 38 II.4.C. COEFFICIENTS 39 II.4.D. TRANSFORMATION COEFFICIENTS 44 II.4.E. FINAL REDUCTIONS 46 II.4.F. NORMALIZATION AND DE-REDDENING 46 II.5. COMPARISON WITH OTHER REDUCTIONS 82 II.6. CALCULATION OF COLORS AND INDICES 95 II.6.A. PHOTOMETRIC COLORS 95 II.6.B. PHOTOMETRIC INDICES 98 II.6.C. PHOTOMETRIC RELATIVE CONTINUA 102 II.6.D. PHOTOMETRIC ABSOLUTE CONTINUA 102 II.6.E. CALCULATED VALUES 103

v TABLE OF CONTENTS (continued)

PAGE

III. DOUBLE MODEL 172 111.1. GENERAL CONSIDERATIONS 172 111.2. SPECIFIC CALCULATIONS 173 111.3. OPTIONS 178 111.4. TRANSFORMATIONS 179

IV. RESULTS 191 IV.1. REPRESENTATIVE SOLUTIONS 191 IV.l.A. "1-STAR 1-PARM" MODEL 191 IV.l.B. "1-STAR 2-PARM" MODEL 193 IV.l.C. "2-STAR 3-PARM" MODEL 193 IV.l.D. "2-STAR 4-PARM" MODEL 196 IV.I.E. Am/Ap STAR MODEL 196 IV.2. COMPARISON STAR SOLUTIONS 200 IV.2.A. ALL STARS 203 IV.2.B. STARS WITH V/R>0.2 203 IV.3. PROGRAM STAR SOLUTIONS 204 IV.3.A. DOUBLE STARS 204 IV.3.B. Am/Ap STARS 210 IV.3.C. UNRESOLVED STARS 210

V. DISCUSSION 216 V.l. ABILITY TO RESOLVE DOUBLE STAR SYSTEMS 216 V.2. COMPARISON WITH OTHER CLASSIFICATIONS 219 V.3. COMPARISON WITH THEORETICAL ISOCHRONES 221 V.4. SOURCES OF ERROR 223 V.5. CONCLUSIONS 225

BIBLIOGRAPHY 227 LIST OF TABLES

TABLE PAGE

1 CLASSES OF COMPOSITE SPECTRUM STARS 3 2 PROGRAM STARS 2 3 3 COMPARISON STARS 25 4 PHOTOELECTRIC SCANNER WAVELENGTHS 27 5 SUMMARY OF OBSERVING RUNS 30 6 ASSUMED MAGNITUDES OF STANDARDS , 33 7 COMPARISON OF O'CONNELL PHOTOMETRY TO TUG et al. PHOTOMETRY 3 6 8 CONTRIBUTIONS TO ATMOSPHERIC EXTINCTION 41 9 OBSERVED MAGNITUDES OF STANDARDS 47 10 COLOR EXCESSES OF COMPARISON STARS 51 11 NORMALIZED SELECTIVE ABSORPTION FOR E(B-V)=1.0 52 12 NORMALIZED ENERGY DISTRIBUTIONS: CTIO 53 13 NORMALIZED ENERGY DISTRIBUTIONS: LOWELL OBSERVATORY 74 14 COMPARISON OF SCHMIDTKE PHOTOMETRY TO O'CONNELL PHOTOMETRY 83 15 COMPARISON OF SCHMIDTKE PHOTOMETRY TO CHRISTENSEN PHOTOMETRY 96 16 BANDPASSES FOR PHOTOMETRIC COLOR CALCULATIONS 99 17 BANDPASSES FOR PHOTOMETRIC INDEX AND CONTINUUM CALCULATIONS 101 18 INDICES AND COLORS: CTIO 104 19 INDICES AND COLORS: LOWELL OBSERVATORY 125 20 TRANSFORMATION FROM CLASS TO LUM 170 21 TRANSFORMATION FROM V/R AND LUM TO TEMPERATURE TYPE 181 22 TRANSFORMATION FROM V/R AND LUM TO B-V COLOR 185 23 SINGLE STAR MODEL FOR 109 Vir 192 24 SINGLE STAR MODEL FOR e Vir 194 25 DOUBLE STAR MODEL FOR ^ Vir 195 26 DOUBLE STAR MODEL FOR HR 1219 197 27 Am/Ap STAR MODEL FOR HD 109241 199 28 V/R’S AND LUM'S OF COMPARISON STARS 201 29 SPECTRAL TYPES OF COMPOSITE SPECTRUM STARS 205 30 SPECTRAL TYPES OF Am/Ap STARS 211 31 MEAN SPECTRAL TYPES OF UNRESOLVED STARS 213 32 STATISTICAL DATA OF ANALYZED MODELS 217

vii LIST OF FIGURES

FIGURE PAGE

1 COMPARISON OF SCHMIDTKE PHOTOMETRY TO O'CONNELL PHOTOMETRY 9 2 2 COMPARISON OF SCHMIDTKE PHOTOMETRY TO CHRISTENSEN PHOTOMETRY 97 3 V-R COLOR AS A FUNCTION OF V/R COLOR 100 4 H 3798 INDEX AS A FUNCTION OF V/R COLOR 129 5 He I 3819 INDEX AS A FUNCTION OF V/R COLOR 130 6 H 3835 INDEX AS A FUNCTION OF V/R COLOR 131 7 bl 3835 INDEX AS A FUNCTION OF V/R COLOR 132 8 CN 3860 INDEX AS A FUNCTION OF V/R COLOR 133 9 H 3889 INDEX AS A FUNCTION OF V/R COLOR 134 10 Ca II 3933 INDEX AS A FUNCTION OF V/R COLOR 135 11 H 4101 INDEX AS A FUNCTION OF V/R COLOR 136 12 CN 4200 INDEX AS A FUNCTION OF V/R COLOR 137 13 CH 4305 INDEX AS A FUNCTION OF V/R COLOR 138 14 H 4340 INDEX AS A FUNCTION OF V/R COLOR 139 15 H 4861 INDEX AS A FUNCTION OF V/R COLOR 140 16 Mg I 5175 INDEX AS A FUNCTION OF V/R COLOR 141 17 Na I 5892 INDEX AS A FUNCTION OF V/R COLOR 142 18 TiO 6180 INDEX AS A FUNCTION OF V/R COLOR 143 19 TiO 7100 INDEX AS A FUNCTION OF V/R COLOR 144 20 Na I 8190 INDEX AS A FUNCTION OF V/R COLOR 145 21 Ca II 8542 INDEX AS A FUNCTION OF V/R COLOR 146 22 TiO 8880 INDEX AS A FUNCTION OF V/R COLOR 147 23 CN 9190 INDEX AS A FUNCTION OF V/R COLOR 148 24 H 3798 CONTINUUM AS A FUNCTION OF V/R COLOR 150 25 He I 3819 CONTINUUM AS A FUNCTION OF V/R COLOR 151 26 H 3835 CONTINUUM AS A FUNCTION OF V/R COLOR 152 27 bl 3835 CONTINUUM AS A FUNCTION OF V/R COLOR 153 28 CN 3860 CONTINUUM AS A FUNCTION OF V/R COLOR 154 29 H 3889 CONTINUUM AS A FUNCTION OF V/R COLOR 155 30 Ca II 3933 CONTINUUM AS A FUNCTION OF V/R COLOR 156 31 H 4101 CONTINUUM AS A FUNCTION OF V/R COLOR 157 32 CN 4200 CONTINUUM AS A FUNCTION OF V/R COLOR 158 33 CH 4305 CONTINUUM AS A FUNCTION OF V/R COLOR 159 34 H 4340 CONTINUUM AS A FUNCTION OF V/R COLOR 160 35 H 4861 CONTINUUM AS A FUNCTION OF V/R COLOR 161 36 Mg I 5175 CONTINUUM AS A FUNCTION OF V/R COLOR 162 37 Na I 5892 CONTINUUM AS A FUNCTION OF V/R COLOR 163 38 TiO 6180 CONTINUUM AS A FUNCTION OF V/R COLOR 164 39 TiO 7100 CONTINUUM AS A FUNCTION OF V/R COLOR 165 40 Na I 8190 CONTINUUM AS A FUNCTION OF V/R COLOR 166 LIST OF FIGURES (continued)

FIGURE PAGE

41 Ca II 8542 CONTINUUM AS A FUNCTION OF V/R COLOR 167 42 TiO 8880 CONTINUUM AS A FUNCTION OF V/R COLOR 168 43 CN 9190 INDEX AS A FUNCTION OF V/R COLOR 169 44 SCHEMATIC REPRESENTATION OF WEIGHTS AND FILLING FACTORS 176 45 ABSOLUTE VISUAL (M ) AS A FUNCTION OF V/R COLOR 189 46 COMPOSITE SPECTRUM STARS IN THE M - B-V PLANE 222 I. INTRODUCTION

1.1. HISTORICAL SURVEY

This investigation is a study of a particular class of

stellar objects (namely composite spectrum stars) by means

of a particular observing technique (namely photoelectric

scanner photometry). The historical survey, therefore, is

divided into three parts: general studies of composite

spectrum stars, examples of photoelectric scanner

photometry, and related topics dealing with the detection of double star systems.

V

1.1.A. GENERAL STUDIES OF COMPOSITE SPECTRUM STARS

The first organized list of composite spectrum stars was a product of the Henry Draper Catalogue. Approximately

350 spectra were identified as composite (Shajn 1926). This

set of stars, however, is by no means homogeneous, as it

includes such diverse types of objects as close visual binaries unresolved on objective-prism plates, spectroscopic

binaries, and metallic-line (Am) stars. The stars Y UMa,

5 UMa and 6 Nor are representative of these three types.

The first study of composites as a group was published by Shajn. He pointed out that many composites in the Henry Draper Catalogue are composed of an F-, G- or K-type primary spectrum and an A-type secondary spectrum. Statistical arguments using reduced , secular parallax and galactic concentration indicate that the late-type components are giants. The composite spectrum stars, therefore, are not unlike the giant double-star systems whose components exhibit an increasing magnitude difference as the spectral type of the primary advances to later type.

Shajn recognized two selection effects which reduce the likelihood of detecting composite spectrum stars. If the difference in spectral type is too small or if the difference in magnitude is too large, the spectrum appears similar to that of a single star. Shajn also called attention to the relative sparseness of faint composite spectrum stars. However, the true diversity of types of objects was not fully recognized; much additional organization was required.

Hynek (1938) supplied the needed insight. Indeed, his study is still the foundation of recent work on the topic of composite spectrum stars. He collected data on 566 known composites and assigned each object to one of the nine classes listed in Table 1. The first five classes include double stars of various degrees of spatial and spectroscopic resolution. The next three classes include various types of single stars. The remaining class includes stars that were previously misidentified as composites. TABLE 1 3

CLASSES OF COMPOSITE SPECTRUM STARS3

CLASS I Composite spectrum arising from a physical binary whose component stars are not resolvable even with the largest instruments, yet whose relative motion is not great enough to establish definite­ ly the pair as a typical spectroscopic binary. This class has by far the most members and is of sufficient importance to call the members "spec­ trum binaries." Stars in this class may or may not show variable radial velocities, but in the latter [sic] case, unless the variations are periodic and well determined, the star has been retained in class I.

CLASS II Spectroscopic binary showing two spectra dis­ placed relatively to each other. Included for completeness. ...

CLASS III Very close physical pair, observable as binary, but whose component spectra cannot be obtained separately .

CLASS IV Wide physical pair, separate spectra obtainable but which, in the past, because of insufficient instrumental power, have been classed by other observers as a single composite spectrum. Includ­ ed for completeness.

CLASS V Optical pair.

CLASS VI Composite spectrum arising from peculiar condi­ tions in one body. Examples of this class are U Sgr, 17 Lep, Cl Cyg, etc., in which the compo­ site appearance of the spectrum cannot well be explained on the binary hypothesis.

CLASS VII Star embedded in nebulosity.

CLASS VIII Star of high luminosity in which absolute magni­ tude effects in the spectrum are sufficient to give the appearance of a composite spectrum.

CLASS IX Spectrum erroneously classified as composite. aQuoted from Hynek (1938). Class I, the spectrum binaries, is the largest group with 371 entries'. These systems are composed of two

apparently normal stars which are unresolved in spatial

separation and which show no variation. All

too often, however, Hynek assigned a star to Class I simply on account of its suspected composite character without

supporting evidence. As a result, Class I is actually a

potpourri of various types of systems that later

investigators have segregated. Most of the entries that have been removed from the spectrum binary class are close visual binaries, spectroscopic binaries, or Am stars.

An important portion of Hynek’s investigation was the

production of artificial composite spectra. These are formed by superposing the spectra of two stars on one spectroscopic plate (i.e. an intentional double exposure of two stars differing in spectral type). By varying the relative duration of the individual exposures, artificial composite spectra can be obtained which match the appearance of many composites. Hynek was able to quantify, to a modest extent, the selection effects noted by Shajn. First, common visual binary combinations such as F+G, G+K, or K+M are not recognizable as composites. Second, for some stars (i.e. M- type primary and A-type secondary) a visual magnitude difference of as much as five magnitudes can be tolerated and still produce a noticeable effect in the near ultraviolet portion of the spectrum. Hynek also called attention to a common signature of composite spectrum stars: the unusual appearance of the K- line. The "hazy" appearance is a result of the superposition of a narrow contribution from the hot star and a broad contribution from the cool star. The superposition of the H-line, however, does not produce a hazy spectral feature because the contribution of the hot component is a blend of a narrow H-line and a broad He hydrogen line.

Therefore, many composites, mostly spectrum binaries, can be recognized by the unusual appearance of the K-line in comparison with a more normal appearing H-line. On the assumption that the frequency of spectrum binaries is comparable to that of close visual binaries, Hynek estimated that only one-fifth of the spectrum binaries brighter than ninth visual magnitude had been discovered.

In a later publication, Hynek (1951) defined the threshold of detectability for the secondary spectrum seen in the light of the primary spectrum. The threshold is calculated by combining the energy distributions of pairs of stars and testing to see if, within the limits of the photographic plate response, the resulting composite energy distribution can be distinguished from that of the primary star alone. The presence of a secondary of a spectral type earlier than the primary is manifested in the blue portion of the spectrum; the presence of a later-type secondary is manifested in the red portion. The first study of composite spectrum stars on the

basis of photoelectric photometry was carried out by Bahng

(1958). With six broad-band filters with effective

wavelengths from 3520 to 8770 A , a photometric grid of

apparently single stars was established. Bahng showed that,

for single stars, colors in the red region are good

temperature indicators while colors in the ultraviolet are

good luminosity indicators. The observed colors of 30

composite spectrum stars were compared to the predicted

colors of pairs of single stars and "best" solutions were

found. Two problems were uncovered during the study. First,

the photometric spectral types, especially for the cooler

components, appear to be systematically later than the types

determined from spectrograms. Although this trend could be

the result of interstellar reddening, it is more likely

caused by the veiling of atomic lines, which tends to make

the spectroscopic types too early (Markowitz 1969). Second,

the uniqueness of a photometric solution essentially

disappears if the two components differ by one spectral type

or less.

Stephenson and Nassau (1961) stressed the importance of

extending the study of composite spectrum stars into the

ultraviolet. Using objective-prism spectra covering the wavelength range from 3300 to 4900 they classified 51

composite spectrum stars by temperature type. Kuhi (1963) published spectral classifications for the late-type components of 64 composites. The materials for the investigation were spectrograms covering the region 5200 to

6700 A. With this technique, spectral types earlier than GO are unreliably determined because of the lack of suitable spectral features. Nevertheless, Kuhi called attention to the considerable number of components falling in the

Hertzsprung gap of the H-R diagram (i.e. around spectral type GO III).

A re-evaluation of all suspected spectrum binaries brighter than seventh magnitude and north of

-25° was completed by Markowitz (1969), who used blue spectrograms. Two phenomena which systematically effect the spectral classification of composites were critically examined by means of artificial composite spectra. The major effect is the veiling of the spectral lines of the secondary by the continuum of the primary. This is particularly important if the secondary is of a later spectral type than the primary. The minor effect; is the blending of spectral lines on low dispersion plates. For example, Markowitz was not able to use the 4026 A and 4471 A He I lines to classify a B-type spectrum if the companion is a G-, K- or M-type giant or supergiant. As in the study by Kuhi, a large number of components were found in the Hertzsprung gap.

Markowitz also re-classified 22 stars as apparently single.

Most of these stars, previously misidentifled as composite, are either Am or early-type high luminosity stars.

Young (1971) used the UBVR and uvby photometry systems

to classify composites. The sample of stars was, for the most part, the same as that studied by Markowitz. Young reached five conclusions regarding the applicability of the

technique:

1) Particular combinations of spectral types yield

composites that can be recognized from UBVR

photometry alone.

2) For a much broader range of combinations, spectral

types of the components can be derived from

photometry if the system is known to be double.

3) There are combinations that can be classified by

means of photometry that are not recognized as

composite via normal spectroscopy.

4) Photometry with the uvby system is more accurate

than the UBV system for luminosity classification

but lacks a red filter for good temperature

classification.

5) The "best" photometry-based classifications are

those that use data from both systems.

Ginestet et al. (1980) have initiated a program to re­ evaluate the entire group of stars investigated by Hynek

(1938). They confirm that the number of stars in the

spectrum binary class (Class I in Table 1) is grossly over­ estimated. Whereas Hynek assigned about 39 percent of the bright composites to Class I, Ginestet et al. assign about 6

percent. Many of the stars removed from the spectrum binary

class are spectroscopic binaries, Am stars or peculiar A-

type (Ap) stars. The few stars that remain in Class I are prime candidates for spatial (i.e. by means of speckle

interferometry) or spectroscopic resolution studies.

Recently, Beavers and Cook (1980) have studied the

spectra of close binaries composed of type 0 to G dwarfs and

. The procedure which they used is similar in many ways to that described by Schmidtke (1981) and used in this dissertation. For example, a set of photometric indices is

formed from low resolution scanner observations. The indices of single stars are calibrated by means of similar observations of MK standard stars. The spectral types of the

individual components of the program stars are derived by a numerical fitting of the observed composite indices with

pairs of single stars from the calibrated grid.

The investigations discussed thus far have dealt with

the detection and classification of relatively large numbers of composite spectrum stars. There are, however, other

studies of individual composite spectrum stars. Some

examples are presented here. Lutz (1972) studied the stars

o Leo and T UMa by means of continuous-scan photometry. His

technique can be considered a forerunner of the discrete- point photometry technique used by Beavers and Cook and by

the author. Lockwood et al. (1975) showed that the overall 10

energy distribution (0.36-2.5 y ) of the "iron star" XX Oph

can be explained by a combination of B6 III and M6 III

stars. Goy (1977, 1980) has examined the stars HD 113001

and HD 128220 with photometry on the Geneva system. These

objects are interesting because the photometry suggests that

each system apparently contains a hot sub-dwarf.

1.1.B. EXAMPLES OF PHOTOELECTRIC SCANNER PHOTOMETRY

A photoelectric scanner, in its simplest form, is a

slitless (entrance aperture) spectrograph with a photometer

placed behind the exit slit. The central wavelength and width of the exit slit can be varied. With narrow-band

photometry of an isolated spectral feature and one or more

continuum points, an accurate line strength index can be

calculated. The examples in the following sections

illustrate uses of photoelectric scanner photometry that are

similar in technique to this study.

1.1.B.a. INDIVIDUAL STARS

Scanner photometry was pioneered at the Cambridge

University Observatories. Griffin and Redman (1960) measured the feature strengths of the 4200 & CN band and the

G band in G- and K-type stars. The bandpasses were

typically 30-50 A wide. The indices were formed by dividing

the sum of the intensities of the two adjacent continuum bandpasses by the intensity of the feature bandpass. If the 11 bandpasses were free of contaminating features, the indices would range from 2.0 upward and would be directly correlated to the equivalent widths of the spectral features. Inasmuch as corrections were not applied to remove the effects of contaminating features, the spectral indices are only roughly correlated with the features' equivalent widths.

Deeming (1960) used the same procedure to study the Mg 'b' triplet near 5175 A .

Observers at Lick Observatory expanded the scope of scanner photometry to include a wider variety of spectral features. Spinrad and Taylor (1969) measured the strengths of 16 spectral features using scanner photometry of 33 bandpasses (3880-10700 A). Because the purpose of their study was to determine differential abundances in cool evolved stars (by a more convenient means than high- dispersion spectra), they calculated the indices in a slightly different way and applied corrections to their data to remove the effects of contaminating features. Therefore, their photometric spectral indices are well correlated with the equivalent widths of the features. A similar procedure was applied to the study of dwarf G- and K-stars by Taylor

(1970).

I.l.B.b INTEGRATED SPECTRA OF GALAXIES

Another application of photoelectric scanner photometry is galactic population synthesis. This application is in 12 many ways a guessing game, the goal of which is to determine an astrophysically-meaningful distribution of single stars that can produce the observed galactic spectrum. To play such a game requires a photometric system sensitive to common types of stars, a thorough knowledge of the behavior of the system for a grid of single stars, and a model to be used in the guessing process. These three requirements are discussed below.

The first requirement is not as important as it may seem to be. Consider, for example, a photometry system that is very good at distinguishing stars. The contribution of these stars to the integrated light of galaxies, however, is below the level of detectability. The photometry system is over-designed. A similar problem occurs for composite spectrum stars. One ought not to look for a faint component substantially below the threshold of detectability (Hynek 1951).

Two general surveys of single stars are commonly used to satisfy the second requirement. The first survey, covering 120 stars, is that of Spinrad and Taylor (1971).

The survey, however, lacks the following types of objects: stars of luminosity class I and II, giants earlier than G8, and subgiants earlier than GO. In addition, there are only ten dwarfs earlier than F0. The second survey of common stellar types, based upon a different set of wavelengths, is that of O'Connell (1970, 1973, 1977). (Unless specified 13 otherwise, terms like "O'Connell's stars” or "O'Connell's system of wavelengths" refer to all three references.) A moderate deficiency in the number of supergiants and early- type dwarfs in O'Connell's sample of stars was removed by

Turnrose (1976).

Most of the development in galactic population studies has been devoted to the third requirement, the guessing game. For example, both linear and quadratic programming techniques have been used. Some procedures require that constraints such as continuity of the stellar luminosity function be applied to the solution. A review of the modeling techniques is given by MacFarlane (1979).

I.l.C. RELATED TOPICS

This section is devoted to a discussion of three topics related to the detection and classification of double star systems. The first is the use of detailed line profiles of spectral features to detect the presence of a faint companion star. Bettis and Branch (1975b) compared the theoretical Na I D^-line profile of a single star to the profile in the composite spectrum of a pair of stars whose composite color (e.g. B-V) is the same as the single star's color. Specifically, the D 2_line profile of a Te^£=5670°K star was compared to the combined profile in stars of

Te^=6000°K and Te^^=A000°K (all models having log(g)=4.0).

Introduction of the cool companion added very shallow, broad 14 wings to the profile, substantially increasing the feature's equivalent width. Bettis and Branch estimated that, in extreme cases, the equivalent width of the combined D-line can be enhanced by as much as 90 percent by the presence of a cool companion. The D-line equivalent widths, for example, are particularly sensitive in detecting companions to solar type stars. For other spectral types, different spectral features must be modeled.

The second topic is the use of the scatter of points within the color-magnitude diagram of a cluster to identify binary systems. Bettis and Branch (1975a) applied this technique to the Hyades, the Pleiades, and Praesepe. If accurate photometry is available, the set of points along the can be modeled by a low-order polynomial.

Those stars with a substantial positive deviation from the polynomial (i.e. above the main sequence) are removed from the sample, and a new polynomial model is calculated. The process is repeated until the model is self-consistent and no more points need to be removed. If the stars removed from the sample are cluster members, they must be either non-dwarf single stars or binaries. Advantages of this technique are that it requires only simple, but accurate, data (i.e. broad-band photometry) and that it is applicable to the entire range of main sequence spectral types. The technique, however, is not without disadvantages. For nearby clusters, the range in distance (from front to back) 15 can add legitimate scatter to the diagram. may also contribute to the scatter. Another problem might be the misidentification of peculiar stars as binaries.

The third topic related to the discussion of composite spectrum stars is the spectral decomposition of close visual binaries with known combined spectral types and known magnitude differences (Am^'s). From these two pieces of information, reasonable determinations of the components' spectral types can be made. This technique has been used by

Christy and Walker (1969), Edwards (1976), and Corbally and

Garrison (1980). One problem, however, is the simultaneous determination of both temperature and luminosity classes.

(The solution is, for practical purposes, a set of four output parameters derived from only three input parameters.)

For example, Edwards assumes that the luminosity class of the secondary must be class V if the Am is greater than 2.5 magnitudes. The class may or may not be class V, but such assumptions (usually quite reasonable) are necessary to derive any results from such a small amount of data.

1.2. PURPOSE OF INVESTIGATION

The purpose of this investigation, in simple terms, is to determine the spectral types of the individual components of a sample of composite spectrum stars. Any study of this size, however, requires a more complete explanation of its intentions. The following discussion is divided into three 16 parts. Why study composite spectrum stars? How does the technique used in this study differ from those used in the past? What specific questions does this investigation address?

I.2.A. WHY?

Why study the composite spectrum stars? Composites fall into the more general category of objects known as binary or multiple star systems. Inasmuch as nearly all of our knowledge of stellar radii, masses, , etc. is derived from studies of binary stars, no sub-group of binaries ought to be neglected from study. It is commonly assumed that the various characteristics of binary stars form continuous distributions. For example, Kuiper (1935) tabulated the distribution of physical separations of binary stars. On the one hand there are the visual binaries with relatively large separations; on the other hand there are the spectroscopic binaries with small separations. It is reasonable to assume that systems of intermediate separation exist (e.g. the spectrum binaries of Table 1). There is no a priori reason to believe the distribution should be bimodal.

The study of various types of binaries can also aid in our understanding of . Only with observations of systems of stars (believed to be the same age) can theoretical isochrones (Ciardullo and Demarque 1979) be checked for consistency. Although the isochrones are usually compared to entire clusters of stars in order to estimate the cluster's age, there is no reason why this technique should not be applied to pairs of stars. The situation, however, is never so simple. Can the evolutionary tracks of single stars be compared to the H-R diagram positions of a binary's components? For the case of close binary systems the answer is a definite no! For example, mass exchange between the components can radically alter the evolution of each component. For the visual binaries there appears to be no interaction between the components. But for systems of intermediate separation, including many composite spectrum stars, the amount of interaction is not known. The results of Kuhi (1963),

Markowitz (1969), and Young (1971) suggest that some interaction may be present. These authors assign a relatively large number of components to the Hertzsprung gap

(around spectral type GO III in the H-R diagram). Among normal field stars, very few have spectral types around

GO III, presumably because their temporarily rapid evolution. (It can be questioned if any normal GO III stars exist.) Can the large incidence of components of composites in the Hertzsprung gap be attributed to an altered process of stellar evolution caused by the mutual interaction of the component s ? 18

As a final comment under the topic "why?", consider the light curve analyses of eclipsing binary stars. One of the photometric elements, either calculated or assumed, in the solution of a light curve is the ratio of the luminosities of the components. If this parameter is accurately known from other considerations, the remaining elements can be more reliably determined. To pin down the ratio of luminosities (or difference in magnitudes) is tantamount to determining reliable spectral types for the components.

Wilson ,(1970) suggested the use of spectrophotometry as a means of deriving an accurate spectral type for each component of an eclipsing binary and, hence, a better solution of the light curve. There is a major problem, however, if the components are elliptical or exhibit any interaction effects. Virtually all techniques of spectral decomposition assume the components to be normal. This study is an investigation into a new technique of spectral decomposition.

I.2.B. HOW?

How shall the spectral classifications of this project be determined? Underlying this question is another query: why is the current technique better than the techniques of previous investigations? An examination of the procedures used in the past yields, with one exception, the use of only two basic techniques. Spectral classifications of 19 composites have usually been derived by means of spectroscopy or by means of wide- or intermediate-band photometry. Both techniques have disadvantages.

Spectroscopy, for example, is a visual assessment of only one (usually the blue) portion of the spectrum. The studies of Stephenson and Nassau (1961) and Kuhi (1963) demonstrate the need to expand the classification (actually the detection of composites) to other portions of the spectrum.

Another drawback of spectroscopic classifications is the effect of veiling (Markowitz 1969) of one component's spectral lines by the continuum of the other component. As long as only subjective means of assessing the amount of veiling are used, the chance of introducing systematic errors into the classifications persists.

The use of photometry, on the other hand, provides nearly complete objectivity in the classification process.

Photometric classifications by means of both wide- and intermediate-band data, however, can have drawbacks. For example ^ the technique is sensitive only to gross changes in the continuum which can be effected by interstellar reddening. In addition, peculiarities of individual spectral features are generally overlooked.

The technique of using spectrophotometric scans, advocated by Beavers and Cook (1980) and the author, avoids the main difficulties of the other techniques. In particular, the spectral indices calculated from 20 photoelectric scanner photometry can be made free of interstellar reddening effects, and the effects of veiling can be accounted for by means of empirical calibrations. If a sufficient number of spectral features (covering a large portion of the spectrum) are measured, stars with common spectral peculiarities ought to be detected.

There are, however, significant differences between the procedures used by Beavers and Cook and by this author. The present study covers a much broader range of wavelength

(3570-10400 A as opposed to 3500-4400 A). The increase in wavelength baseline may have important consequences in light of Hynek's (1951) threshold of detectability. The present study also contains measurements of both hot and cool spectral features at each end of the 3570-10400 A wavelength range. The spectral indices in this dissertation are calibrated using a much broader range of spectral types.

This enhanced coverage of single stars is required because the program stars of this study are not restricted to combinations of dwarfs. A major difference between the two techniques lies in the numerical fitting procedures. Beavers and Cook generate sets of synthetic indices from combinations of single stars. Their program stars are then compared to this set. This dissertation, however, uses a least squares non-linear fitting procedure to estimate the spectral types of the individual components directly. Such a procedure is more flexible in that it requires fewer 21 constraints on the numerical solution. If the data permit, not only the temperature type but also the luminosity class of each component can be solved for explicitly. Beavers and

Cook assume a priori that both components must be of luminosity class IV or V. It should be noted, however, that they plan to report on binary systems containing giants in a subsequent paper.

I.2.C. WHAT?

What are the specific questions to be addressed by this study? The following set of questions is a minimum list.

1) With the spectrophotome trie decomposition technique,

are large numbers of components of composites

classified around GO III (i.e. in the Hertzsprung

gap) ?

2) Are systematic errors introduced into the results by

the decomposition technique itself? If there are

systematic errors, how can they be eliminated?

3) How far can the decomposition of composite spectrum

stars be "pushed?" If the spectral types of the

components are too similar or too different, the

resulting spectrum has the appearance of a single

star. What are the limits within which double stars

may be detected and classified?

4) Can the classification technique identify stars with

common peculiarities? II. OBSERVATIONS AND REDUCTIONS

II.1 SELECTION OF STARS

A list of program stars is presented in Table 2. The majority of stars are traditional composite spectrum stars selected from Hynek (1938); the remaining stars are double stars found by means of the lunar occultation technique

(e.g. Dunham 1974). Unlike some other studies (e.g.

Markowitz 1969), the sample of stars is not restricted to a particular Hynek class. The inhomogeneity is used to test the spectral decomposition procedure.

A list of comparison stars is presented in Table 3.

Nearly all of these stars have well determined MK spectral types (Morgan and Keenan 1973, Keenan and McNeil 1976,

Boeshaar 1976, Morgan et al. 1978, Keenan and Pitts 1980).

Three types of comparison stars are included in the table.

First, a number of stars in common with O'Connell (1977) are included to ensure a proper transformation to his photometry system. Second, a number of stars with accurate absolute flux calibrations (Tug et al. 1977 , Tug 1980a, Tug 1980b) are included to check the accuracy of the O'Connell photometry system. Third, a number of stars, mostly supergiants, are included to supplement the spectral type TABLE 2 23

PROGRAM STARS

CERRO TOLOLO INTER-AMERICAN OBSERVATORY:

HD HR OTHER NAME HYNEK

24744/5 1219 I 31244/5 III 35165 1772 VI 39547/8 2044 III 39963/4 2073 I 46349/50 2388 I 57146 2786 VIII 63926/7 3056 III 7 1129/30 3307 £ Car I 72737/8 3386 III 76072/3 3534 III 76304/5 3548 I 83368 3831 VI 83808/9 3 85 2 0 Leo II 84367 3871 0 An t I 92139/40 4167 p Ve 1 III 92397/8 4177 IV 94672 4265 55 Leo 99574/5 4417 III 101379/80 4492 III 102928 4544 103856 IV 104321 4589 n Vir 107259 4689 n Vir 107328 4695 16 Vir 109085 4775 0 Crv 109241 VII-I 110073 481 7 £ Cen I 112142 4902 V Vir 113904 4952 6 Mus VI 114330 4963 0 Vir 115331 5008 IV 1 19786 5170 85 Vir 120642 5207 IV 124147/8 5308 I 127972/3 5440 D Cen I 128266/7 5450 IV 130205/6 III 130701/2 5527 AX Cir III 135345/6 5667 III 136415/6 5704 y Cir III 142691/2 5929 I 144197 5980 6 Nor VI 144534/5 I TABLE 2 (continued) 24

PROGRAM STARS

LOWELL OBSERVATORY:

HD HR OTHER NAME HYNEK CLASS3

144208/9 5983 I 157978/9 6497 I 159870 6560 I 169689/90 6 90 2 1 aHynek classes are listed in Table 1. Entries with no Hynek class are occultation binaries. TABLE 3 25

COMPARISON STARS

CERRO TOLOLO INTER-AMERICAN OBSERVATORY:

HD HR OTHER NAME MK TYPE 2 15318 718 S Cet B9 III 22318 1084 E Eri K2 V 297 12 1492 R^Dor M8e 30652 1543 tt Or i F6 V 39400 2037 56 Ori K1.5 lib 57061 2782 T CMa 09 lb 66811 3165 C Pup 05 If 82668 3803 N Vel K5 III 95578 4299 6^ Leo MO III 100261 4441 o Cen G2 la 101947 4511 V810 Cen F9 O-Ia 102212 4517 V Vir Ml IIlab 113226 4932 e Vir G8 III 119796 5 1 7 1A G8 O-Ia 130109 5511 109 Vir AO V 139664 5825 g Lup F5 IV-V 149438 6165 T Sco BO V 161868 6629 Y Oph AO V

LOWELL OBSERVATORY:

HD HR OTHER NAME MK TYPE

111812 4883 31 Com GO IIIp 114710 4983 3 Com GO V 119228 5154 83 UMa M2 Illab 130109 5511 109 Vir AO V 137759 5744 I Dra K2 III 147394 6092 T Her B5 IV 149438 6159 2 9 He r K7 III 161797 6623 y He r G5 IV-V 161868 6629 y Oph AO V 184915 7446 K Aql BO.5 III 185395 7469 6 Cyg F4 V 186427 7504 16 Cyg B G4 V 196867 7906 a Del B9 IV 198001 7950 e Aqr Al V 200905 8079 5 Cyg K5 Ib-II 201091 8085 61 Cyg A K5 V 210459 8454 tt Peg F5 II-II 218329 8795 55 Peg Ml Illab 26 survey of O'Connell. As developed in Section II.4, only some of the comparison stars have standard values. The purpose of the comparison stars as a group is to verify the transformation of the author's photometric system to

0'Connell's.

II.2 SELECTION OF WAVELENGTHS

The wavelengths used for the observing project are presented in Table 4. The list is similar to that used by

O'Connell. Modifications to O'Connell's set of wavelengths include the removal of all entries with wavelengths shorter than 3570 A or longer than 10400 A and the addition of entries at AA 4380, 4476, 6560, 6800, 9920, 10050. In order to make full use of data at the additional wavelengths, a stellar survey of reasonable completeness would be required.

Since the number of comparison stars observed in this project is inadequate to document the photometric behavior of new indices over the entire range of common spectral types, photometry results obtained at non-O'Connell wavelengths are included in the remaining discussion for completeness only. No modeling or other analysis is based upon data at the additional wavelengths.

As shown in Table 4, a number of bandpasses contain contaminating features. Contaminants are of no significant consequence because all calibrations of the calculated indices used in the investigation are done empirically. TABLE 4 27

PHOTOELECTRIC SCANNER WAVELENGTHS

ORDER = 2, BANDPASS = 20 A

CENTRAL PRIMARY3 PRIMARY WAVELENGTH FEATURE(S) CONTAMINANT(S)

3570 Fe I 3620 Fe I 3784 3798 H 10 3815 He I, Fe I 3835 H9 Fe I, Mg I, CN 3860 CN Fe I 3889 H<; CN 3910 3933 Ca II 4015 He I 4101 H 6 4200 CN 4270 Fe I 4305 CH 4340 HY 4380 Fe I 4400 Fe I 4430 interstellar 4476 He I, Mg II 4500 4 7 85 MgH 4861 H 3 5050 MgH TABLE 4 (continued)

PHOTOELECTRIC SCANNER WAVELENGTHS

ORDER = 1, BANDPASS = 40 &

CENTRAL PRIMARY PRIMARY WAVELENGTH FEATURE(S) CONTAMINANT(S)

5050 MgH 5175 Mg I MgH, 5300 5820 TiO 5892 Na I He I TiO 6100 6180 TiO 6370 6560 Ha 6800 CaH 7050 TiO, 7100 TiO ®Ho0 z 7400 8050 TiO, 8190 Na I TiO, ©h 2o 8400 8542 Ca II TiO 8800 ®H 0 8880 TiO ®H 0 9190 CN ®HoO z 9920 FeH 9950 10050 P 6 10400

If no feature is specified, the bandpass is used to measure the continuum. 29

There is one prominent difference between the wavelength system used by O'Connell and that used in this paper. For first-order bandpasses, O'Connell used a 30 A exit slit, whereas this author used a 40 A exit slit. This deviation from the standard system was required by the lack of a proper exit slit for one of the photoelectric spectrum scanners. No problem occurred as a result of the change.

The difference in calculated indices between 30 A and 40 A data is minimal. As shown in Section II.6, the empirical calibration of ’ single-star indices adequately models both sets of data.

II.3 NIGHTLY OBSERVING TECHNIQUE

Data were obtained during two observing runs, the dates and circumstances of which are summarized in Table 5. In general, data from Cerro Tololo Inter-American Observatory

(CTIO) obtained during February 1978 are of high quality, and data from Lowell Observatory (LO) obtained during June

1980 are of lower quality because of very poor seeing conditions. In light of the difference in quality, the two data sets are reduced and interpreted separately. The set of wavelengths in Table 4 was divided into four sub-ranges according to the order-separating filter used: blue (3570-

4500 A), green (4785-5050 A ), yellow (5050-7400 A), and red

(8050-10400 A). At most, three sub-ranges were observed during a single night. The nightly procedure consisted of TABLE 5 30

SUMMARY OF OBSERVING RUNS

CERRO TOLOLO INTER-AMERICAN OBSERVATORY:

0.9m telescope HCO dual channel scanner S-20 and S — 1 photomultiplier tubes

DATE SUB-RANGES OBSERVED COMMENTS

14/15 FEB 78 red 15/16 FEB 78 red 16/17 FEB 78 blue,green,yellow 17/18 FEB 78 blue half night 18/19 FEB 78 blue,yellow

LOWELL OBSERVATORY:

Perkins 1.8m reflector of Ohio Wesleyan University and The Ohio State University at Lowell Observatory "Boyce" Cassegrain scanner RCA 31034A photomultiplier tube

DATE SUB-RANGES OBSERVED COMMENTS

17/18 JUN 80 blue,yellow seeing 4-6" 18/19 JUN 80 blue,yellow seeing 3-8” 20/21 JUN 80 blue,yellow half night 21/22 JUN 80 blue,yellow seeing 4-10" 31 pulse-counting photometry at each wavelength within a given sub-range for nearly all available comparison stars and as many program stars as time would permit. Multiple observations of selected comparison stars were obtained on all nights in order to improve the extinction calculations.

A paired-pulse correction was added to the observed count rates using an assumed pulse width of 30ns. Wavelength calibration was checked once or twice per night by scanning the K-line of an F-type star with the same exit slit as used for other stellar observations.

Coverage of the four sub-ranges is not uniform. In general, for blue and yellow sub-ranges, a minimum of two observations per wavelength per program star were obtained.

The number of observations at green sub-range wavelengths, however, is small. Mechanical problems with the scanner at

CTIO prohibited extensive use of the filter bolt’s automatic positioning feature. Therefore, it was necessary to omit the three green wavelengths during all but one night. For observations from LO, the green sub-range wavelengths were not observed because a proper order-separating filter was not available for use with the red-sensitive photomultiplier tube. Red sub-range observations were obtained only at

CTIO, and because of the low sensitivity of S-l photomultiplier tubes, the number of observations per night is small. Therefore, over the course of two nights devoted to observing the red sub-range, virtually no program star 32 was observed more than once. If an individual observation contains an error, it may not be detected.

11.4. NIGHTLY REDUCTION TECHNIQUE

11.4.A. STANDARD VALUES

The photometric data of O'Connell are given in normalized, de-reddened form and can not be used directly as standards for photometric reductions. A multi-step procedure was followed to build up the assumed standard values listed in Table 6. (The assumed set of standard values is incomplete. A revised set, based upon observed values, is described in Section II.4.E.) The values are in units of magnitudes per unit frequency. The overall consideration in this procedure has been to develop a set of values that is consistent with the entire body of

O'Connell's data.

Step 1. O'Connell's (normalized) values for 109 Vir, assumed to have zero reddening, are taken as the primary standard, and values of the other standard stars in Table 6 have been adjusted to its scale as described below. A comparison of the assumed values for 109 Vir and its interpolated absolute calibration values (Tug et al. 1977) is found in Table 7. The Tug et al. system is systematically brighter by 0.013 magnitudes. An explanation of the difference is that the interpolated absolute TABLE 6 33

ASSUMED MAGNITUDES OF STANDARD STARS

A e Er i tt ^ Or i 56 Or i 4 Pup 61 Leo 109 Vir

3570 2.526 0.779 5 089 -2.120 1.068 3620 2.175 0.746 4 497 -2.107 1.057 3784 1 .785 0.307 4 161 0.292 3798 2.001 0.419 4 378 0.509 3815 2.197 0.273 4 513 0.055 3835 2.577 0. 584 4 755 0.517 3860 2.254 0.158 4 600 -0.119 3889 1.973 0.372 4 131 0.520 3910 1.735 0.157 3 917 -0.134 3933 2.323 0.653 4 746 -0.141 4015 1.190 -0.062 3 153 -0.205 4101 1.125 0.153 3 034 0.501 4200 1.101 -0.122 3 081 -1.872 -0.170 4270 1.109 -0.149 2 726 -0.146 4305 1.355 -0.003 3 002 -0.095 4340 0.810 0 .028 2 397 0.541 4380 4400 0 .854 -0.196 2 460 -1.851 -0.100 4430 0.712 -0.244 2 301 -1.838 -0.119 4476 -1.814 4500 0.518 -0.310 2 048 -1.801 -0.112 4785 0.306 -0.413 1 575 -1.690 -0.058 4861 0 .386 -0.119 1 659 0.561 0.295 -0.407 1 462 -1.594 0.000 5 °50b 5050 0.287 -0.407 1 430 -1.594 1.547 0.000 5175 0.462 -0.362 1 502 -1.566 1.726 0.029 5300 0.077 -0.470 1 167 -1.531 1.178 0.049 5820 -0.131 -0.543 0 827 -1 .376 0.692 0.147 5892 -0.050 -0.509 0 894 -1 .356 0.936 0.187 6100 -0.190 -0.538 0 704 -1.298 0.534 0.182 6180 -0.184 -0.522 0 703 -1.276 0.672 0.208 6370 -0.211 -0.560 0 674 -1.217 0.462 0.250 6560 6800 -1 .099 7050 -0.364 -0.561 0 398 -1 .049 0.073 0.342 7100 -0.361 -0.599 0 448 -1.061 0.222 0.345 7400 -0.367 -0.560 0 367 -0.955 -0.130 0.394 8050 -0.467 -0.553 0 199 -0.810 -0.324 0.486 8190 -0.466 -0.588 0 207 -0.325 0.507 8400 -0.485 -0.602 0 151 -0.710 -0.391 0.545 8542 -0.421 -0.498 0 243 -0.655 -0.300 0.554 8800 -0.481 -0.551 0 066 -0.572 -0.479 0.462 8880 -0.490 -0.539 0 048 -0.519 0.650 9190 -0.516 -0.539 0 127 -0.468 0.542 9920 9950 -0.594 -0.564 -0 112 -0.705 0.551 10050 10400 -0.633 -0.587 -0 199 -0.776 0.580 TABLE 6 (continued) 34

ASSUMED MAGNITUDES OF STANDARD STARS

A T Sco Y Oph K Aql 0 Cyg a Del e Aq r

3570 -1.362 1.184 1.162 2.056 0.847 1 .262 3620 -1.354 1.161 1.161 2 .000 0.834 1.235 3784 0.498 1.533 0.135 3798 0.722 1.661 0.368 3815 0.264 1.457 -0.055 3835 0. 7 03 1.758 0.354 3860 0.033 1.311 -0.195 3889 0.670 1.616 0.385 3910 0.040 1.361 -0.178 3933 -0.084 1 .769 -0.206 4015 -0.155 1 . 154 -0.232 4101 0.652 1.400 0 .368 4200 -1 .298 -0.146 1 .066 -0. 190 -0.154 4270 -0.113 1.089° 1.059 -0.167 4305 -0.052 1.182 -0.136 4340 0.658 1 .353 0.436 4380 4400 -1.218 -0 . 080 1.142 1.018 -0.125 -0.094 4430 -1.207 -0.105 1.161 0 .986 -0.130 -0.102 4476 -1.190 1.140 -0.100 4500 -1.181 -0.088 1.124 0 .940 -0.112 -0.092 4785 -1.081 1.190 -0 .043 -0.011 4861 0.511 5050* -0.989 1.221 0.026 0.040 5050 -0.989 0.024 1.221 0.894 0.026 0.040 5175 -0.943 0.031 1 .242 0.895 0.067 0.085 5300 -0.902 0.056 1.251 0.857 0.075 0.087 5820 -0.738 0.167 1 .300 0.822 0.190 0.195 5892 -0.720 0.182 1.321 0.843 0.226 0.202 6100 -0.647 0.182 1.384 0.791 0.240 0.267 6180 -0.620 0.196 1 .388 0.787 0.251 0.256 6370 -0.579 0.258 1.396 0.791 0.299 0.282 6560 6800 -0.460 1.453 0.353 7050 -0.395 0.330 1.498 0.768 0.406 0.387 7100 -0.386 0.354 1 .500 0.771 0.414 0.392 7400 -0.314 0.385 1 .552 0.799 0.465 0.434 8050 -0.160 0.602 8190 0.604 8400 -0.077 0.648 8542 -0.020 0.660 8800 0.032 0.594 8880 0.676 9190 0.657 9920 9950 0.733 10050 10400 0.750

(continued) 6 TABLE TABLE ASSUMED MAGNITUDES OF STANDARD STARS OF STANDARD MAGNITUDES ASSUMED Peg 1 .243 1 1.251 1.328 .081 1 1.104 1.473 0.571 0 .826 0 0.676 tt 2.168 pass ought to have have Aband- to ought pass 4200 the for used been . pass Note: In subsequent tables, the dispersion dispersion the tables, subsequent In order Note: of the 5050 5050 the of explicitly not is bandpass labeled. 505°f 6100 0.525 6800 70507400 0.464 0.476 5892 5050 4500 Se cond order. Se 618063706560 0.523 0.517 7100 0.474 517553005820 0.666 .626 0 0.565 4861 3835.673 1 43404380 4400 1.186 0.935 First order. 3784 4785 3620 3798.594 1 3910 44304476 0.877 39334015 4101 1.770 4270 0.962 3570 2.245 3815.368 3860 1 3889.540 1 42004305 0.997

to & band­ A 4270 the used for value 1.089 the Aql K CFor TABLE 7 36

COMPARISON OF O ’CONNELL PHOTOMETRY TO TUG et al. PHOTOMETRY

FOR THE STAR 109 Vir (SPECTRAL TYPE AO V)

A O'CONNELL TUG et al. DIFFERENCE Normalized Normalized (0 - T)

3570 1.068 1.101 -0.033 3620 1.057 1.078 -0.021 4200 -0.170 -0.203 0.033 4400 -0.100 -0.144 0.044 4430 -0.119 -0.149 0.030 4500 -0.112 -0.130 0.018 4785 -0.058 -0.068 0.010 5050 0.000 0.000 • • • • • 5050 0.000 0.000 • • • • • 5175 0.029 0.022 0.007 5300 0.049 • 0.012 0.037 5820 0.147 0.128 0.019 5892 0.187 0.130 0.057 6100 0.182 0.175 0.007 6180 0.208 0.197 0.011 6370 0.250 0.219 0.031 7050 0.342 0.339 0 .003 7100 0.345 0.337 0.008 7400 0.394 0.381 0.013 8050 0.486 0.491 -0.005 8400 0.545 0.520 0.025 8542 0.554 0.596 -0.042 8800 0.462 0.434 0.028 37 calibration photometry at 5050 A is 0.013 magnitude too faint. When normalized to this value, the remaining values for Tiig et al. are too bright.

Step 2. The relative (to 109 Vir) calibration data for

£ Pup, x Sco, k Aql , and e Aqr (Tiig 1980a, 1980b) are adopted as standard values. Inasmuch as these data are directly tied to the Tug et al. data in Step 1, a 0.013 magnitude correction is added to all values. 3 Step 3. O'Connell's normalized values for it Ori (F6 V) and 61 Leo (M0 III), assumed to have zero reddening, were modified by additive constants to remove the normalization to 5050 A and to place them on the same scale as 109 Vir.

The constants (monochromatic magnitude differences at

5050 ^) were first estimated on the basis of the visual magnitudes of the three stars and were subsequently refined on the basis of scanner observations in Step 5.

Step 4. Tentative values for the multiply-observed stars e Eri and 56 Ori were assigned on the basis of preliminary CTIO data reductions. These values were also refined in Step 5.

Step 5. Trial reductions of the CTIO data were completed in an iterative manner to refine the additive constants of Step 3 and the entire set of values of Step 4.

The criteria for terminating the iterative process are that 3 the residuals of the photometry for tt Ori and 61 Leo have a mean value of zero when averaged over all wavelengths and 38 that the residuals of the photometry for e Eri and 56 Ori be identically zero at all wavelengths.

Step 6. Values for y Oph, 0 Cyg, ot Del, and tt Peg were then incorporated into the standard system. Since a Del is an O'Connell star, its values are found using a procedure analogous to Step 3. As in the case of O'Connell's other stars, a Del is assumed to have zero reddening. The stars y Oph, 0 Cyg, and tt Peg are multiply-observed stars and their values were found by the procedure of Step 4.

II.4.B. REDUCTION EQUATIONS

The reduction equation used in this study requires the nightly determination of two coefficients at each wavelength: an extinction coefficient and a transformation coefficient. Because the photometry is on a narrow-band system, there are no color terms. The reduction equation is:

mSTD ’ "OBS ' A ‘X " B U) where

mSTD = stan^arc^ magnitude from Table 6

m = observed instrumental magnitude OBS X = air mass of observation

A = extinction coefficient (magnitudes per air mass)

B = transformation coefficient (magnitudes)

A separate solution for A and B is required for each bandpass. The observed values of A and B are then smoothed

(as a function of wavelength) to produce adopted values of A and B .

II.4.C. EXTINCTION COEFFICIENTS

Equation (1) can be rewritten in the form:

“OBS - “STD " A ‘X + B C2> so that a linear least squares fit to all observations of stars which have standard values can be used to determine coefficients A and B. At this point in the nightly reduction process, only the extinction coefficient A is calculated. At each wavelength, the observed extinction coefficient is considered to be the sura of three contributions. A complete discussion is found in Hayes and

Latham (1975).

Contribution 1: Rayleigh scattering. A formula for estimating the atmospheric extinction resulting from

Rayleigh scattering is:

A_ . v = 0 . 0094977 -(l/A)4 -tf(A)]2-e_h/7" 6 (3) K A Y where

A = wavelength (microns)

f(A) = 0.23465 + 107.6 + 0.93161

(146 - (1/A)2) (41 - (1/A)4)

h = altitude (meters)

Although the contribution is variable (indeed, most constants are not expected to have fixed values) , equation 40

(3) was used exactly as stated. The altitudes of CTIO and

LO are 2399m and 2198m respectively. The contribution of

Rayleigh scattering to the total atmospheric extinction is listed in Table 8.

Contribution 2: Ozone absorption. For this study, the amount of ozone above the two observing sites is considered to be identical and invariant. The contribution of ozone absorption to the total atmospheric extinction is also listed in Table 8. The absorption due to ozone is included, at a given wavelength, only if the coefficient is greater than about 0.01 magnitude per air mass. Thus, only a portion of the Chappuis band, which extends from 4400 to

7500 K , needs to be included. Values of the absorption coefficient are taken from Cast (1960).

Contribution 3: Aerosol scattering. An equation describing aerosol scattering is:

aa e r - a -->'0 '8 (A> where

A0 = constant (magnitudes per air mass)

This contribution is considered the only variable component of the total extinction coefficient. In a more general form of equation (4), the exponent 0.8 is allowed to vary. The values found by Hayes and Latham, however, are restricted to the range 0.49 to 1.52, with only one value exceeding 1.0.

Therefore, use of the value 0.8 in equation (4) is a reasonable approximation of the mean behavior. A similar TABLE 8

CONTRIBUTIONS TO ATMOSPHERIC EXTINCTION

A RAYLEIGH3 OZONE SUB-TOTAL3

3570 0.451 0.451 3620 0.426 0.426 3784 0.356 0.356 3798 0.350 0.350 3815 0.344 0.344 3835 0.337 0.337 3860 0.328 0.328 3889 0.318 0.318 3910 0.311 0.311 3933 0.304 0.304 4015 0.279 0.279 4101 0.256 0.256 4200 0.232 0.232 4270 0.217 0.217 4305 0.210 0.210 4340 0.203 0.203 4380 0.196 0.196 4400 0.192 0.192 4430 0.187 0.187 4476 0.179 0.179 4500 0.176 0.176 4785 0.137 0.007 0.144 4861 0.128 0.009 0.137 5050 0.110 0.017 0.127 5050 0.110 0.017 0.127 5175 0.100 0.018 0.118 5300 0.091 0.027 0.118 5820 0.062 0.050 0.112 5892 0.059 0.047 0.106 6100 0.051 0.052 0.103 6180 0.049 0.047 0.096 6370 0.043 0.035 0.078 6560 0.038 0.025 0.063 6800 0.033 0.015 0.048 7050 0.029 0.009 0.038 7100 0.028 0.028 7400 0.024 0.024 8050 0.017 0.017 8190 0.016 0.016 8400 0.014 0.014 8542 0.013 0.013 8800 0.012 0.012 8880 0.011 0.011 9190 0.010 0.010 9920 0.007 0.007 9950 0.007 0.007 10050 0.007 0.007 10400 0.006 0.006 RAYLEIGHb X

O 'CTIO observations. 0 3 800.034 6800 1 00000.047 0.050 6560 6370 6180 6100 5892 LO observations. 4785 7100 400.024 0.018 7400 0.064 0.102 5820 5175 5050 3570 5 00.180 0.184 0.201 4500 4476 4400 4380 4340 4270 4200 7050 400120.192 0.192 5050 4861 0.216 4430 4305 4101 4015 3835 3815 5300 3620 3798 3784 930310.311 0.311 3933 3910 3889 3860 CONTRIBUTIONS TOATMOSPHERIC EXTINCTION .5 0.052 0.047 0.039 0.044 0.053 0.061 .2 0.009 0.029 0.029 .1 .1 0.130 0.017 0.093 0.113 0.365 0.365 0.463 0.140 0.209 .2 0.223 0.009 0.238 0.286 0.326 0.113 0.336 0.132 0.345 0.223 0.238 0.286 0.326 0.336 0.345 0.353 .9 0.197 0.359 0.197 0.359 0.437 .6 0.263 0.319 0.263 0.319 TABLE

8 (continued) 0.015 .2 0.064 0.025 0.035 0.050 0.027 SUB-TOTAL OZONE 0.007 0.017 0.049 0.029 0.105 0.108 0.120 0.463 0.038 0.097 0.079 0.114 0.120 0.024 0.437 0.141 0.180 0.184 0.201 0.209 0.353 0.147 0.130 0.216 A3 technique has been used by Jones (1980).

The total atmospheric extinction coefficient, then, is

the sum of three individual contributions. Since two contributions are considered to be constant from night to night at a given site, the only undefined parameter is A 0 in equation (4). Therefore, for each night, an equation of the form:

A - A = A 0•A-0‘8 (5) OBS SUB ° where

Aqbs = observed extinction (magnitudes per air mass)

AguB = sub-total extinction from Table 8 (magnitudes per air mass) is solved by a least squares technique for the best positive value of A 0. For five nights at CTIO the values of A 0 were

0.015, 0.015, 0.010, 0.011, and 0.002 magnitudes per air mass; for four nights at Lowell the values were 0.076,

0.093, 0.024, and 0.005.

Not all bandpasses, however, are used in the determination of A 0 • Seven bandpasses with telluric water vapor contamination (Table 4) as well as six bandpasses added to the wavelength list for this study (Section II.2) are excluded from the fitting process. Indeed, having estimated A„ , values of the extinction coefficients within the excluded bandpasses are predicted. One problem that might arise is the extra absorption due to atmospheric water vapor. However, the observed coefficients are not 44

systematically larger than the smoothed values, so that the

smoothed values are adopted for all bandpasses.

II.4.D. TRANSFORMATION COEFFICIENTS

The transformation coefficient B in equation (1) is now found by rewriting that expression in the form:

B = mOBS ~ mSTD " A ‘X (6) The observed value of B, at a given wavelength, is the average of individual B's calculated with the smoothed extinction coefficients for each observation of a star having a standard value. This mean value, however, can not be used in the final reductions because its use simply transfers small systematic errors in standard values to errors in program star values. Errors can also be introduced by small shifts in wavelength calibration within the photoelectric spectrum scanner. If a broad feature, or one that is superposed on a rapidly changing continuum, is observed with a narrow bandpass, the desired centering of the bandpass on the central wavelength is critical. For strong features, even a small shift can result in reduced photometry that is systematically brighter than expected.

The effect is greatest for the broadest spectral features and can be recognized by observing standards of different spectral types. For example, if the shift is large, the reduced photometry of hydrogen lines is expected to be too bright for hot stars and, hence, too faint for cool stars. 45

The same phenomenon can also be produced by the spectral smearing caused by poor seeing conditions (recall that the spectrograph uses a slitless entrance aperture) and by the use of a larger than normal bandpass size. In order to minimize these problems, the B values are smoothed as a function of wavelength by means of a low-order polynomial.

Several constraints are applied to the smoothing process:

1) Unlike the smoothing of extinction coefficients, the

smoothing of transformation coefficients is

restricted to a given sub-range of wavelengths.

2) Unlike the smoothing of extinction coefficients, the

bandpasses containing telluric water vapor are used

to smooth transformation coefficients. Note,

however, that the bandpasses added to this

investigation (i.e. non-O'Connell wavelengths), are

not used because of the lack of standard values.

3) The polynomials used in the smoothing process are of

order 2, 3, or 4. Because the green sub-range

contains only three bandpasses, the smoothing

technique can not be applied, and the observed B

coefficients are used in the final reductions. i 4) The observed B values for the red sub-range are not

adequately modeled by a low-order polynomial. As a

result, the observed B values are used in the final

reductions of the data. (Only for bandpasses at

9920 and 10050 A , which have no standard values, are 46

the adopted B values estimated from a polynomial

f it. )

11.4.E. FINAL REDUCTIONS

The final reductions consist of an application of equation ( 1 ) to each observation. The smoothed coefficient is used if it exists, otherwise the observed value is used.

As a measure of the accuracy of the reduction process, consider the average root-mean-square (rms) deviation of all standards for all wavelengths on a given night. For CTIO, rms values are 0.016, 0.017, 0.020, 0.021, and 0.023 magnitudes for five successive nights. For LO, values are

0.031, 0.028, 0.025, and 0.044 magnitudes. The lower quality of LO data is probably a result of poor seeing conditions. The last step of the reduction process is to average the individual reduced values for each star. A revised set of standard values, based upon reduced photometry, is listed in Table 9. In subsequent observation programs, use of these magnitudes is recommended.

11.4.F. NORMALIZATION AND DE-REDDENING

Prior to calculating photometric colors and indices, we must normalize and de-redden the reduced data. The normalized energy distribution of each star is calculated by subtracting the value at 5050 A from the magnitudes at all wavelengths. First and second-order sequences of bandpasses TABLE 9

OBSERVED MAGNITUDES OF STANDARD STARS

3 « . a a A e Eria tt Or i 56 Ori3 C Pup 61 Leo 109 Vir

3570 2.520 0.773 5.090 -2.144 5.917 1.071 3620 2.182 0.732 4.497 -2.109 5.361 1 .064 3784 1 .787 0.306 4.156 -2.063 4.894 0.265 3798 2.001 0.434 4.378 -2.024. 5.125 0.520 3815 2 . 202 0.281 4.503 -2.054 5.208 0.027 3835 2.581 0.602 4.752 -2.009 5.326 0.524 3860 2 .264 0.152 4.606 -2.039 5.118 -0.141 3889 1 .983 0.385 4.130 -1 .988 4.929 0.481 3910 1 .738 0.141 3.909 -2.044 4.719 -0.151 3933 2 .322 0.665 4.735 -2.032 5.503 -0.179 4015 1.192 -0.045 3.150 -1 .953 3.864 -0.227 4101 1.128 0.179 3.040 -1.849 3.612 0.512 4200 1.105 -0.125 3.081 -1 .846 3.488 -0.190 4270 1.114 -0.147 2.719 -1 .859 3.239 -0.174 4305 1.354 -0.001 2.993 -1 .855 3.293 -0.122 4340 0.808 0.051 2.390 -1.753 2.728 0.513 4380 0.952 -0.176 2.491 -1.828 2.840 -0.124 4400 0 . 860 -0.201 2.447 -1 .820 2.763 -0.135 4430 0.712 -0.243 2.295 -1.801 2.596 -0.142 4476 0.608 -0.251 2.115 -1 .792 2.383 -0.111 4500 0.519 -0.289 2.056 -1.806 2.285 -0.122 4785 0.308 -0.404 1.577 1.848 -0.092 4861 0.388 -0.110 1.611 1.782 0 .528 5050 0.297 -0.401 1.464 1.614 -0.023 5050 0.289 -0.415 1.431 -1.583 1.577 -0.004 5175 0.461 -0.379 1.501 -1.536 1.725 0.040 5300 0.077 -0.472 1.168 -1.507 1.180 0.047 5820 -0.131 -0.543 0.827 -1.334 0.728 0.155 5892 -0.051 -0.522 0.894 -1.314 0.947 0.172 6100 -0.191 -0.567 0.705 -1.271 0.549 0.177 6180 -0. 184 -0.555 0.703 -1 .234 0.734 0.207 6370 -0.211 -0.540 0.673 -1.163 0.515 0.263 6560 -0.199 -0.406 0.637 -1.175 0.414 0.575 6800 -0.309 -0.581 0.472 -1.066 0.318 0.317 7050 -0.364 -0.600 0.398 -1.042 0.123 0.332 7 100 -0.361 -0.588 0.448 -1.046 0.263 0.352 7400 -0.368 -0.572 0.367 -0.942 -0.060 0.398 8050 -0.467 -0.599 0.201 -0.792 -0.306 0.498 8190 -0.465 -0.586 0.208 -0.785 -0.339 0.510 8400 -0.484 -0.596 0.152 -0.714 -0.395 0 .542 8542 -0.421 -0.512 0.244 -0.683 -0.292 0.575 8800 -0.480 -0.558 0.067 -0.605 -0.470 0.479 8880 -0.490 -0.524 0.049 -0.570 -0.497 0.632 9190 -0.515 -0.548 0.129 -0.573 -0.492 0.541 9920 -0.594 -0.587 -0.107 -0.463 -0.711 0.543 9950 -0.593 -0.582 -0.111 -0.446 -0.722 0.567 10050 -0.566 -0.484 -0.104 -0.368 -0.707 0.834 10400 -0.632 -0.590 -0.198 -0.408 -0.810 0.594 TABLE 9 (continued) 48

OBSERVED MAGNITUDES OF STANDARD STARS

T Scoa y Opha K Aql b e Cygb a Delb e Aqr

3570 -1.403 1 .206 1.123 2.056 0.851 1.275 3620 -1.363 1.193 1.120 2.000 0.829 1.242 3784 -1.404 0.502 1.030 1.533 0.121 0.378 3798 -1.286 0.767 1 .084 1.661 0.353 0.608 3815 -1.380 0.275 1.033 1.457 -0.073 0.126 3835 -1.274 0.743 1.109 1.758 0.354 0.609 3860 -1.445 0.039 1 .000 1.312 -0.188 -0 .050 3889 -1.263 0.700 1.129 1.616 0.349 0 .582 3910 -1.444 0.027 1 .021 1.361 -0.156 -0.006 3933 -1.427 -0.092 1.076 1 .769 -0.178 -0.052 4015 -1.343 -0.147 1.064 1.154 -0.213 -0.152 4101 -1.102 0.696 1.215 1 .400 0.357 0.546 4200 -1 .271 -0. 128 1 .084 1.066 -0.192 -0.117 4270 -1.257 -0.113 1.110 1.059 -0.148 -0.078 4305 -1.251 -0.051 1.122 1.182 -0.109 -0.030 4340 -1.040 0.674 1.289 1 .353 0.434 0 . 608 4380 -1.185 -0.048 1.158 1 .048 -0.104 -0.038 4400 -1.201 -0.077 1.147 1.018 -0.113 -0.056 4430 -1.191 -0.104 1.171 0.986 -0.124 -0.079 4476 -1.108 -0.062 1.214 0.984 -0.081 -0.038 4500 -1.160 -0.080 1.134 0.940 -0. 104 -0.052 4785 4861 5050 5050 -0.964 0.017 1.254 0.894 0.047 0.022 5175 -0.935 0.048 1.213 0.894 0.036 0.025 5300 -0 . 896 0.055 1 .269 0.857 0.084 0.078 5820 -0.720 0. 159 1.342 0.822 0.205 0.177 5892 -0.675 0.172 1.416 0.843 0.234 0.198 6100 -0.658 0.174 1.359 0.792 0.236 0.186 6180 -0.624 0. 190 1 .369 0.787 0.245 0.200 6370 -0.543 0.264 1.420 0.791 0.305 0.252 6560 -0.397 0. 624 1.495 0.941 0.559 0.555 6800 -0.441 0.323 1 .446 0.753 0.348 0.279 7050 -0.398 0.329 1.521 0.768 0.408 0.358 7100 -0.385 0.361 1. 506 0.770 0.426 0.365 7400 -0.305 0.396 1 .550 0.799 0.469 0.401 8050 -0.160 0.475 8190 -0.143 0.498 8400 -0.075 0.524 8542 -0.052 0.556 8800 0.004 0.457 8880 0.076 0.622 9190 0.070 0.577 9920 0.152 0.521 9950 0.180 0.525 10050 0.326 0. 830 10400 0.242 0.568 cf pi A LO observations. CTIO observations. 0.446 0.620 6800 6560 40 0.476 0.474 7400 0.464 7100 7050 0.517 6370 0.523 6180. 0.571 5892 0.826 4785 0.889 4500 0.877 4476 0.935 4430 4400 0.962 4270 10 0.525 6100 0.565 0.626 5820 0.666 5300 5175 0.943 1.186 4380 1.104 4340 4305 0.997 1.243 4200 1.081 4101 4015 1.329 3910 1.368 3815 2.245 3570 00 0.676 5050 1.540 1 3889.250 1.673 3860 3835 1.594 1.474 3798 2.168 3784 3620 4861 1.770 3933 5050

tt Peg OBSERVEDMAGNITUDES OF STANDARD STARS b TABLE 9 (continued)

50

are normalized separately.

The process of de-reddening (i.e. removal of

interstellar reddening effects) is applied only to

comparison stars. In order to be consistent with the

results of O ’Connell, extremely cool stars like R Dor are not de-reddened. An estimate of the broad-band color excess

E(B-V) is calculated using cataloged UBV observations of

comparison stars (Blanco et al. 1968) and tabulated

intrinsic UBV colors (Johnson 1966). Comparison stars with

non-zero color excesses are listed in Table 10. The

Whitford (1958) interstellar reddening law (ISRL) is used to

translate the color excess into estimates of selective

absorption within each bandpass. For this purpose, the ISRL must, itself, be normalized. The normalized ISRL

corresponding to E(B-V)=1.0 is listed in Table 11. For each

comparison star that requires de-reddening, values from

Table 11 multiplied by the value of E(B-V) from Table 10 are

subtracted from the observed normalized distribution to

produce the normalized, de-reddened energy distribution.

The results for each star, in units of magnitudes per unit

frequency, are listed in Table 12 (for CTIO) and Table 13

(for LO). Included as part of each entry in the tables are

the rms deviation of the individual observations about the mean value and the number of observations used in

calculating the mean value. TABLE 10 51

COLOR EXCESSES OF COMPARISON STARS

STAR E(B-V)

'56 Or 1 0.23 x C Ma 0.16 £,Pup 0.04 o Cen 0.25 V810 Cen 0.26 HR 5171A 1.07 X Sco 0.05 y Oph 0.04 83 UMa 0.06 K Aql 0.25 0 Cyg 0.07 it Peg 0.06 TABLE 11 52

NORMALIZED SELECTIVE ABSORPTION FOR E(B-V)=1.0

A ABSORPTION

3570 1.416 3620 1.360 3784 1.189 3798 1.174 3815 1.158 3835 1.137 3860 1.112 3889 1.087 3910 1.065 3933 1.043 4015 0.969 4101 0.894 4200 0.811 4270 0.755 4305 0.727 4340 0.702 4380 0.671 4400 0.655 4430 0.634 4476 0.581 4500 0.553 4785 0.252 4861 0.177 5050 0.000 5050 0.000 5175 -0.109 5300 -0.211 5820 -0.596 5892 -0.643 6100 -0.773 6180 -0.823 6370 -0.932 6560 -1.037 6800 -1.158 7050 -1.276 7100 -1.301 7400 -1.429 8050 -1.677 8190 -1.727 8400 -1.795 8542 -1.842 8800 -1.919 8880 -1.944 9190 -2.028 9920 -2.211 9950 -2.217 10050 -2.242 10400 -2.317 TABLE 12 53

NORMALIZED ENERGY DISTRIBUTIONS: CTIO

X £2 Cet E Eri R Do r

3570 0.906 0.02 2 2.223 0.02 3 2.961 >0.08 2 3620 0.909 0.01 2 1.885 0.02 3 2. 152 0.03 2 3784 0.199 0.01 2 1.490 0.01 3 1.111 0.02 2 3798 0.490 0.01 2 1 .704 0.01 3 1.180 0.02 2 3815 -0.046 0.02 2 1 .905 0.02 3 1.434 0.05 2 3835 0.463 0.02 2 2.284 0.02 3 1.282 0.04 2 3 860 -0.215 0.02 2 1.967 0.02 3 1.211 0.05 2. 3889 0.443 0.01 2 1 .685 0.02 3 1 .008 0.01 2 3910 -0.211 0.02 2 1.441 0.01 3 0.791 0.02 2 3933 -0.275 0.02 2 2.025 0.01 3 1.583 0.02 2 4015 -0.262 0.01 2 0.895 0.01 3 0.261 0.03 2 4101 0.488 0.01 2 0.831 0.01 3 0.140 0.01 2 4200 -0.214 0.02 2 0.808 0.01 3 0.358 0.02 2 4270 -0.220 0.01 2 0.817 0.01 3 0.799 0.01 2 4305 -0.181 0.01 2 1.057 0.01 3 0.798 0.03 2 4340 0.493 0.01 2 0.511 0.01 3 0.685 0.01 2 4380 -0.180 0.01 2 0.655 0.0 1 3 0.642 0.01 2 4400 -0.163 0.01 2 0.563 0.01 3 0, 787 0.03 2 4430 -0.190 • • • • 1 0.415 0.01 2 1.426 a a a a 1 4476 -0.126 • a • • 1 0.311 0 .02 2 1.367 a a a a 1

4500 -0. 140 • • • • 1 0.222 0.01 2 1.115 a a a a 1 4785 0.011 a a a a 1 4861 0.091 a a a a 1 5050 0.000 a a a a 1 5050 0.000 • • • • 1 0.000 0.01 2 0.000 a a a a 5175 0.049 • • • • 1 0.172 0.01 2 0.145 a a a a

5300 0. 042 • • • • 1 -0.212 0.01 2 -0.753 a a a a 5820 0.176 • a • a 1 -0.420 0.01 2 -1 .565 a a a a 5892 0.201 a a a a 1 -0.340 0.01 2 -0.481 a a a a

6100 0.242 a a a a 1 -0.480 0.01 2 -2.040 a a a a 6180 0.274 a a a a 1 -0.473 0.01 2 -1.187 a a a a 6370 0. 300 a a a a 1 -0.500 0.01 2 -2.249 a a a a 6560 0.697 a a a a 1 -0.488 0.01 2 -2.945 a a a a 6800 0.407 a a a a 1 -0.598 0.01 2 -2.704 a a a a 7050 0.436 a a a a 1 -0.653 0.01 2 -3.652 a a a a 7100 0.456 a a a a 1 -0.650 0.01 2 -2.903 a a a a 7400 0.508 a a a a 1 -0.657 0.01 2 -4.648 a a a a 8050 -0.756 0.01 2 -5.383 a a a a 8190 -0.754 0.02 2 -6.232 a a a a 8400 -0.773 0.01 2 -5.824 a a a a 8542 -0.710 0.02 2 -5.451 a a a a 8800 -0.769 0.02 2 -6.486 a a a a 8880 -0.779 0.01 2 -6.088 a a a a 9190 -0.804 0.01 2 -7.112 a a a a 9920 -0.883 0.01 2 -7.401 a a a a 9950 -0.882 0.01 2 -7.495 a a a a 10050 -0.855 0.01 2 -7.482 a a a a

10400 -0.922 0.01 2 -7.819 a a a a TABLE 12 (continued) 54

NORMALIZED ENERGY DISTRIBUTIONS: CTIO

X TT3 Ori 56 Ori3 X CMa3

3570 1.174 0.02 7 3.300 0.01 5 -0.633 0.02 4 3620 1 .134 0.02 7 2.720 0.04 5 -0.594 0.02 4 3784 0.707 0.02 7 2.418 0.01 5 -0.582 0.02 4 3798 0.835 0.01 7 2.644 0.02 5 -0.514 0.02 4 3815 0.683 0.02 7 2.773 0.02 5 -0.568 0.02 4 3835 1.003 0.02 7 3.027 0.04 5 -0.497 0.02 4 3860 0.553 0.02 7 2 .886 0.02 5 -0.578 0.02 4 3889 0. 786 0.01 7 2.416 0.02 5 -0.477 0.02 4 3910 0.542 0.01 7 2.200 0.02 5 -0.574 0.02 4 3933 1. 066 0.02 7 3.031 0.03 5 -0.539 0.02 4 4015 0.356 0.02 7 1.464 0.02 5 -0.465 0.02 4 4101 0.580 0.02 7 1.371 0.03 5 -0.299 0.02 4 4200 0.277 0.02 7 1.431 0.02 5 -0.371 0.02 4 4270 0.254 0.02 7 1.081 0.02 5 -0.358 0.02 4 4305 0.400 0.02 7 1 .362 0.03 5 -0.354 0.02 4 4340 0.452 0.02 7 0.764 0.02 5 -0.222 0.02 4 4380 0.225 0.02 7 0.873 0.02 5 -0.299 0.02 4 4400 0.200 0.02 7 0.832 0.03 5 -0.306 0.02 4 4430 0.159 0.02 6 0.685 0.02 5 -0.285 0.02 4 4476 0.151 0.03 6 0.517 0.03 5 -0.224 0.02 4 4500 0.113 0.03 6 0.465 0.03 5 -0.274 0.02 4 4785 -0.003 0.02 3 0.055 0.01 2 -0.126 • • • • 1 4861 0.291 0.03 3 0. 156 0.02 2 0.024 • • • • 1 5050 0.000 0.02 3 0.000 0.02 2 0.000 • • • • 1 5050 0.000 0.03 5 0.000 0.02 3 0.000 0.02 3 5175 0.036 0.02 5 0.094 0.01 3 0.046 0.02 3 5300 -0.057 0.02 5 -0.215 0.03 3 0.088 0.02 3 5820 -0.128 0.02 5 -0.467 0.03 3 0.297 0.02 3 5892 -0.107 0.03 5 -0.390 0.01 3 0.347 0.02 3 6100 -0.152 0.02 5 -0.549 0.02 3 0.376 0.02 3 6180 -0.140 0.02 5 -0.539 0.02 3 0.409 0.01 3 6370 -0.125 0.02 5 -0.544 0.02 3 0.495 0.03 3 6560 0.009 0.02 5 -0.556 0.03 3 0.576 0.02 3 6800 -0.166 0.02 5 -0.693 0.02 3 0.606 0.03 3 7050 -0.184 0.03 5 -0.740 0.03 3 0.662 0.02 3 7100 -0.173 0.02 5 -0.684 0.03 3 0 . 669 0.02 3 7400 -0.157 0.02 5 -0.735 0.03 3 0.756 0.01 3 8050 -0.184 0.01 3 -0.845 0.02 5 0.894 0.03 2 8190 -0.171 0.01 3 -0.826 0.02 5 0.878 0.02 2 8400 -0.180 0.01 3 -0.866 0.02 5 0.969 0.04 2 8542 -0.097 0.02 3 -0.763 0.02 5 0.999 0.03 2 8800 -0.142 0.02 3 -0.923 0.01 5 1.063 0.02 2 8880 -0.109 0.01 3 -0.936 0.01 5 1.126 0.03 2 9190 -0.132 0.01 3 -0.836 0.02 5 1.143 0.02 2 9920 -0.172 0.01 3 -1.030 0.02 5 1 .227 0.02 2 9950 -0.166 0.01 3 -1.033 0.02 5 1.268 0.03 2 10050 -0.069 0.01 3 -1.019 0.02 5 1.356 0.01 2 10400 -0.175 0.01 3 -1.096 0.01 5 1 .304 0.03 2 TABLE 12 (continued) 55

NORMALIZED ENERGY DISTRIBUTIONS: CTIO

A ? Pupa N Vel 6 1 Leo

3570 -0.618 • • • • 1 4. 197 0.04 3 4 .303 >0.08 3 3620 -0.580 • • • • 1 3.533 0.01 3 3.7 47 0.03 3 3784 -0.528 • a • • 1 3.181 0.01 3 3.280 0.07 3 3798 -0.488 • • • • 1 3.299 0.02 3 3.511 0.07 3 3815 -0.517 • • • e 1 3.538 0.02 3 3.594 >0.08 3 3835 -0.471 • • • • 1 3.526 0.02 3 3.712 0.02 3 3860 -0.500 • • a • 1 3.383 0.01 3 3.504 0.05 3 3889 -0.448 • • • • 1 3.152 0.01 3 3.315 0.06 3 3910 -0.504 • • • • 1 2.960 0.01 3 3.105 0.07 3 3933 -0.491 • • • • 1 3.786 0.02 3 3 .889 0 .08 3 4015 -0.409 • • « • 1 2.076 0.02 3 2.250 0.06 3 4101 -0.302 • • • « 1 1.912 0.02 3 1 .998 0.07 3 4200 -0.295 • » • • 1 1.772 0.02 3 1.874 0 .03 3 4270 -0.306 • • • • 1 1.499 0.01 3 1.625 0.03 3 4305 -0.301 • o • • 1 1.611 0.02 3 1.679 0.03 3 4340 -0.198 • • • • 1 1.036 0.02 3 1.114 0 .03 3 4380 -0.272 • • • • 1 1 . 160 0.01 3 1 .226 0.06 3 4400 -0.263 • • • • 1 1.067 0.01 3 1.149 0 .04 3 4430 -0.243 o a • • 1 0.893 0.01 3 0 .982 0.04 3 4476 -0.232 • • • • 1 0.656 0.01 3 0.769 0 .03 3 4500 -0.245 • • • • 1 0.557 0.01 3 0.671 0 .04 3 4785 0.234 • • • i 1 0.234 • • • • 1 4861 0.212 • • • • 1 0.168 • • • • 1 5050 0 . 0 0 0 • • • • 1 0 . 0 0 0 • • • • 1 5050 0 . 0 0 0 • • • • 1 0 . 0 0 0 0.02 3 0 . 0 0 0 0.02 2 5175 0.051 • • • • 1 0.127 0.01 3 0.148 0.03 2 5300 0.084 • • • • 1 -0.384 0.01 3 -0.397 0.02 2 5820 0.273 • • • • 1 -0.823 0.01 3 -0.849 0 .02 2 5892 0.295 • • • • 1 -0.662 0.01 3 -0.630 0.03 2 6100 0.343 • • • • 1 -0.975 0.01 3 -1.028 0.03 2 6180 0.382 • • • • 1 -0.878 0.02 3 -0.842 0.03 2 6370 0.457 • • • • 1 -1.039 0.01 3 -1.062 0 .03 2 6560 0.449 i • • « 1 -1.111 0.01 3 -1.162 0.03 2 6800 0.563 • • • • 1 -1 .236 0.02 3 -1.259 0.03 2 7050 0.592 • • • • 1 -1.381 0.01 3 -1.454 0 .05 2 7100 0. 589 • • • • 1 -1.299 0.01 3 -1.314 0.07 2 7400 0.698 • • • • 1 -1.529 0.01 3 -1.637 0.06 2 8050 0.858 0.01 2 -1.715 0.01 2 -1.883 0.01 2 8190 0.867 0.01 2 -1.741 0.01 2 -1.915 0.01 2 8400 0.941 0.01 2 -1.766 0.01 2 -1.971 0.01 2 8542 0.973 0.01 2 -1.706 0.01 2 -1.869 0 .02 2 8800 1.055 0.01 2 -1.860 0.01 2 -2.046 0.01 2 8880 1.091 0.01 2 -1.883 0.01 2 -2.073 0.01 2 9190 1.091 0.01 2 -1.893 0.01 2 -2.069 0.01 2 9920 1.209 0.01 2 -2.095 0.01 2 -2.288 0.01 2 9950 1.226 0.01 2 -2.083 0.01 2 -2 .298 0.02 2 10050 1 .305 0.01 2 -2.076 0.01 2 -2.284 0.01 2 10400 1 .267 0.02 2 -2.177 0.01 2 -2.386 0.01 2 TABLE 12 (continued) 56

NORMALIZED ENERGY DISTRIBUTIONS: CTIO 1 a a A 0 Cen V810 ISen V Vir '

3570 2.459 0.01 2 1 .589 0.01 2 3.956 0.07 2 3620 2.268 0.01 2 1.516 0.01 2 3.480 0.03 2 3784 1 .435 0.01 2 0.833 0.02 2 3.009 0.04 2 3798 1.432 0.02 2 0.890 0.02 2 3.196 0.05 2 3815 1.479 0.06 2 0.843 0.03 2 3 .304 0.06 2 3835 1 .688 0.04 2 1.048 0.04 2 3.492 0.04 2 3860 1.311 0.06 2 0.724 0.06 2 3.199 0.05 2 3889 1 .450 0.04 2 0.884 0.03 2 3.027 0.05 2 3910 1.457 0.01 2 0.850 0.01 2 2 .887 0.05 2 3933 2.467 0.01 2 1 .581 0.01 2 3.718 0 .06 2 4015 0.917 0.02 2 0.488 0.03 2 2.059 0.05 2 4101 0.762 0.03 2 0.450 0.02 2 1.818 0.05 2 4200 0.777 0.01 2 0.424 0.01 2 1.670 0.05 2 4270 0.610 0.03 2 0.310 0.02 2 1.469 0.04 2 4305 0.935 0.01 2 0.535 0.01 2 1 . 532 0 .06 2 4340 0.624 0.01 2 0.398 0.02 2 1.019 0 .04 2 4380 0.554 0.02 2 0.288 0.01 2 1.061 0 .05 2 4400 0.654 0.02 2 0.350 0.01 2 1.020 0.04 2 4430 0.455 0.02 2 0.219 0.01 2 0.870 0.05 2 4476 0.418 0.03 2 0.216 0.02 2 0.664 0.03 2 4500 0.375 0.04 2 0.187 0.01 2 0.571 0.05 2 4785 0.032 • • • • 1 -0.063 • • • • 1 4861 0.269 • © • • 1 0.210 • • • • 1 5050 0.000 • • • • 1 0.000 • • • • 1 5050 0.000 0.02 2 0.000 0.01 2 0.000 0 .04 2 5175 0.116 0.01 2 0.113 0.01 2 0.166 0.04 2 5300 -0.058 0.01 2 -0.017 0.01 2 -0.437 0.04 2 5820 -0.323 0.02 2 -0.137 0.02 2 -0.799 0 .04 2 5892 -0.266 0.01 2 -0.085 0.01 2 -0.596 0.05 2 6100 -0.378 0.01 2 -0.155 0.01 2 -1.005 0.04 2 6180 -0.349 0.02 2 -0.116 0.01 2 -0.767 0.03 2 6370 -0.350 0.02 2 -0.121 0.01 2 -1.064 0.04 2 6560 -0.367 0.01 2 -0.083 0.01 2 -1.153 0.03 2 6800 -0.460 0.02 2 -0.171 0.01 2 -1.202 0.03 2 7050 -0.514 0.01 2 -0.180 0.02 2 -1.459 0.04 2 7100 -0.483 0.01 2 -0.171 0.01 2 -1.310 0.04 2 7400 -0.489 0.01 2 -0.125 0.01 2 -1.666 0.04 2 8050 -0.566 0.01 2 -0.201 0.07 2 -1.901 0.02 2 8190 -0.552 0.03 2 -0.079 0.02 2 -1.941 0 .02 2 8400 -0.620 0.01 2 -0.143 0.01 2 -1.959 0.02 2 8542 -0.500 0.02 2 -0.030 0.01 2 -1.890 0.01 2 8800 -0.687 0.02 2 -0.192 0.01 2 -2.058 0.02 2 8880 -0.654 0.01 2 -0.130 0.02 2 -2.053 0.02 2 9190 -0.714 0.04 2 -0.192 0.03 2 -2.144 0.02 2 9920 -0.764 0.02 2 -0.211 0.01 2 -2.296 0.01 2 9950 -0.745 0.01 2 -0.182 0.02 2 -2.289 0.02 2 10050 -0.653 0.02 2 -0.105 0.02 2 -2 .293 0.01 2 10400 -0.750 0.01 2 -0.196 0.04 2 -2.397 0.01 2 TABLE 12 (continued) 57

NORMALIZED ENERGY DISTRIBUTIONS: CTIO

X e Vir HR 5171A a 109 Vir

3 570 2.409 0.08 2 3.274 >0.08 2 1.094 0.02 4 3620 2.004 0.05 2 3.008 >0.08 2 1.087 0.02 4 3784 1.622 0.05 2 2.726 >0.08 2 0.288 0.01 4 3798 1.841 0.03 2 2.833 >0.08 2 0.543 0.02 4 3815 1.926 0.04 2 2.798 >0.08 2 0.050 0.02 4 3835 2.315 0.0 2 2 2 .844 >0.08 2 0.547 0.01 4 3860 2.227 0.03 2 2 .933 >0.08 2 -0.118 0.02 4 3889 1 . 622 0.01 2 2.740 >0.08 2 0.504 0.01 4 3910 1.344 0.01 2 2.691 >0.08 2 -0.128 0.02 4 3933 2.122 0.03 2 3.432 >0.08 2 -0.156 0.02 4 4015 0.854 0.02 2 2.143 >0.08 2 -0.204 0.01 4 4101 0.824 0.01 2 1.719 >0.08 2 0.535 0.01 4 4200 0.854 0.01 2 1 .887 0.08 2 -0.167 0.01 4 4270 0.640 0.01 2 1 .360 0.04 2 -0.151 0.01 4 4305 0.938 0.01 2 1 .632 >0.08 2 -0.098 0.01 4 4340 0.451 0.01 2 1 . 160 0.04 2 0.536 0.01 4 4380 0.507 0.01 2 1.151 0.05 2 -0.101 0.01 4 4400 0.466 0.01 2 1.225 0.05 2 -0.112 0.01 4 4430 0.359 0.01 2 1.212 0.04 2 -0.119 0.01 4 4476 0.253 0.01 2 0.887 0.04 2 -0.088 0.01 4 4500 0.194 0.01 2 0.762 0 .05 2 -0.099 0.02 4

4785 -0.084 • • • • 1 0.180 0 0 0 0 1 -0.069 0 0 0 0 1

4861 0.039 • • • • 1 0.361 0 0 0 0 1 0.551 0 0 0 0 1

5050 0.000 • • • • 1 0 .000 0 0 0 0 1 0.000 0 0 0 0 1

5050 0. 000 • • • • 1 0.000 0.03 2 0.000 0.01 3

5175 0.036 • • • • 1 0.160 0.06 2 0.044 0.03 4

5300 -0.177 • • © • 1 -0.180 0.03 2 0.051 0.03 4

5820 -0.396 • • • • 1 -0.700 0.02 2 0.159 0 .03 4

5892 -0.334 • • • • 1 -0.573 0.02 2 0.176 0.03 4

6100 -0.453 • • • • 1 -0.744 0.03 2 0.181 0.02 4

6180 -0.452 • • • • 1 -0.694 0.01 2 0.211 0.03 4

6370 -0.470 • • • • 1 -0.757 0.03 2 0.267 0.03 4

6560 -0.463 • • • • 1 -0.806 0.01 2 0.579 0.03 4

6800 -0.577 • • • • 1 -0.996 0.01 2 0.321 0.03 4

7050 -0.617 0000 1 -1.016 0.02 2 0.336 0.03 4

7100 -0.616 0 0 0 0 1 -0.999 0.02 2 0.356 0.03 4

7400 -0.617 • # 0 0 1 -0.-965 0.02 2 0.402 0.02 4

8050 -0.716 0.01 2 -1.070 0 0 0 0 1 0.502 0.02 5

8190 -0.721 0.01 2 -0.994 0 0 0 0 1 0.514 0.01 5

8400 -0.727 0.02 2 -1.115 0 0 0 0 1 0.546 0.01 5

8542 -0.643 0.02 2 -0.813 0 0 0 0 1 0.579 0.02 5

8800 -0.752 0.02 2 -1.237 0 0 0 0 1 0.483 0.01 5

8880 -0.769 0.01 2 -1.244 0 0 0 0 1 0.636 0.02 5

9190 -0.726 0.01 2 -1.045 0 0 0 0 1 0.545 0.03 5

9920 -0.867 0.01 2 -1.363 0 0 0 0 1 0.547 0.01 5

9950 -0.863 0.02 2 -1.347 0 0 0 0 1 0.571 0.01 5

10050 -0.833 0.01 2 -1.325 0 0 0 0 1 0.838 0.02 5

10400 -0.899 0.02 2 -1.442 0 0 0 0 1 0.598 0.02 5 TABLE 12 (continued) 58

NORMALIZED ENERGY DISTRIBUTIONS: CTIO

X HR 5825 T Sco Y Op h

3570 1.128 0.02 2-0.510 ... 1 1.132 0.03 2 3620 1.099 0.03 2 -0.467 . . . 1 1.122 0.02 2 3784 0.657 0.01 2 -0.499 . . . 1 0.438 0.02 2 3798 0.785 0.03 2 -0.381 ... 1 0.703 0.03 2 3815 0.591 0.02 2 -0.474 . . . 1 0.212 0.01 2 3835 0.895 0.03 2 -0. 367 . . . 1 0.681 0.02 2 3860 0.444 0.04 2 -0. 537 . . . 1 -0.022 0.02 2 3889 0.722 0.02 2 -0.353 . . . 1 0.639 0.01 2 3910 0.461 0.02 2 -0.533 . . . 1 -0.032 0.04 2 3933 0.890 0.02 2 -0.515 . . . 1 -0.151 0.01 2 4015 0.296 0.02 2 -0.427 . . . 1 -0.202 0.01 2 4101 0.577 0.01 2 -0.183 ... 1 0.643 0.03 2 4200 0.238 0.02 2 -0.348 1 -0.177 0.01 2 4270 0.198 0.03 2 -0.331 1 -0.160 0.01 2 4305 0.299 0.03 2 -0.323 ... 1 -0.097 0.01 2 4340 0.462 0.02 2 -0.111 1 0.629 0 .02 2 4380 0.179 0.02 2 -0.255 ... 1 -0.091 0.01 2 4400 0.151 0.03 2 -0.270 ... 1 -0.120 0.02 2 4430 0.122 0.03 2 -0.259 . . . 1 -0.146 0.01 2 4476 0.137 0.03 2 -0.173 ... 1 -0.102 0.01 2 4500 0.090 0.02 2 -0. 224 . . . 1 -0.119 0.01 2 4785 4861 5050

5050 0.000 • • • • 1 0 .000 1 0.000 • < « • 1 5175 0.017 • • • • 1 0.034 ... 1 0.035 0.02 2 5300 -0.049 • • • • 1 0.079 ... 1 0.046 0.01 2 5820 -0.103 • a • • 1 0.274 ... 1 0.166 0.01 2 5892 -0.089 • a a • 1 0.321 ... 1 0.181 0.01 2 6100 -0.123 • • • • 1 0.345 ... 1 0.187 0.01 2 6180 -0.131 • • • • 1 0.381 ... 1 0.205 0.02 2 6370 -0.113 • • • • 1 0.468 ... 1 0.284 0.01 2 6560 0.057 • • • • 1 0.619 ... 1 0.648 0.01 2 6800 -0.126 • • • • 1 0.581 ... 1 0.352 0.01 2 7050 -0.153 • « « a 1 0.630 ... 1 0.363 0.01 2 7100 -0.150 o • • • 1 0.644 ... 1 0.397 0.01 2 7400 -0.125 • • • • 1 0.730 ... 1 0.436 0.01 2 8050 -0.092 0.02 2 0.888 ... 1 0.525 0.01 2 8190 -0.099 0.02 2 0.907 ... 1 0.550 0.01 2 8400 -0.075 0.01 2 0.979 ... 1 0.579 0.02 2 8542 -0.012 0.02 2 1 .004 . . . 1 0.613 0.01 2 8800 -0.045 0.02 2 1 .064 . . . 1 0.517 0.01 2 8880 -0.007 0.02 2 1.137 ... 1 0.682 0.01 2 9190 -0.046 0.01 2 1.135 ... 1 0.641 0.01 2 9920 -0.072 0.02 2 1.227 ... 1 0.592 0.01 2 9950 -0.052 0.01 2 1.255 ... 1 0.597 0.01 2 10050 0.048 0.01 2 1.402 ... 1 0.903 0.01 2 10400 -0.053 0.02 2 1.322 ... 1 0.644 0.02 2 TABLE 12 (continued)

NORMALIZED ENERGY DISTRIBUTIONS: CTIO

HR 1219 HD 31244/5 HR 1772

1.896 0 01 2 1 .960 0 01 2 0.005 0.02 3 1 . 688 0 01 2 1.701 0 02 2 0.046 0.01 3 1.109 0 01 2 1.255 0 01 2 -0.325 0.01 3 1.345 0 01 2 1.482 0 03 2 -0.178 0.02 3 1.065 0 01 2 1.249 0 01 2 -0.331 0.01 3 1.473 0 02 2 1 .653 0 02 2 -0.172 0.01 3 0.950 0 01 2 1.205 0 01 2 -0.398 0.01 3 1.219 0 01 2 1 .324 0 01 2 -0.164 0.01 3 0. 754 0 01 2 0.922 0 01 2 -0.418 0.01 3 1 .003 0 01 2 1.185 0 01 2 -0.359 0.01 3 0.483 0 02 2 0.633 0 01 2 -0.311 0.02 3 0.860 0 01 2 0.880 0 02 2 -0.053 0.02 3 0.488 0 01 2 0.653 0 01 2 -0.290 0.01 3 0.394 0 01 2 0.514 0 01 2 -0.250 0.01 3 0.577 0 01 2 0. 740 0 02 2 -0.247 0.01 3 0.630 0 01 2 0.615 0 02 2 0.006 0.01 3 0.379 0 02 2 0.461 0 03 2 -0.203 0.02 3 0.340 0 01 2 0.404 0 01 2 -0.208 0.02 3

0.282 o • • 1 0.362 0 0 0 1 -0.211 0.01 2 0.218 • • • 1 0.281 0 0 0 1 -0.087 0.01 2 0.182 • • • 1 0.241 o 0 0 1 -0.174 0.01 2 0.035 • • o 1 0.043 0 0 0 1 -0.124 0 0 0 0

0.342 • • • 1 0.257 0 0 0 1 0.110 0 0 0 0

0.000 • • • 1 0.000 0 0 0 1 0.000 0 0 0 0 0. 000 • • • 1 0.000 0 0 0 1 0.000 0 0 0 0 0.016 • • • 1 0.008 0 0 0 1 0.024 0 0 0 0

-0.101 • • • 1 -0.118 0 0 0 1 0.061 0 0 0 0 -0.225 • • • 1 -0.279 0 0 0 1 0.235 0 0 0 0 -0.190 • • • 1 -0.267 0 0 0 1 0.271 0 0 0 0 -0.265 • • • 1 -0.345 0 0 0 1 0.279 0 0 0 0 -0.258 • • • 1 -0.362 0 0 0 1 0.307 0 0 0 0

-0.279 • • • 1 -0.348 0 0 0 1 0.379 0 0 0 0

-0.183 o • • 1 -0.330 0 0 0 1 0.388 0 0 0 0 -0.351 • • • 1 -0.460 0 0 0 1 0.463 0 0 0 0 -0.367 • • • 1 -0.486 0 0 0 1 0.519 0 0 0 0

-0.367 • « • 1 -0.478 0 0 0 1 0.526 0 0 0 0 -0.389 • • • 1 -0.487 0 0 0 1 0.589 0 0 0 0

-0.393 • • e 1 -0.716 0 0 0 1 0.711 0 0 0 0

-0.403 • • t 1 -0.854 0 0 0 1 0.699 0 0 0 0

-0.426 • • • 1 -0.798 0 0 0 1 0.774 0 0 0 0

-0.410 • 0 0 1 -0.681 0 0 0 1 0.763 0 0 0 0

-0.513 « 0 0 1 -0.683 0 0 0 1 0.809 0 0 0 0 -0.472 • 0 0 1 -0.631 0 0 0 1 0.890 0 0 0 0 -0.469 • 0 0 1 -0.684 0 0 0 1 0.815 0 0 0 0

-0.626 • 0 0 1 -0.727 0 0 0 1 0.931 0 0 0 0 -0.599 « 0 « 1 -0.689 0 0 0 1 0.979 0 0 0 0 -0.580 • 0 0 1 -0.716 0 0 0 1 1.112 0 0 0 0

-0.747 • 0 0 1 -0.937 0 0 0 1 1.002 0 0 0 0 TABLE 12 (continued)

NORMALIZED ENERGY DISTRIBUTIONS: CTIO

A HR 2044 HR 2073 HR 2388

3570 2.075 0.01 2 2 .294 0.01 2 2.182 0.02 2 3620 1. 865 0.02 2 1 .946 0.02 2 1.872 0.02 2 3784 1.275 0.02 2 1 .551 0.01 2 1.431 0.02 2 3798 1.499 0.01 2 1.746 0.01 2 1 .668 0.01 2 3815 1.216 0.02 2 1 .646 0.01 2 1 .480 0.01 2 3835 1. 624 0.01 2 2.042 0.02 2 1.882 0.01 2 3860 1.043 0.03 2 1 .656 0.01 2 1.448 0.01 2 3889 1.399 0.03 2 1.573 0.04 2 1.498 0.03 2 3910 0.867 0.02 2 1.193 0.01 2 1 .084 0.01 2 3933 1.114 0.01 2 1.623 0.01 2 1.416 0.01 2 4015 0.560 0.02 2 0.816 0.02 2 0.733 0.01 2 4101 1.017 0.01 2 0.982 0.01 2 0.947 0.01 2 4200 0.572 0.01 2 0.816 0.01 2 0.748 0.01 2 4270 0.474 0.01 2 0.642 0.02 2 0.599 0.02 2 4305 0.635 0.01 2 0.916 0.01 2 0.833 0.02 2 4340 0.672 0.01 2 0.651 0.01 2 0.627 0.01 2 4380 0.438 0.01 2 0.569 0.01 2 0.526 0.02 2 4400 0.396 0.01 2 0 .533 0.01 2 0.487 0.02 2 4430 0.306 0.01 2 0.424 0.01 2 0.394 0.01 2 4476 0.229 0.01 2 0.329 0.01 2 0.319 0.01 2 4500 0.206 0.02 2 0.289 0.04 2 0.279 0.02 2

4785 -0.003 • • • o 1 0.039 9 0 0 0 1 0.042 0 9 9 0 4861 0.285 • • • • 1 0.211 0 0 0 9 1 0.235 9 0 0 0

5050 0.000 • • • • 1 0 . 000 0 0 0 0 1 0.000 0 9 9 0 5050 0.000 * • • o 1 0.000 0 0 0 0 1 0 .000 9 0 9 9

5175 0.069 • • t a 1 0.011 0 9 0 0 1 0.032 9 9 0 0

5300 -0.144 • • • • 1 -0.164 0 9 9 0 1 -0.122 0 0 9 9 5820 -0.315 • • a • 1 -0.370 0 9 0 9 1 -0.320 0 0 9 9

5892- -0.287 • o • • 1 -0.323 9 9 0 9 1 -0.279 9 9 9 9 6100 -0.380 a a a a 1 -0.429 0 9 9 9 1 -0.368 9 9 0 9 6180 -0.387: a a a a 1 -0.421 9 0 0 9 1 -0.368 9 0 9 9 6370 -0.374 0 • • 9 1 -0.452 0 9 9 9 1 -0.410 9 0 0 9 6560 -0.341 9 0 9 9 1 -0.415 9 9 0 0 1 -0.366 0 9 9 0 6800 -0.506 0 0 0 9 1 -0.556 0 9 9 9 1 -0.491 0 9 0 9 7050 -0.540 0 9 90 1 -0.588 0 0 0 0 1 -0.552 9 9 0 9 7100 -0.507 9 9 0 0 1 -0.593 0 0 9 0 1 -0.501 0 9 9 0 7400 -0.556 0 0 0 0 1 -0.594 0 9 0 0 1 -0.550 0 9 9 0 8050 -0.588 0 0 0 0 1 -0.756 0 9 0 * 1 -0.622 9 0 9 0

8190 -0.582 0 0 0 9 1 -0.691 0 9 0 0 1 -0.640 0 0 9 9 8400 -0.619 0 0 0 0 1 -0.673 0 9 0 0 1 -0.646 0 0 9 0 8542 -0.555 9 0 9 9 1 -0.528 9 0 0 0 1 -0.557 9 0 9 9 8800 -0.767 9 0 0 0 1 -0.713 0 0 0 0 1 -0.689 0 9 9 0 8880 -0.723 0 0 0 0 1 -0.678 0 0 9 0 1 -0.683 9 9 9 9 9190 -0.695 0 0 0 9 1 -0.636 0 0 9 9 1 -0.664 9 9 0 0 9920 -0.771 0 0 9 0 1 -0.749 0 0 9 0 1 -0.799 0 0 9 9 9950 -0.725 0 0 0 0 1 -0.723 0 0 9 9 1 -0.761 0 0 9 9

10050 -0.681 0 9 0 9 1 -0.672 0 9 0 0 1 -0.741 9 0 9 9 10400 -0.873 9 9 9 9 1 -0.890 0 0 0 9 1 -0.812 0 0 0 9 TABLE 12 (continued)

NORMALIZED ENERGY DISTRIBUTIONS: CTIO

X HR 2 7 86 HR 3056 £ Car

3570 2.444 0.01 2 2.032 0.02 2 1.857 3620 2. 138 0.01 2 1.894 0.01 2 1.811 3784 1.752 0.02 2 1.469 0.02 2 1.530 3798 1 .881 0.01 2 1.678 0.01 2 1.691 3815 1 .850 0.01 2 1.425 0.01 2 1.536 3835 2. 108 0.02 2 1.753 0.01 2 1.712 3860 1 .936 0.01 2 1 .356 0.01 2 1.425 3889 1 .732 0.01 2 1.558 0.01 2 1.661 3910 1 . 544 0.01 2 1.212 0.01 2 1.366 3933 2.110 0.01 2 1 .363 0.01 2 1.470 4015 1 .072 0.02 2 0.982 0.02 2 1.278 4101 1 . 063 0.02 2 1.185 0.02 2 1.405 4200 1 .003 0.01 2 0.975 0.01 2 1.203 4270 0.774 0.01 2 0.772 0.01 2 1 .031 4305 1 . 084 0.01 2 0.944 0.02 2 1.120 4340 0.726 0.01 2 0.780 0.01 2 0.951 4380 0.695 0.02 2 0.711 0.01 2 0.926 4400 0.651 0.01 2 0.639 0.01 2 0.871 4430 0.558 0.02 2 0.578 0.01 2 0.774 4476 0.451 0.01 2 0.484 0.01 2 0.666 4500 0.396 0.01 2 0.427 0.02 2 0.551 4785 0.073 • • • • 1 0.053 0 0 0 0 1 4861 0.281 0000 1 0.296 0 0 0 0 1 5050 0.000 • • • • 1 0.000 0 0 0 0 1 5050 0.000 0000 1 0.000 0 0 0 0 1 0.000 5175 0.057 • • • • 1 0.045 0 0 0 0 1 0. 108 5300 -0.145 • • • • 1 -0.165 0 0 0 0 1 -0.304 5820 -0.360 0 • • • 1 -0.487 0 0 0 0 1 -0.748 5892 -0.345 0 0 0 0 1 -0.419 0 0 0 0 1 -0 .560 6100 -0.447 0 0 0 0 1 -0.566 0 0 0 0 1 -0.860 6180 -0.431 0 0 0 0 1 -0.568 0 0 0 0 1 -0.790 6370 -0.447 0 0 0 0 1 -0.601 0 0 0 0 1 -0.898 6560 -0.423 0 0 0 0 1 -0.600 0 0 0 0 1 -0.961 6800 -0.567 0 0 0 0 1 -0.776 0 0 0 0 1 -1.134 7050 -0.604 0 0 0 0 1 -0.826 0 0 0 0 1 -1.251 7100 -0.611 0 0 0 0 1 -0.779 0 0 0 0 1 -1.152 7400 -0.619 0 0 0 0 1 -0.859 0 0 0 0 1 -1 .382 8050 -0.724 0 0 0 0 1 -0.980 0 0 0 0 1 -1 .522 8190 -0.724 0 0 0 0 1 -0.978 0 0 0 0 1 -1.531 8400 -0.761 0 0 0 0 1 -1.021 0 0 0 0 1 -1.571 8542 -0.599 0 0 0 0 1 -0.941 0 0 0 0 1 -1.493 8800 -0.751 0 0 0 0 1 -1.121 0 0 0 0 1 -1.715 8880 -0.769 0 0 0 0 1 -1.153 0 0 0 0 1 -1.746 9190 -0.751 0 0 0 0 1 -1.053 0 0 0 0 1 -1.654 9920 -0. 874 0 0 0 0 1 -1.275 0 0 0 0 1 -1.932 9950 -0.880 0 0 0 0 1 -1.251 0 0 0 0 1 -1.930 10050 -0.832 0 0 0 0 1 -1.290 0 0 0 0 1 -1.917 10400 -0.905 0 0 O 0 1 -1.386 0 0 0 0 1 -2.046 TABLE 12 (continued)

NORMALIZED ENERGY DISTRIBUTIONS: CTIO

X HR 3386 HR 3534 HR 3548

3570 1 .702 0.01 3 1 .809 0.01 3 2.175 0.02 3 3620 1 . 545 0.01 3 1.63 7 0.03 3 1.905 0.02 3 3784 0.929 0.01 3 0.915 0.03 3 1.525 0.01 3 3798 1. 175 0.01 3 1.131 0.03 3 1 .724 0.02 3 3815 0.835 0.01 3 0.827 0.02 3 1 .566 0.01 3 3835 1 .283 0.02 3 1.248 0.03 3 1.895 0.02 3 3860 0.759 0.01 3 0.710 0.03 3 1.575 0.02 3 3889 1 .084 0.02 3 1 .041 0.03 3 1.574 0.03 3 3910 0.587 0.01 3 0.578 0.04 3 1 .241 0.01 3 3933 0.737 0.01 3 0.826 0.03 3 1.572 0.01 3 4015 0.401 0.01 3 0.369 0.03 3 0.911 0.01 3 4101 0.787 0.02 3 0.764 0.03 3 1 .049 0.04 3 4200 0.425 0.02 3 0.370 0.02 3 0.936 0.01 3 4270 0.340 0.01 3 0.303 0.03 3 0.721 0.02 3 4305 0.491 0.01 3 0.462 0.03 3 0 ..942 0.02 3 4340 0.566 0.01 3 0.579 0.03 3 0.670 0.01 3 4380 0.322 0.01 3 0.287 0.02 3 0.622 0.03 3 4400 0.297 0.02 3 0.258 0.05 3 0.585 0.01 3 4430 0.226 0.01 3 0.196 0.02 3 0.487 0.02 3 4476 0.193 0.01 3 0. 189 0.02 3 0.394 0.02 3 4500 0.160 0.02 3 0.151 0.04 3 0.332 0.01 3

4785 -0.020 • • • • 1 -0.013 • 0 0 0 1 0.045 0 0 0 0 1

4861 0.303 • • • • 1 0.343 0 0 0 0 1 0. 198 0 0 0 0 1

5050 0.000 0000 1 0.000 0 0 0 0 1 0.000 0 0 0 0 1 5050 0.000 0.02 2 0.000 0.02 2 0.000 0.02 2 5175 0.050 0.01 2 0.035 0.02 2 0.026 0.01 2 5300 -0.098 0.02 2 -0.083 0.01 2 -0.158 0.03 2 5820 -0.234 0.02 2 -0.178 0.04 2 -0.403 0.01 2 5892 -0. 198 0.02 2 -0.157 0.01 2 -0.362 0.01 2 6100 -0.287 0.02 2 -0.240 0.02 2 -0.476 0.01 2 6180 -0.254 0.01 2 -0.222 0.02 2 -0.473 0.01 2 6370 -0.280 0.01 2 -0.226 0.01 2 -0.507 0.01 2 6560 -0.208 0.01 2 -0.132 0.02 2 -0.495 0.01 2 6800 -0.356 0.02 2 -0.307 0.02 2 -0.650 0.01 2 7050 -0.401 0.02 2 -0.317 0.02 2 -0.693 0.01 2 7100 -0.394 0.01 2 -0.309 0.02 2 -0.672 0.01 2 7400 -0.374 0.02 2 -0.307 0.02 2 -0.709 0.02 2

8050 -0.445 • • • • 1 -0.189 0 0 0 0 1 -0.849 0 0 0 0 1

8190 -0.453 • • • • 1 -0.22 2 0 0 0 0 1 -0.856 0 0 0 0 1

8400 -0.438 • • • • 1 -0.218 O 0 0 0 1 -0.895 0 0 0 0 1

8542 -0.350 « • • • 1 -0.153 0 0 0 0 1 -0.797 0 0 0 0 1

8800 -0.474 0 0 0 0 1 -0.372 0 0 0 0 1 -0.934 0 0 0 0 1

8880 -0.464 0 0 0 0 1 -0.308 0 0 0 0 1 -0.950 0 0 0 0 1

9190 -0.491 0 0 0 0 1 -0.306 0 0 0 0 1 -0.864 0 0 0 0 1

9920 -0.571 O 0 0 0 1 -0.358 0 0 0 0 1 -1.078 0 0 0 0 1

9950 -0.571 0 0 0 0 1 -0.266 0 0 0 0 1 -1.053 0 0 0 0 1

10050 -0.587 0 0 0 0 1 -0.216 0 0 0 0 1 -1 .039 0 0 0 0 1

10400 -0.622 0 0 0 0 1 -0.409 0 0 0 0 1 -1.124 0 0 0 0 1 TABLE 12 (continued)

NORMALIZED ENERGY DISTRIBUTIONS: CTIO

A HR 3831 0 Leo 0 Ant

3570 1.339 0.02 2 1 .500 0.02 2 1.781 0 01 3620 1 .294 0.03 2 1.461 0.01 2 1 .639 0 02 3784 0.700 0.02 2 0. 900 0.02 2 0.970 0 01 3798 0.911 0.04 2 1 .039 0.01 2 1 . 188 0 02 3815 0.594 0.06 2 0. 803 0.01 2 0.894 0 01 3835 0.971 0.05 2 1.105 0.01 2 1.274 0 01 3860 0.440 0.06 2 0.629 0.01 2 0.706 0 01 3889 0.860 0.04 2 0.947 0.01 2 1.082 0 01 3910 0.381 0.05 2 0.672 0.01 2 0.627 0 01 3933 0. 649 0.06 2 0.842 0.01 2 0.871 0 01 4015 0.148 0.03 2 0.427 0.02 2 0.356 0 02 4101 0.767 0.02 2 0.692 0.01 2 0.791 0 01 4200 0.113 0.02 2 0.356 0.01 2 0.373 0 01 4270 0.077 0.03 2 0.262 0.01 2 0.277 0 01 4305 0.180 0.02 2 0.364 0.01 2 0.444 0 01 4340 0.663 0.02 2 0.543 0.01 2 0.607 0 01 4380 0.108 0.02 2 ,0.241 0.01 2 0.270 0 01 4400 0.055 0.02 2 0.232 0.01 2 0.250 0 01 4430 0.084 0.02 2 0.177 0.01 2 0. 184 0 01 4476 0.055 0.02 2 0.180 0.01 2 0.163 0 01 4500 0.017 0.02 2 0.118 0.01 2 0.115 0 01

4785 -0.029 9 9 9 9 1 -0.025 9 9 9 9 1 -0.024 9 • •

4861 0. 604 9 9 9 9 1 0.351 9 9 9 9 1 0.382 9 • •

5050 0. 000. 9 9 9 9 1 0 . 0 0 0 9 9 9 9 1 0 . 0 0 0 9 • •

5050 0. 000 0.01 2 0 . 0 0 0 0.01 2 0 . 0 0 0 0 01

5175 0.043 0.01 2 0.044 0.01 2 0.067 0 02

5300 0.036 0.03 2 -0.046 0.01 2 -0.068 0 01

5820 0.025 0.01 2 -0.122 0.01 2 -0.161 0 01 5892 0.045 0.01 2 -0.096 0.01 2 -0.113 0 02

6100 0.029 0.01 2 -0.134 0.01 2 -0.182 0 01 6180 0.051 0.01 2 -0.135 0.02 2 -0.173 0 02

6370 0.086 0.01 2 -0.121 0.01 2 -0.168 0 01

6560 0.378 0.01 2 0.031 0.02 2 -0.048 0 02 6800 0.093 0.01 2 -0.166 0.02 2 -0.229 0 02 7050 0.107 0.01 2 -0.170 0.01 2 -0.239 0 01 7100 0.098 0.01 2 -0.172 0.01 2 -0.230 0 02 7400 0.139 0.01 2 -0.133 0.01 2 -0.214 0 03

8050 0.195 9 9 9 9 1 -0.177 9 9 9 9 1 -0.278 9 • •

8190 0.176 9 9 9 9 1 -0.179 9 9 9 9 1 -0.277 9 • •

8400 0.236 9 9 9 9 1 -0.178 9 9 9 9 1 -0.282 9 • •

8542 0.294 9 9 9 9 1 -0.123 9 9 9 9 1 -0.214 9 • •

8800 0.228 9 9 9 9 1 -0.174 9 9 9 9 1 -0.324 9 • •

8880 0. 309 9 9 9 9 1 -0.168 9 9 9 9 1 -0.282 9 • •

9190 0.252 9 9 9 9 1 -0.179 9 9 9 9 1 -0.281 9 9 9

9920 0.235 9 9 9 9 1 -0.170 9 9 9 9 1 -0.384 9 9 9

9950 0. 234 9 9 9 9 1 -0.187 9 9 9 9 1 -0.380 9 9 9

10050 0. 507 9 9 9 9 1 -0.071 9 9 9 9 1 -0.303 9 9 9

10400 0.299 9 9 9 9 1 -0.167 9 9 9 9 1 -0.415 9 9 9 TABLE 12 (continued) 6 A

NORMALIZED ENERGY DISTRIBUTIONS: CTIO

X p Vel HR 4177 55 Leo

3570 1.184 0.02 2 4.321 >0.08 2 1 .242 0.06 2 3620 1.153 0.02 2 3.699 0.03 2 1.163 0.03 2 3784 0.616 0.01 2 3.289 0.03 2 0.687 0.03 2 3798 0. 793 0.02 2 3.442 0.01 2 0.825 0.02 2 3815 0.503 0.02 2 3.603 0.05 2 0.626 0.02 2 3835 0.838 0.02 2 3.635 0.02 2 0.930 0.03 2 3860 0.307 0.02 2 3.509 0.04 2 0.477 0.02 2 3889 0.726 0.01 2 3.239 0.01 2 0.750 0.02 2 3910 0.321 0.02 2 3.097 0.05 2 0.481 0.02 2 3933 0.451 0.01 2 3.801 0.05 2 0.928 0.03 2 4015 0.139 0.02 2 2.254 0.02 2 0.319 0 .02 2 4101 0.616 0.03 2 2.107 0.04 2 0.594 0.02 2 4200 0.107 0.02 2 1 .996 0.01 2 0.255 0.02 2 4270 0.067 0.02 2 1 .640 0.02 2 0.220 0.02 2 4305 0.175 0.02 2 1.768 0.02 2 0.348 0.04 2 4340 0.528 0.02 2 1 .233 0.03 2 0.482 0.02 2 4380 0.086 0.02 2 1 .346 0.04 2 0.213 0.03 2 4400 0.065 0.01 2 1.266 0.02 2 0.231 0.05 2 4430 0.030 0.02 2 1 .080 0.03 2 0.173 0.04 2 4476 0.055 0.02 2 0.837 0.01 2 0.168 0.02 2 4500 0.010 0.02 2 0.746 0.01 2 0.128 0.04 2 4785 -0.041 • • • • 1 0.297 0 0 0 0 1 0.004 0000 1 4861 0.449 • • • • 1 0.344 0 0 • 0 1 0.297 • • • • 1 5050 0.000 • • • • 1 0.000 • • • • 1 0 .000 • • • • 1 5050 0.000 0.02 2 0.000 0.01 2 0.000 0.03 2 5175 0.037 0.02 2 0.117 0.02 2 0.023 0.03 2 5300 -0.013 0.02 2 -0.347 0.03 2 -0.071 0.03 2 5820 -0.022 0.01 2 -0.837 0.01 2 -0.125 0.02 2 5892 -0.002 0.02 2 -0.683 0.02 2 -0.104 0.01 2 6100 -0.030 0.01 2 -0.983 0.02 2 -0.139 0.02 2 6180 -0.012 0.02 2 -0.928 0.01 2 -0.154 0.01 2 6370 0.014 0.02 2 -1.046 0.01 2 -0.134 0.01 2 6560 0.250 0.02 2 -1.112 0.01 2 0.023 0.01 2 6800 0.007 0.02 2 -1.285 0.01 2 -0.170 0.01 2 7050 0.012 0.02 2 -1.401 0.02 2 -0.183 0.01 2 7100 0.012 0.01 2 -1.333 0.03 2 -0.185 0.01 2 7400 0.038 0.01 2 -1.529 0.01 2 -0.151 0.01 2 8050 0.082 • • • • 1 -1.735 • • • • 1 -0.198 • • • • 8190 0.078 • • • • 1 -1 .757 • • • • 1 -0.213 • • • • 8400 0.098 • • • • 1 -1.793 • e • • 1 -0.183 • • • • 8542 0. 149 • • • • 1 -1.697 0000 1 -0.119 • • • • 8800 0.096 • • • • 1 -1.906 • • • 0 1 -0.144 9 0 • • 8880 0.177 • I • • 1 -1.939 « • • 0 1 -0.097 • • • • 9190 0.099 • • • • 1 -1.919 • 0 • 0 1 -0.155 • • 0 • 9920 0. 104 • 0 • • 1 -2.145 • • • • 1 -0.160 • • • • 9950 0.131 • • • • 1 -2.132 0 0 0 0 1 -0.165 • 0 0 • 10050 0.295 • 0 • • 1 -2.127 0 0 0 0 1 -0.036 • • • • 10400 0. 133 • • • • 1 -2.257 0 0 0 0 1 -0.215 • • • • TABLE 12 (continued)

NORMALIZED ENERGY DISTRIBUTIONS: CTIO

A HR 4417 HR 4492 HR 4544

3570 1.741 0.02 2 1 . 936 0.01 2 2.759 0.03 2 3620 1. 577 0.02 2 1 .801 0.03 2 2.264 >0.08 2 3784 0.923 0.01 2 1 .267 0.01 2 1 .944 0.04 2 3798 1.171 0.02 2 1 .490 0.01 2 2.166 0.05 2 3815 0.841 0.02 2 1.151 0.02 2 2.295 0.02 2 3835 1 .285 0.02 2 1 .529 0.03 2 2 . 644 0.06 2 3860 0.690 0.02 2 0.974 0.03 2 2 . 500 0.02 2 3889 1 .063 0.03 2 1.381 0.02 2 1.977 0.03 2 3910 0.538 0.02 2 0.847 0.03 2 1 .685 0.02 2 3933 0.766 0.02 2 0.882 0.02 2 2.494 0.01 2 4015 0.317 0.02 2 0.609 0.02 2 1 .093 0.01 2 4101 0.781 0.02 2 1.047 0.02 2 1.042 0.01 2 4200 0.322 0.02 2 0.589 0.02 2 1 .057 0.02 2 4270 0.270 0.02 2 0.497 0.01 2 0.872 0.03 2 4305 0.419 0.03 2 0.644 0 .02 2 1.190 0.02 2 4340 0.601 0.03 2 0.732 0.01 2 0.605 0.02 2 4380 0.259 0.02 2 0.462 0.01 2 0.709 0 .02 2 4400 0.231 0.03 2 0.404 0.02 2 0.666 0.02 2 4430 0.154 0.04 2 0.347 0.01 2 0.519 0.04 2 4476 0.148 0.03 2 0.275 0.03 2 0.387 0.03 2 4500 0.098 0.01 2 0.252 0.03 2 0.330 0.02 2

4785 -0.008 • • • • 1 0.061 • • • • 1 0.051 9 9 9 9

4861 0.364 • • • • 1 0.327 • • • • 1 0.155 9 9 9 9

5050 0. 000 • © • • 1 0.000 • • • • 1 0.000 9 9 9 9

5050 0. 000 0.02 2 0.000 0.02 2 0.000 9 9 9 9

5175 0.040 0.03 2 0.048 0 .02 2 0.082 9 9 9 9

5300 -0.066 0.02 2 -0.178 0.02 2 -0. 182 9 9 9 9

5820 -0.145 0.02 2 -0.414 0.02 2 -0.429 9 9 9 9

5892 -0.109 0.02 2 -0.348 0.01 2 -0.390 9 9 9 9

6100 -0.181 0.03 2 -0.488 0.02 2 -0.519 9 9 9 9

6180 -0.179 0.02 2 -0.510 0.01 2 -0.516 9 9 9 9

6370 -0.191 0.01 2 -0.519 0.02 2 -0.547 9 9 9 9

6560 -0.081 0.01 2 -0.542 0.02 2 -0.560 9 9 9 9

6800 -0.244 0.01 2 -0.670 0.01 2 -0.694 9 9 9 9

7050 -0.263 0.02 2 -0.730 0.01 2 -0.739 9 9 9 9

7100 -0.267 0.01 2 -0.706 0.01 2 -0.723 9 9 9 9

7400 -0.266 0.02 2 -0.762 0.01 2 -0.783 9 9 9 9

8050 -0.281 • • 9 9 1 -0.884 • • • a 1 -0.818 9 9 9 9

8190 -0.307 9 o o o 1 -0.923 • • • o 1 -0.842 9 9 9 9

8400 -0.304 • • o • 1 -0.922 • • • • 1 -0.886 9 9 9 9

8542 -0.212 • • • • 1 -0.868 • • • • 1 -0.812 0 9 9 9

8800 -0.312 • • • • 1 -0.976 9 9 9 9 1 -0.880 9 9 9 9

8880 -0.309 • • • • 1 -0.979 9 9 9 9 1 -0.915 9 9 9 9

9190 -0.336 • • • • 1 -1.007 9 9 9 9 1 -0.885 9 9 9 9

9920 -0.424 • • • • 1 -1.168 9 9 9 9 1 -1.037 9 9 9 9

9950 -0.373 • • • • 1 -1.176 9 9 9 9 1 -1.006 9 9 9 9

10050 -0.317 • • • • 1 -1.122 9 9 9 9 1 -1.000 9 9 9 9

10400 -0.410 • • • • 1 -1.228 9 9 9 9 1 -1 . 103 9 9 9 0 TABLE 12 (continued)

NORMALIZED ENERGY DISTRIBUTIONS: CTIO

X HD 103856 it Vir r) Vir

3570 1.143 0.02 2 1 .354 0.04 2 1.177 0.01 2 3620 1 .100 0.01 2 1.334 0.04 2 1.168 0.01 2 3784 0.590 0.02 2 0.486 0.04 2 0.341 0.01 2 3798 0.750 0.02 2 0.745 0,04 2 0.618 0.02 2 3815 0.506 0.01 2 0.299 0.05 2 0.106 0.01 2 3835 0.803 0.01 2 0.749 0.01 2 0.637 0.02 2 3860 0.346 0.01 2 0.079 0 .03 2 -0.076 0.01 2 3889 0.688 0.01 2 0.673 0.03 2 0.583 0.01 2 3910 0.340 0.01 2 0.066 0.01 2 -0.092 0.03 2 3933 0.681 0.01 2 0.187 0.04 2 -0.095 0.02 2 4015 0.191 0.02 2 -0.089 0 . 02 2 -0.186 0.01 2 4101 0.580 0.01 2 0.618 0.02 2 0.607 0.01 2 4200 0. 150 0.02 2 -0.093 0.02 2 -0.139 0.01 2 4270 0.114 0.02 2 -0.079 0 . 02 2 -0.131 0.01 2 4305 0.207 0.01 2 0.014 0.02 2 -0.065 0.01 2 4340 0.477 0.03 2 0.588 0.02 2 0.601 0.01 2 4380 0. 128 0.01 2 -0.029 0.02 2 -0.085 0.01 2 4400 0. 102 0.02 2 -0.048 0.01 2 -0.099 0.01 2 4430 0.069 0.01 2 -0.090 0 .02 2 -0.121 0.01 2 4476 0.076 0.01 2 -0.033 0.02 2 -0.078 0.01 2 4500 0.023 0.01 2 -0.067 0.03 2 -0.095 0.01 2

4785 -0.047 • • • • 1 -0.061 a a • a 1 -0.096 a a a a 1

4861 0.381 • • • • 1 0.551 a a a a 1 0.600 a a a a 1

5050 0. 000 • • • • 1 0.000 a a a a 1 0.000 a a a a 1 5050 0. 000 0.02 2 0.000 0.02 2 0.000 0.02 3 5175 0.030 0.02 2 0.045 0.01 2 0.043 0.01 3 5300 -0.034 0.03 2 0.026 0.02 2 0.041 0.01 3 5820 -0.082 0.01 2 0.082 0.02 2 0.138 0.02 3 5892 -0.053 0.01 2 0.099 0.02 2 0.166 0.02 3 6100 -0.089 0.01 2 0.095 0.02 2 0.169 0.02 3 6180 -0.068 0.03 2 0.120 0.01 2 0.189 0.02 3 6370 -0.057 0.01 2 0.169 0.02 2 0.252 0.02 3 6560 0.108 0.01 2 0.473 0.02 2 0.576 0.02 3 6800 -0.096 0.01 2 0.200 0.02 2 0.300 0.02 3 7050 -0.089 0.02 2 0.199 0.02 2 0.314 0.01 3 7100 -0.091 0.01 2 0.223 0.03 2 0.325 0.02 3 7400 -0.069 0.01 2 0.258 0.03 2 0.381 0.01 3 8050 -0.069 • • • • 1 0.314 a a a a 1 0.452 0.01 2 8190 -0.070 • • • • 1 0.318 a a a a 1 0.458 0.01 2 8400 -0.049 • • • • 1 0.339 a a a a 1 0.501 0.01 2 8542 0.016 a a a • 1 0.395 a a a a 1 0.519 0.03 2 8800 -0.010 a a a a 1 0.278 a a a a 1 0.434 0.01 2 8880 0.035 a a a a 1 0.398 a a a a 1 0.568 0.01 2 9190 -0.044 a a a a 1 0.344 a a a a 1 0.488 0.01 2 9920 -0.065 a a a a 1 0.337 a a a a 1 0.499 0.01 2 9950 -0.024 a a a a 1 0.331 a a a a 1 0.509 0.01 2 10050 0.088 a a a a 1 0.608 a a a a 1 0.797 0.01 2 10400 0.028 a a a a 1 0.364 a a a a 1 0.544 0.02 2 TABLE 12 (continued)

NORMALIZED ENERGY DISTRIBUTIONS: CTIO

A 16 Vir 0 Crv HD 109241

3570 3.061 • • • • 1 1.150 0.01 2 1.281 0. 02 2

3620 2.475 • 90* 1 1.122 0.03 2 1.251 0. 02 2

3784 2.136 9 9 9 9 1 0.634 0.02 2 0.597 0. 01 2

3798 2. 355 9 9 9 9 1 0.781 0.03 2 0.794 0. 03 2

3815 2.563 9 9 9 9 1 0.549 0.02 2 0.447 0 . 02 2

3835 2.815 9 9 9 9 1 0.870 0.04 2 0.836 0. 02 2

3860 2.653 9 9 9 9 1 0.401 0.04 2 0.238 0. 03 2

3889 2.137 9 9 9 9 1 0.717 0 .02 2 0.739 0. 01 2

3910 1 . 906 9 9 9 9 1 0.411 0.03 2 0.241 0. 03 2

3933 2.819 9 9 9 9 1 0.842 0.02 2 0.534 0. 01 2

4015 1.252 9 9 9 9 1 0.237 0.03 2 0.052 0. 03 2

4101 1. 182 9 9 9 9 1 0.571 0.03 2 0.646 0. 01 2

4200 1. 172 9 9 9 9 1 0.178 0.02 2 0.018 0. 02 2

4270 0.958 9 9 9 9 1 0.137 0.03 2 -0.013 0. 03 2

4305 1.277 9 9 9 9 1 0.242 0.02 2 0.116 0. 02 2

4340 0. 669 9 9 9 9 1 0.467 0.03 2 0.581 0. 01 2

4380 0.812 9 9 9 9 1 0.139 0.02 2 0.049 0. 02 2

4400 0.713 9 9 9 9 1 0.113 0.02 2 0.004 0. 02 2

4430 0.577 9 9 9 9 1 0.080 0.03 2 -0.011 0. 03 2

4476 0.393 9 9 9 9 1 0.091 0.03 2 0.009 0. 02 2

4500 0.314 9 9 9 9 1 0.045 0.04 2 -0.046 0. 01 2

4785 -0.026 9 9 9 9 1 -0.042 e 9 • • 1

4861 0.328 9 9 9 9 1 0.502 9 9 • • 1

5050 0 . 0 0 0 9 9 9 9 1 0 . 0 0 0 9 9 • • 1

5050 0 . 0 0 0 0.05 2 0.000 0.03 2 0 . 0 0 0 0. 02 2

5175 0.067 0.04 2 0.032 0.02 2 0.032 0. 01 2

5300 -0.244 0.05 2 -0.050 0.02 2 -0.007 0. 03 2

5820 -0.567 0.03 2 -0.077 0.02 2 0.003 0. 03 2

5892 -0.530 0.05 2 -0.055 0 .02 2 0.030 0. 04 2

6100 -0.656 0.04 2 -0.094 0.02 2 0.026 0. 03 2

6180 -0.661 0.03 2 -0.090 0.01 2 0.024 0. 03 2

6370 -0.720 0.04 2 -0.069 0.02 2 0.070 0. 02 2

6560 -0.728 0.04 2 0.122 0.01 2 0.353 0. 04 2

6800 -0.885 0.04 2 -0.084 0.01 2 0.094 0. 02 2

7050 -0.933 0.04 2 -0.100 0.01 2 0.086 0. 02 2

7100 -0.933 0.04 2 -0.088 0.02 2 0.093 0. 03 2

7400 -0.988 0.05 2 -0.059 0.02 2 0.131 0. 02 2

8050 -1.166 9 9 9 9 1 -0.053 9 9 9 9 1 0.173 9 9 1

8190 -1.181 9 9 9 9 1 -0.062 9 9 9 9 1 0.222 9 9 1

8400 -1.199 9 9 9 9 1 -0.041 9 9 9 9 1 0.220 9 9 1

8542 -1.137 9 9 9 9 1 0.023 9 9 9 9 1 0.252 9 9 1

8800 -1.222 9 9 9 9 1 -0.009 9 9 9 9 1 0.240 9 9 1

8880 -1.247 9 9 9 9 1 0.023 9 9 9 9 1 0.332 9 9 1

9190 -1 .238 9 9 9 9 1 -0.011 9 9 9 9 1 0.246 9 9 1

9920 -1.419 9 9 9 9 1 -0.014 9 9 9 9 1 0.165 9 9 1

9950 -1 .401 9 9 9 9 1 -0.007 9 9 9 9 1 0.250 9 9 1

10050 -1.398 9 9 9 9 1 0.125 9 9 9 9 1 0.458 9 9 1

10400 -1.454 9 9 9 9 1 -0.025 9 9 9 9 1 0.246 9 9 1 TABLE 12 (continued) 68

NORMALIZED ENERGY DISTRIBUTIONS: CTIO

A £ Cen i/j Vir 0 Mus

3570 0.478 0.01 2 3.628 0.04 2 -0.229 0.01 2 3620 0.486 0.01 2 3.351 0.04 2 -0.209 0.02 2 3784 -0.059 0.01 2 2.835 0.01 2 -0.235 0.02 2 3798 0. 167 0.01 2 2.978 0.02 2 -0.178 0.01 2 3815 -0.194 0.02 2 2.928 0.01 2 -0.232 0.01 2 3835 0.165 0.01 2 3.117 0.03 2 -0.189 0.01 2 3860 -0.287 0.01 2 2.847 0.03 2 -0.234 0.01 2 3889 0.149 0.01 2 2.841 0.05 2 -0.174 0.01 2 3910 -0.278 0.02 2 2.644 0.03 2 -0.249 0.01 2 3933 -0.303 0.01 2 3.296 0.01 2 -0.227 0.01 2 4015 -0.271 0.01 2 2.050 0.01 2 -0. 164 0.01 2 4101 0.224 0.01 2 1.851 0.01 2 -0.080 0.01 2 4200 -0.216 0.01 2 1 .639 0.02 2 -0.128 0.01 2 4270 -0.200 0.02 2 1.481 0 .03 2 -0.142 0.01 2 4305 -0.184 0.01 2 1.484 0.02 2 -0.145 0.01 2 4340 0.264 0.01 2 1.071 0.03 2 -0.086 0.01 2 4380 -0.155 0.02 2 1.081 0.01 2 -0.117 0.01 2 4400 -0.159 0.02 2 1.054 0.01 2 -0.118 0.01 2 4430 -0.161 0.02 2 0.905 0.01 2 -0.107 0.02 2 4476 -0.118 0.02 2 0.751 0.03 2 -0.064 0.01 2 4500 -0.137 0.01 2 0.634 0.01 2 -0.123 0.01 2

4785 -0.098 • • • • 1 0.401 • • • • 1 -0.088 • 0*0 1

4861 0.333 a a • • 1 0.328 • • • 0 1 0.002 0 0 0 0 1

5050 0. 000 0000 1 0.000 • • i t 1 0 .000 0 0 0 0 1 5050 0. 000 0.01 2 0.000 0.03 2 0.000 0.01 2 5175 0.021 0.01 2 0.158 0 . 03 2 0.010 0.01 2 5300 0.065 0.01 2 -0.478 0 .02 2 0.002 0.01 2 5820 0.174 0.01 2 -0.849 0 .02 2 -0.365 0.07 2 5892 0.190 0.02 2 -0.482 0.02 2 0.113 0.02 2 6100 0.219 0.01 2 -1.127 0.01 2 0. 124 0.03 2 6180 0.233 0.01 2 -0.651 0.01 2 0.144 0.02 2 6370 0. 307 0.02 2 -1.177 0.01 2 0 .227 0.01 2 6560 0.531 0.02 2 -1.318 0.01 2 0.055 0.02 2 6800 0.375 0.01 2 -1.284 0.01 2 0.238 0.02 2 7050 0.402 0.01 2 -1.738 0.02 2 0.178 0.01 2 7100 0.417 0.01 2 -1 .414 0.01 2 0.234 0.03 2 7400 0.479 0.01 2 -2.118 0.01 2 0.301 0.02 2 8050 0.585 • • • • 1 -2.378 • • • • 1 0.363 0 0 0 0

8190 0. 600 • • • a 1 -2.450 0000 1 0.318 0 0 0 0

8400 0.652 a a a a 1 -2.455 0000 1 0.418 0 0 0 0

8542 0.670 a a a a 1 -2.354 • • • • 1 0.381 0 0 0 0

8800 0. 641 a a a a 1 -2.582 • • • • 1 0.488 0 0 0 0

8880 0.851 a a a a 1 -2.566 0 • • • 1 0.509 0 0 0 0

9190 0. 680 a a a a 1 -2.672 a a a a 1 0.498 0 0 0 0

9920 0.737 a a a a 1 -2.841 a a a a 1 0.515 0 0 0 0

9950 0.754 a a a a 1 -2.855 a a a a 1 0.527 0 0 0 0

10050 0.969 a a a a 1 -2.866 a a a a 1 0.628 0 0 0 0

10400 0.794 a a a a 1 -2.988 a a a a 1 0.564 0 0 0 0 TABLE 12 (continued) 69

NORMALIZED ENERGY DISTRIBUTIONS: CTIO

X 6 Vir HR 5008 85 Vir

3570 1 .141 ... 1 1.268 0.01 2 1 .039 3620 1 .129 1 1.260 0.02 2 1 .019 3784 0 2 6 7 ... 1 0.614 0.03 2 0. 363 3798 0 .482 ... 1 0.827 0.01 2 0. 570 3815 0. 006 1 0.423 0.02 2 0. 080 3835 0. 489 ... 1 0.856 0.03 2 0. 569 3860 -0 ,167 ... 1 0.211 0.02 2 -0. 138 3889 0. 458 ... 1 0.770 0.02 2 0. 542 3910 -0 198 .. . 1 0.227 0.03 2 -0. 193 3933 -0 16 2 ... 1 0.211 0.01 2 -0. 176 4015 -0 212 ... 1 0.000 0.03 2 -0. 255 4101 0. 537 1 0.695 0.02 2 0. 579 4200 -0 169 ... 1 0.011 0.02 2 -0. 235 4270 -0 158 ... 1 -0.028 0.03 2 -0. 2 13 4305 -0 101 ... 1 0.086 0.01 2 -0. 136 4340 0 532 1 0.632 0.01 2 0. 550 4380 -0 114 ... 1 0.012 0.02 2 -0. 174 4400 -0..115 ... 1 -0.020 0.01 2 -0 .186 4430 -0. 120 ... 1 -0.049 0.01 2 -0. 201 4476 -0. 083 ... 1 -0.024 0.02 2 -0. 165 4500 -0. 094 1 -0.054 0.01 2 -0. 190 4785 -0.104 • • • • 1 4861 0.590 • • • • 1 5050 0.000 • • • • 1 5050 0. 000 1 0.000 0.02 2 0. 000 5175 0. 046 . . . 1 0.050 0.02 2 -0. 055 5300 0.068 ... 1 0.011 0.02 2 -0 .046 5820 0. 168 ... 1 0.051 0.02 2 0. 055 5892 0. 195 ... 1 0.084 0.02 2 0. 082 6100 0. 184 ... 1 0.066 0.01 2 0. 083 6180 0.203 1 0.087 0.01 2 0. 112 6370 0.285 1 0.122 0.01 2 0. 169 6560 0. 601 ... 1 0.462 0.01 2 0. 520 6800 0. 3 3 5 ... 1 0.165 0.02 2 0. 214 7050 0. 363 . . . 1 0.158 0.01 2 0. 233 7100 0.355 ... 1 0.180 0.01 2 0. 258 7400 0.430 . . . 1 0.218 0.02 2 0. 291 8050 0.354 • • • • 1 8190 0.348 • • • • 1 8400 0.400 • • t • 1 8542 0.416 • • • • 1 8800 0.341 • • • • 1 8880 0.527 • • • • 1 9190 0.395 • • • • 1 9920 0.401 • • • • 1 9950 0.410 • • • • 1 10050 0.701 • • • • 1 10400 0.425 • • • • 1 o

NORMALIZED ENERGY DISTRIBUTIONS: CTIO o o o o < r \) C a * d o c m m -< m o c S Pi r e s a Pi a 0 3 ) o c 0 H r NmvD v m ON O o CNI CM CVJ o o o o o m 0 0 d m O O o o m o O O CM CM CM CM CM CM CM o c 1 1 • • • • • • • • • • • 9 • • • • • • • - £ . ^ r v£> n o o o O v£> CM m 00 0 CO CM p CM H 1 - d O 00 O O - d CO 0 0 CO O CM CM ON O CO 0 1—t CM p O O i-H CM m o c o c H 1 I II I I I I I t i l III I I I • • • • 9 • • • * d ON O O OC < CO vO - d O O O CN CO O p CM CM CM CM CM r —4 1 H • • CO O o c p O O O 00 ^ r CO vO 1—< O O O O O 0 O O O O O O O CN CM CM CN O CO O p CM H H 1 • • 0 0 O - d CO - d O CO CN CO CM n i CN CN 0 o c CN ^ r CM p 1 H • • • • 00 vO O O O 0 " d 00 O - d 0 0 0 CO CM CM O H OC CO CO CO O CN 1 9 • • • • • • CO 00 d ON O ON CO d CM Nm CN MC CM CM CM O CM O p CM CM CM CM CM H 1 3 • • • - d * ON d d vO O CO p 0 CO vO CM 0 O O O *H CN CM CN i CN —4 H 1 9 9 • d d d ON CO O O O O CM CM O o c H r 1—4 »—4 m O o c 1 • • • d d 0 m O O O 0 0 m m o u p CO O O ON CM CN CM (M CN 0 CO p r MC Nv Oin i vO vO ON CN CM —4 H H 1 • • • • 9 • • • 9 • • d p O ON NO d vO 0 0 O p CM p O CM CM p —4 H H H 1 H • • d MC OC CO CO CO CM CM O O O O CN O CM CM O p m O p CM H H 1 • • * n d d d d Nm ON O O O CM m O O O o c O O O CO O CO CO m p MC OCN CO CM CM CM 1—1 CM CN H 1 • • • • • 9 • d 0 O O O O O O O CO d CN CM MC MC MC CM CM CM CM CM CM CM CN O p p m O CM CN H H 1 • • • • O CN O 0 0 CN CO 0 0 O MOO O CM 1—4 0 O 0 CN 0 1 • 9 • O d 0 0 O O O O OCN vO O O O O p p CM ^ r O p p O ON p H H H H H 1 • • • • • • • • • • • • < < 0 0 ON O m CM CM 0 0 H CM O ON O CM CM 3 3 1 • • 9 d d * * CO vO O CO CO Or*- * r CO 0 O 0 CM O d CM O p p O NC CM CM CN CM CM O H 1 H • • • • • d ON m vO d vO m O O O p O p O p H ( H H • a vO m 0 0 d 0 o c O O CN O O p O CN CM O p H 1 H • • • LT) * d 00 o O CN O ON LO rH p rH i-H I H • • • • 0 0 O O d d vO 00 ? a O d CM O p MOOOCO O 0 O O CM OO CO p p H H H • • • • • • • • • • • • • • • 9 • Mm CM O O O O 0 m 0 O m O 0 0 O O m p O p H H 9 9 • • O O O O O m * n m p CM 0 O O O O O O CO CN 0 0 0 0 0 0 0 d 0 H • • • • • • • ON m m ON O O p p MCM CM OvO vO 0 O CM CM H H • • • • CO O00 0 CO 0 0 CM CO OCM CO D \ o c O 0 MCM CM 0 1 9 • • MON CM d 0 0 O O O 0 O O O M0OOO O O m 0 CM O CN VO 0 0 0 d ON p O CM O p O CM H 1 H • • • • • vO d 00 £ vO i£> n i CM i CO p MC CM CN CM O 0 O 0 CM 0 p 0 0 O CM 0 CM p ^«. H H 1 H • • • 9 • • • • • • • 9 • ON vO 0 CN 0 0 0 0 0 O 0 0 O 0 O 0 O NCO ON MV CM O O O p p p CM MCO CM ON H 1 H H 0 ON 00 CM O p ON CM O O O p CM CN p H H 0 H 1 • ^. r^ OM d MO CO 00 0 0 MO m vO o c CT\ ON CM O p CM 0 -. n O O p O 0 CN CM CO ON H 1 H • • • • • O p vO d O m O O p CM p O p CM CO CO p H H I H H H • • • • • d 00 MO m NCM CN i£> m m d ON 0 CO o c 0 O 0 O O 0 O m 0 0 p CM p CO CO CM O O O O NC MCM CM CM CN M H 1 H 0 • 9 • 9 0 d O d O O * n 0 p CM p O OcoC 0 CN o c CO H H 1 • 9 • • 9 • d MO MO CM 0 O O H r NCM CN <“ H O O p p p H H 1 H • • • • • • • • d OC Oin i VO CO vO MO O 0 * d ON O CO m O 0 O 0 p p H H I • • • • • • • * d vO O 0 0 m MO 0 V m p 0 0 00 0 1 H • • • • • 0 0 d MO ON VO O O 0 0 O 0 0 CO ON p p 00 p H 1 H H • • • • • • • MO d ^ r 0 0 0 0 CO MO 0 0 n » 0 0 p O 0 0 0 0 1 H 9 • * d CN 0 0 m d p p MO p O O 0 ON H H 1 H 0 • 9 • On* n NO vO O 00 O ON vO 0 0 0 0 - d CO p O CO ON H 1 • • • • • • • • 1 d 0 0 0 0 0 0 00 ON ON 0 0 0 0 p 0 ON ON p H H 1 • • • • NO ON * n * d 0 0 0 0 O 0 o c O o c ON vO p p N0 ON 0 00 H 1 H • • • • • • • • • • m 0 0 s h Mm CM NON ON ON CM p ON p OON vO p H H 1 H • • • • ON CM N0 ON p 0 0 O O p H 1 H • • • 9 • • • O O p m m 0 O p p CM O p 0 0 ON p p H H H 1 H H H 9 • • • ON ’ d vO O O 00 p O CN CM vO 0 0 CO p p H H 1 H 9 9 9 9 9 TABLE 12 (continued)

NORMALIZED ENERGY DISTRIBUTIONS: CTIO

X HR 5450 HD 130205/6 HR 5527

3570 2.901 0.01 2 3 .201 0.01 2 4.031 3620 2.307 0.03 2 2.995 0.02 2 3.906 3784 2.057 0.02 2 2.501 0.03 2 3.156 3798 2.260 0.03 2 2.708 0.04 2 3.336 3815 2.431 0.02 2 2.490 0.01 2 3.072 3835 2.671 0.03 2 2.780 0.03 2 3.420 3860 2.679 0.03 2 2.406 0.03 2 2.964 3889 1.959 0.03 2 2.637 0.02 2 3.226 3910 1.767 0.02 2 2.245 0.03 2 2 .992 3933 2. 635 0.03 2 2.431 0.03 2 3.443 4015 1. 174 0.03 2 1.852 0.03 2 2.772 4101 1.144 0.03 2 1.907 0.03 2 2.938 4200 1.192 0.04 2 1.689 0.04 2 2.682 4270 0.893 0.03 2 1.454 0.05 2 2.588 4305 1.254 0.02 2 1.550 0.05 2 2.734 4340 0. 676 0.02 2 1.182 0.04 2 2.809 4380 0. 767 0.02 2 1 . 183 0.01 2 2.594 4400 0. 720 0.04 2 1.119 0.01 2 2.573 4430 0.581 0.02 2 1.015 0.03 2 2.538 4476 0.440 0.02 2 0.791 0.04 2 2.509 4500 0.388 0.02 2 0. 704 0.03 2 2 .530

4785 0.093 • • • • 1

4861 0.173 • • • • 1

5050 0.000 • • • • 1

5050 0.000 • • • • 1 0.000 • • • • 1

5175 0.051 • • • • 1 0.090 • • • • 1

5300 -0.172 • • • e - l -0.370 • • • • 1

5820 -0.400 • • • • 1 -0.862 • • • • 1

5892 -0.371 • • • • 1 -0. 7 3 6; • • • • 1

6100 -0.498 • • • « 1 -1.017 0000 1 6180 -0.495 • • • • 1 -0.994 • • • • 1

6370 -0.520 • • • e 1 -1.085 • • • • 1

6560 -0.524 • • • • 1 -1.182 • • • • 1

6800 -0.663 • • • • 1 -1 .406 • • • • 1

7050 -0.708 • • • o 1 -1.485 • • • • 1

7100 -0.689 • • • • 1 -1.451 • • • • 1

7400 -0.696 0000 1 -1.620 • • • • 1

8050 -0.789 • • • • 1 -1.821 • • • • 1 1.841

8190 -0.776 • » • • 1 -1.823 • • 0 0 1 1 .842 8400 -0.806 '• • • • 1 -1.882 0 0 0 0 1 1.819

8542 -0.717 0000 1 -1.830 • • • • 1 1.942

8800 -0.826 • • • • 1 -2.035 • • • • 1 1 .789

8880 -0.874 • • • • 1 -2.063 • • • • 1 1.815

9190 -0.802 0 • • • 1 -2.044 O • • • 1 1 .752

9920 -0.997 • • • • 1 -2.317 0000 1 1 .663

9950 -1.030 • • • • 1 -2.312 0000 1 1.671

10050 -0.984 • • • • 1 -2.315 • • • • 1 1 .740

10400 -1.090 • • • • 1 -2.423 • 000 1 1 .643 TABLE 12 (continued)

NORMALIZED ENERGY DISTRIBUTIONS: CTIO

HR 5667 Y Cir HR 5929

1.438 0.02 2 0.628 0.02 2 2.424 0.01 2 1.386 0.02 2 0.620 0.02 2 2.225 0.01 2 0.857 0.04 2 0.221 0.03 2 1 .657 0.01 2 1 .004 0.01 2 0.417 0.02 2 1.897 0.02 2 0.779 0.03 2 0.165 0.03 2 1 .594 0.01 2 1. 102 0.03 2 0.438 0.02 2 1.996 0.01 2 0. 749 0.03 2 0.079 0.02 2 1 .523 0.02 2 0.979 0.05 2 0.391 0.03 2 1.772 0.01 2 0.711 0.05 2 0.015 0.03 2 1.330 0.03 2 1. 034 0.07 2 0.064 0.03 2 1.491 0.01 2 0.526 0.05 2 0.038 0.02 2 1.071 0.02 2 0.686 0.04 2 0.375 0.03 2 1.342 0.01 2 0.462 0.04 2 0.047 0.03 2 1.077 0.02 2 0.368 0.05 2 0.033 0.03 2 0.892 0.01 2 0.529 0.05 2 0.085 0.03 2 1.076 0.03 2 0.539 0.05 .2 0.332 0.03 2 0.948 0.02 2 0.386 0.08 2 0.067 0.02 2 0.821 0.01 2 0.321 0.04 2 0.049 0 .03 2 0.783 0.01 2 0.269 0.04 2 0.025 0.02 2 0.713 0.02 2 0.270 0.03 2 0.067 0.02 2 0.595 0.02 2 0.207 0.03 2 0.005 0 .03 2 0.542 0.02 2

0.000 . . . 1 0.000 1 0.000 . . . . 0.033 1 0.002 . 1 0.136 .... -0.091 1 -0.043 ... 1 -0.080 -0.198 1 -0.048 ... 1 -0.394 ____ -0.197 1 -0.003 ... 1 -0.320 -0.269 ... 1 -0.080 ... 1 -0.481 ____ -0.240 ... 1 -0.037 1 -0.454 -0.235 1 -0.002 ... 1 -0.499 ____ -0.149 1 0.078 . . . 1 -0.498 ____ -0.313 1 -0.051 ... . 1 -0.685 .... -0.343 ... 1 -0.068 ... 1 -0.748 ____ -0.334 ... 1 -0.058 . . . 1 -0.723 ____ -0.331 ... 1 -0.048 . . .. 1 -0.779 ____ -0.345 ... 1 0.019 . 1 —0.888 .... -0.373 ... 1 0.023 ... . 1 —0.8 78 .... -0.372’ ... 1 0.011 1 -0.942 ____ -0.255 ... 1 0.065 ... 1 -0.861 . . . . -0.388 1 -0.016 ... . 1 -1.005 .... -0.366 . . . 1 0.021 . 1 -1.059 ____ -0.375 ... 1 0.012 1 -1 .008 . . . . -0.470 ... 1 -0.069 ... . 1 -1.239 ____ -0.429 ... 1 -0.034 ... 1 -1.218 ____ -0.352 ... 1 0.011 1 -1.192 ____ -0.447 1 -0.070 ... 1 -1.291 ____ TABLE 12 (continued) 73

NORMALIZED ENERGY DISTRIBUTIONS: CTIO

X (S Nor HD 144534/5

3570 1.316 0.01 2 2.397 0.02 2 3620 1 .295 0.02 2 2 .306 0.02 2 3784 0.676 0.01 2 1 .949 0.02 2 3798 0.887 0.01 2 2.129 0.01 2 3815 0.498 0.01 2 1 .936 0.02 2 3835 0.901 0.01 2 2.139 0.03 2 3860 0.291 0.01 2 1 . 808 0.02 2 3889 0.818 0.01 2 2.056 0.02 2 3910 0.314 0.01 2 1.733 0.02 2 3933 0.271 0.01 2 1 .847 0.02 2 4015 0.090 0.02 2 1 .571 0.03 2 4101 0 . 709 0.02 2 1.673 0.01 2 4200 0.079 0.02 2 1 .454 0.03 2 4270 0.031 0.01 2 1 .278 0.01 2 4305 0.128 0.02 2 1.311 0.03 2 4340 0.639 0.02 2 1.148 0.03 2 4380 0.051 0.02 2 1 .087 0.02 2 4400 0.033 0.02 2 1.065 0.01 2 4430 -0.023 0.01 2 0.959 0.04 2 4476 0.018 0.02 2 0.811 0.03 2 4500 -0.034 0.02 2 0 .687 0.02 2 4785 4861 5050 5050 0.000 0.000 5175 0.045 0.096 5300 0.008 0.394 5820 0.042 0.872 5892 0.054 0.729 6100 0.029 1.082 6180 0.056 0.977 6370 0.120 1 . 130 6560 0.417 237 6800 0.115 409 7050 0.134 614 7100 0.113 485 7400 0.190 802 8050 0.224 002 8190 0.258 023 8400 0.290 073 8542 0.334 005 8800 0.258 251 8880 0.387 286 9190 0.299 251 9920 0.267 572 9950 0.311 573 10050 0.544 539 De-reddened, see 10400 0.343 715 Se ction II.4 . F. TABLE 13

NORMALIZED ENERGY DISTRIBUTIONS: LOWELL OBSERVATORY

31 Com 3 Com 8 3 UMa

3570 1.561 1 1.297 . 1 4.131 3620 1 .492 . . . 1 1 .240 . . .. 1 3.663 3784 1.005 ... 1 0.788 . 1 3.189 3798 1.113 ... 1 0.930 . . .. 1 3.394 3815 1 .023 . . . 1 0.858 ... . 1 3.464 3835 1.357 ... 1 1.273 . 1 3.571 3860 1 .038 1 0.845 ... . 1 3.374 3889 1.116 ... 1 0. 969 . . .. 1 3.241 3910 0.965 . . . 1 0.757 ... . 1 3.105 3933 1 .485 . . . 1 1.343 . 1 3.792 4015 0.652 . . . 1 0.455 .. . 1 2.284 4101 0.615 ... 1 0.500 . 1 1.962 4200 0.505 ... 1 0.341 .. .. 1 1.813 4270 0.491 1 0. 378 . . . 1 1.652 4305 0.716 ... 1 0. 589 . . .. 1 1.657 4340 0.488 . . . 1 0.397 . 1 1.150 4380 0.405 1 0. 293 . . .. 1 1.217 4400 0.389 ... 1 0.251 . 1 1.167 4430 0.309 . . . 1 0.157 . 1 0.994 4476 0.266 ... 1 0.130 . 1 0.780 4500 0.221 ... 1 0.072 . . .. 1 0.655 5050 0.000 . . . 1 0.000 1 0.000 5175 -0.023 1 0.055 . . . 1 0.118 5300 -0.120 . . . 1 -0.067 . 1 -0.410 5820 -0.256 ... 1 -0.160 ... . 1 -0.836 5892 -0.245 ... 1 -0.138 . 1 -0.559 6100 -0.297 ... 1 -0.222 . 1-1.044 6180 -0.293 ... 1 -0.209 ... . 1 -0.751 6370 -0.332 . . . 1 -0.217 . . .. 1 -1.104 6560 -0.264 ... 1 -0.170 . 1 -1.243 6800 -0.416 ... 1 -0.298 ... . 1 -1.268 7050 -0.409 ... 1 -0.297 . 1 -1.575 7 100 -0.417 ... 1 -0.277 1 -1.337 7400 -0.410 . . . 1 -0.255 ... . 1 -1.804 TABLE 13 (continued)

NORMALIZED ENERGY DISTRIBUTIONS: LOWELL OBSERVATORY

X 109 Vir 1 Dr a T He r

3570 1.088 0.03 8 3.146 0.05 2 0.197 0.02 4 3620 1.060 0.03 8 2.578 0.04 2 0.185 0.02 4 3784 0.306 0.03 8 2.192 0.03 2 -0.204 0.02 4 3798 0.495 0.03 8 2.471 0.02 2 -0.023 0.02 4 3815 0.069 0.03 8 2.610 0.03 2 -0.295 0.02 4 3835 0.483 0.03 8 3.025 0.02 2 -0.025 0.03 4 3860 -0.111 0.03 8 2 .837 0.02 2 -0.384 0.0 3 4 3889 0.466 0.03 8 2.311 0.01 2 0.002 0.02 4 3910 -0.074 0.03 8 1 .985 0.01 2 -0.359 0.02 4 3933 -0.130 0.04 8 2.767 0.01 2 -0.360 0.03 4 4015 -0.211 0.03 8 1.223 0.02 2 -0.342 0.03 4 4101 0.432 0.03 8 1.135 0.01 2 0.033 0.03 4 4200 -0.207 0.03 8 1.202 0.01 2 -0.318 0.03 4 4270 -0.170 0.03 8 0.973 0.01 2 -0.270 0 .03 4 4305 -0.117 0.03 8 1 .240 0.01 2 -0.251 0.03 4 4340 0.482 0.03 8 0.623 0.01 2 0.129 0.03 4 4380 -0.118 0.03 8 0.762 0.02 2 -0.221 0.03 4 4400 -0.130 0.03 8 0.708 0.01 2 -0.227 0.03 4 4430 -0.153 0.03 8 0.546 0.02 2 -0.232 0.03 4 4476 -0.120 0.04 8 0.381 0.02 2 -0.166 0.02 4 4500 -0.132 0.04 8 0.315 0.01 2 -0.224 0.03 4 5050 0.000 0.02 10 0.000 0.05 4 5175 -0.013 0.02 10 -0.026 0.04 4 5300 0.028 0.02 10 0.047 0.04 4 5820 0.141 0.02 10 0.193 0.04 4 5892 0.172 0.03 10 0.228 0.04 4 6100 0.162 0.03 10 0.241 0.04 4 6180 0.173 0.02 10 0.251 0.04 4 6370 0.226 0.03 10 0.316 0.04 4 6560 0.493 0.03 10 0 .503 0.04 4 6800 0.255 0.02 10 0.386 0.05 4 7050 0.327 0.03 10 0.454 0.04 4 7100 0.330 0.02 10 0.464 0.04 4 7400 0.371 0.02 10 0.513 0.04 4 TABLE 13 (continued)

NORMALIZED ENERGY DISTRIBUTIONS: LOWELL OBSERVATORY

29 Her y Her Y Oph3

3570 3.780 • • • • 1 1.819 0.03 3 1.072 0.04 5

3620 3.416 • • • • 1 1 .590 0.03 3 1 .044 0.04 5

3784 2. 900 • • • • 1 1.196 0.03 3 0.410 0.05 5

3798 3.171 • • • • 1 1.390 0.02 3 0.603 0.03 5

3815 3.214 • • • • 1 1.452 0.03 3 0.164 0.05 5

3835 3.572 « • • • 1 1.873 0.02 3 0.596 0.03 5

3860 3.283 • it* 1 1 .632 0.03 3 -0.053 0.04 5

3889 3.072 • • • • 1 1.358 0.04 3 0.582 0.03 5

3910 2.846 • • • • 1 1.084 0.04 3 -0.027 0.05 5

3933 3.612 • • • • 1 1.707 0.04 3 -0.143 0.03 5

4015 1.916 • • • • 1 0.653 0.04 3 -0.231 0.04 5

4101 1.659 • • • • 1 0.644 0.04 3 0.550 0.03 5

4200 1.626 • • • • 1 0.571 0.04 3 -0.230 0.04 5

4270 1.440 • • • • 1 0.556 0.03 3 -0.177 0.04 5

4305 1.540 • • • • 1 0.866 0.03 3 -0.108 0.04 5

4340 0.957 • • • • 1 0.434 0.03 3 0.591 0.04 5 4380 1. 052 • • • • 1 0.449 0.02 3 -0.109 0.05 5

4400 0.976 • t * * 1 0.397 0.03 3 -0.140 0.05 5 4430 0.818 • • • • 1 0.250 0.03 3 -0.158 0.04 5 4476 0.612 • • • • 1 0.174 0.02 3 -0.139 0.04 5 4500 0.498 • • • • 1 0.102 0.02 3 -0.144 0.04 5 5050 0.000 0.03 2 0.000 0.04 5 5175 0.105 0.04 2 -0.016 0.04 5 5300 -0.375 0.03 2 0.036 0.04 5 5820 -0.792 0.02 2 0.167 0.03 5 5892 -0.675 0.03 2 0.186 0.03 5 6100 -0.966 0.04 2 0.184 0.04 5 6180 -0.885 0.05 2 0.198 0.04 5 6370 -1.031 0.03 2 0.254 0.03 5 6560 -1.145 0.04 2 0.580 0.03 5 6800 -1.247 0.04 2 0.293 0.04 5 7050 -1.367 0.03 2 0.357 0.05 5 7100 -1.307 0.04 2 0.366 0.04 5 7400 -1.525 0.05 2 0.409 0.04 5 TABLE 13 (continued)

NORMALIZED ENERGY DISTRIBUTIONS: LOWELL OBSERVATORY

K Aqla 6 Cyg 16 Cyg B

3570 -0.485 0.04 3 1.162 0.02 3 1 .607 0.02 4 3620 -0.4 73 0.04 3 1.106 0.03 3 1.434 0.04 4 3784 -0.521 0.04 3 0.639 0.03 3 1.051 0.01 4 3798 -0.463 0.03 3 0.767 0.03 3 1.192 0.03 4 3815 -0.510 0.04 3 0.563 0.02 3 1.246 0.02 4 3835 -0.429 0.04 3 0 .864 0.03 3 1.629 0.05 4 3860 -0.532 0.04 3 0.418 0.02 3 1.281 0.02 4 3889 -0.397 0.04 3 0.722 0.02 3 1.216 0.05 4 3910 -0.499 0.04 3 0.467 0.02 3 1.009 0.02 4 3933 -0.438 0.05 3 0.876 0.02 3 1 .628 0.01 4 4015 -0.432 0.04 3 0.260 0.03 3 0.602 0.03 4 4101 -0.262 0.05 3 0.506 0.02 3 0.622 0.02 4 4200 -0.372 0.05 3 0.173 0.02 3 0.510 0.02 4 4270 -0.332 0.05 3 0.165 0.02 3 0.542 0.03 4 4305 -0.314 0.05 3 0.288 0.02 3 0.831 0.04 4 4340 -0.140 0.04 3 0.459 0.01 3 0.485 0.02 4 4380 -0.264 0.04 3 0.154 0.02 3 0.470 0.02 4 4400 -0.270 0.05 3 0.124 0.02 3 0.407 0.03 4 4430 -0.241 0.04 3 0.093 0.02 3 0.293 0.03 4 4476 -0.185 0.05 3 0.090 0.02 3 0.230 0.0 4 4 4500 -0.258 0.04 3 0.047 0.02 3 0.176 0.03 4 5050 0.000 0.04 3 0.000 0.03 3 0.000 0.02 3 5175 -0.014 0.04 3 0.001 0.01 3 0.046 0.02 3 5300 0.068 0.04 3 -0.037 0.01 3 -0.106 0.03 3 5820 0.237 0.04 3 -0.071 0.02 3 -0.224 0.03 3 5892 0.323 0.03 3 -0.051 0.01 3 -0.192 0.02 3 6100 0.299 0.03 3 -0.102 0.01 3 -0.276 0.03 3 6180 0.321 0.03 3 -0.106 0.02 3 -0.277 0.03 3 6370 0.399 0.03 3 -0.103 0.01 3 -0.306 0.01 3 6560 0.501 0.03 3 0.047 0.01 3 -0.259 0.02 3 6800 0.482 0.04 3 -0.140 0.02 3 -0.387 0.02 3 7050 0.586 0.05 3 -0.125 0.01 3 -0.387 0.02 3 7100 0.578 0.04 3 -0.123 0.01 3 -0.381 0.03 3 7400 0.653 0.04 3 -0.095 0.02 3 -0.381 0.04 3 TABLE 13 (continued)

NORMALIZED ENERGY DISTRIBUTIONS: LOWELL OBSERVATORY

a Del £ Aqr C Cyg

3570 0.804 0.03 8 1 .253 0.01 2 4.379 0.04 3 3620 0.782 0.04 8 1 .220 0.01 2 4.021 0.02 3 3784 0.074 0.04 8 0.357 0.01 2 3.550 0.04 3 3798 0.306 0.03 8 0.586 0.02 2 3.746 0.03 3 3815 -0.121 0.04 8 0.105 0.01 2 3.731 0.05 3 3835 0.306 0.03 8 0.588 0.03 2 3.968 0.03 3 3860 -0.235 0.03 8 -0.072 0.01 2 3.700 0.03 3 3889 0.302 0.03 8 0.561 0.02 2 3.638 0.03 3 3910 -0.203 0.04 8 -0.028 0.01 2 3.405 0.04 3 3933 -0.226 0.04 8 -0.073 0.03 2 3.958 0.04 3 4015 -0.261 0.04 8 -0.173 0.02 2 2 .638 0.04 3 4101 0.310 0.03 8 0.524 0.04 2 2.429 0.04 3 4200 -0.240 0.04 8 -0.139 0.03 2 2.370 0.04 3 4270 -0.195 0.04 8 -0.100 0.03 2 2.085 0.03 3 4305 -0.156 0.04 8 -0.051 0.04 2 2.210 0.03 3 4340 0.387 0.03 8 0.587 0.05 2 1 .677 0.03 3 4380 -0.151 0.04 8 -0.060 0.03 2 1.733 0.04 3 4400 -0.160 0.04 8 -0.077 0.04 2 1 .704 0.03 3 4430 -0.171 0.03 8 -0.101 0.03 2 1 .521 0.03 3 4476 -0.128 0.04 8 -0.060 0.03 2 1.329 0.02 3 4500 -0.151 0.04 8 -0.073 0.04 2 1.213 0.02 3 50 50 0.000 0.04 8 0.000 0.01 2 5175 -0.011 0.04 8 0.003 0.01 2 5300 0.037 0.04 8 0.056 0.01 2 5820 0.157 0.04 8 0.155 0.01 2 5892 0. 186 0.03 8 0.176 0.01 2 6100 0. 189 0.03 8 0.165 0.01 2 6180 0.198 0.03 8 0.178 0.01 2 6370 0.257 0.04 8 0.230 0.01 2 6560 0.512 0.03 8 0.533 0.01 2 6800 0.301 0.04 8 0.258 0.01 2 7050 0.360 0.03 8 0.337 0.01 2 7100 0.379 0.04 8 0.343 0.02 2 7400 0.421 0.04 8 0.380 0.01 2 TABLE 13 (continued) 79

NORMALIZED ENERGY DISTRIBUTIONS: LOWELL OBSERVATORY

61 Cyg A tt Peg3 5 5 Peg

3570 2.718 0.02 3 1.483 0.03 3 3.945 0.02 3 3620 2.466 0.05 3 1.410 0.03 3 3.638 0.06 3 3784 2.002 0.01 3 0.726 0.02 3 3.040 0.03 3 3798 2. 194 0.01 3 0.848 0.02 3 3.278 0.02 2 3815 2.326 0.03 3 0.622 0.03 3 3.279 0.01 3 3835 2.728 0.05 3 0.928 0.05 3 3.574 0.06 3 3860 2.400 0.02 3 0.507 0.04 3 3.303 0.03 3 3889 2.270 0.02 3 0.798 0.05 3 3.155 0.03 3 3910 2.043 0.02 3 0.588 0.04 3 2.932 0.04 3 3933 2.531 0.02 3 1.031 0.03 3 3.614 0.03 3 4015 1.268 0.02 3 0.347 0.04 3 2.067 0.03 3 4101 1. 052 0.02 3 0.513 0.03 3 1.768 0.03 3 4200 0.993 0.03 3 0.272 0.04 3 1 .709 0.04 3 4270 1 . 062 0.03 3 0.241 0.04 3 1 .527 0.04 3 4305 1.092 0.03 3 0.384 0.04 3 1.550 0.03 3 4340 0.552 0.03 3 0.468 0.04 3 0.977 0.04 3 4380 0.711 0.02 3 0.226 0.04 3 1.074 0.03 3 4400 0.587 0.02 3 0.219 0.03 3 1.022 0.03 3 4430 0.446 0.02 3 0.162 0.03 3 0.833 0.03 3 4476 0.222 0.01 3 0.178 0.03 3 0.621 0.03 3 4500 0.132 0.02 3 0.116 0.03 3 0.522 0.03 3 5050 0.000 0.02 3 0.000 0.02 3 0.000 0.03 3 5175 0.185 0.02 3 -0.003 0.02 3 0.101 0.04 3 5300 -0.419 0.03 3 -0.038 0.02 3 -0.425 0.04 3 5820 -0.812 0.02 3 -0.075 0.01 3 -0.873 0.03 3 5892 -0.610 0.02 3 -0.067 0.01 3 -0.597 0.02 3 6100 -0.924 0.02 3 -0.105 0.01 3 -1.063 0.03 3 6180 -0.894 0.02 3 -0.104 0.03 3 -0.865 0.04 3 6370 -1.004 0.01 3 -0.104 0.03 3 -1.106 0.04 3 6560 -1.073 0.01 3 0.006 0.02 3 -1.273 0.03 3 6800 -1.146 0.02 3 -0.161 0.02 3 -1.316 0.04 3 7050 -1.224 0.02 3 -0.136 0.02 3 -1.538 0.02 3 7100 -1.213 0.01 3 -0.124 0.02 3 -1.366 0.03 3 7400 -1.295 0.02 3 -0.115 0.02 3 -1 .738 0.02 3 TABLE 2.3 (continued) 80

NORMALIZED ENERGY DISTRIBUTIONS: LOWELL OBSERVATORY

HR 5983 HR 6497 HR 6560

3570 1.822 >0.08 4 1 .808 • • • • 1 1 .875 0.01 2 3620 1.631 0.08 4 1 .674 • • • • 1 1.711 0.01 2 3784 1.059 0.08 4 1.034 • • • • 1 1.074 0.01 2 3798 1.273 0.08 4 1.283 • • • • 1 1 .282 0.01 2 3815 0.975 0.08 4 0.888 • • • • 1 1 .006 0.01 2 3835 1 .390 0.07 4 1 .354 • • • • 1 1.414 0.02 2 3860 0. 849 0.06 4 0.766 • • • • 1 0 .886 0.01 2 3889 1. 204 0.06 4 1.205 • • • • 1 1 .204 0.01 2 3910 0.714 0.06 4 0.653 • • • • 1 0.782 0.01 2 3933 0.860 0.06 4 0.725 • • • • 1 1.021 0.01 2 4015 0.418 0.06 4 0.434 • • • • 1 0.444 0.01 2 4101 0.786 0.07 4 0.870 • • • • 1 0.777 0.02 2 4200 0.394 0.06 4 0.394 • • • • 1 0.409 0.01 2 4270 0.357 0.06 4 0.371 • • • • 1 0.346 0.01 2 4305 0.520 0.06 4 0.502 • • • • 1 0.522 0.02 2 4340 0.623 0.06 4 0.674 • • • • 1 0 .607 0.01 2 4380 0.338 0.06 4 0.350 • • • • 1 0.314 0.01 2 4400 0.297 0.05 4 0.321 • • • • 1 0.280 0.02 2 4430 0.231 0.05 4 0.269 • • • • 1 0.212 0.02 2 4476 0.197 0.05 4 0.240 • • • • 1 0.175 0.02 2 4500 0.142 0.04 4 0.179 • • • • 1 0.123 0.02 2 5050 0.000 0.03 4 0.000 0 .02 2 0.000 0.02 2 5175 0.002 0.04 4 -0.030 0.02 2 0.004 0.03 2 5300 -0.078 0.03 4 -0.119 0.02 2 -0.100 0.02 2 5820 -0.198 0.04 4 -0.270 0.02 2 -0.206 0.02 2 5892 -0.160 0.05 4 -0.228 0.03 2 -0.181 0.02 2 6100 -0.251 0.04 4 -0.336 0.02 2 -0.277 0.02 2 6180 -0.247 0.04 4 -0.326 0.03 2 -0.276 0.02 2 6370 -0.268 0.03 4 -0.352 0.02 2 -0.283 0.02 2 6560 -0.217 0.03 4 -0.307 0.02 2 -0.218 0.02 2 6800 -0.373 0.03 4 -0.479 0.02 2 -0.384 0.02 2 7050 -0.360 0.04 4 -0.456 0.02 2 -0.378 0.01 2 7100 -0.357 0.05 4 -0.462 0.02 2 -0.371 0.03 2 7400 -0.367 0.06 4 -0.482 0.01 2 -0.385 0.02 2 TABLE 13 (continued)

NORMALIZED ENERGY DISTRIBUTIONS: LOWELL OBSERVATORY

A HR 6902

3570 2. 196 0.02 2 3620 2.013 0.01 2 3784 1.457 0.02 2 3798 1 .688 0.01 2 3815 1.419 0.01 2 3835 1.837 0.01 2 3860 1.385 0.02 2 3889 1 .605 0.02 2 3910 1.185 0.01 2 3933 1 .370 0.01 2 4015 0.873 0.01 2 4101 1.050 0 .02 2 4200 0.845 0.01 2 4270 0.715 0.01 2 4305 0.931 0.01 2 4340 0.784 0.02 2 4380 0.642 0.01 2 4400 0.618 0.01 2 4430 0.536 0.01 2 4476 0.437 0.01 2 4500 0.381 0.01 2 5050 0.000 0 .02 2 5175 -0.020 ■0.02 2 5300 -0.172 0.02 2 5820 -0.415 0.01 2 5892 -0.374 0.02 2 6100 -0.510 0.02 2 6180 -0.507 0.03 2 6370 -0.556 0.02 2 6560 -0.562 0 . 02 2 6800 -0.738 0.01 2 7050 -0.739 0.01 2 7100 -0.730 0.02 2 7400 -0.783 0.01 2 3 De-reddened, see Section II.4.F. 82

II.5. COMPARISON WITH OTHER REDUCTIONS

For a sample of stars, the normalized photometry of

Tables 12 and 13 is compared to other observers' photometry using the same set of bandpasses. Comparisons are given in

Table 14 and Figure 1 for eight stars in common with

O'Connell. These stars can be separated into two groups.

The first group, usable as standards in this study, consists of a Del, 109 Vir, tj- Ori, and 61 Leo. As shown in the table and figure, the differences between this study's and

O'Connell's photometry are small and are indicative of the internal accuracy of each data set. For LO observations of

109 Vir, blue feature bandpasses are systematically too bright compared to the continuum bandpasses. This may be a result of the spectral smearing caused by poor seeing.

However, the effect is not prominent for LO observations of a Del, which has a similar spectral type. The second group of stars, consisting of 16 Cyg B, 61 Cyg A, 29 Her, and

55 Peg, was not included among the standards (i.e. trial reductions incorporating these stars as standards had large, erratic residuals). These stars were observed only at LO, and the differences between their reduced photometry and

O'Connell's values may be attributed to a combination of bandpass centering errors and spectral smearing. For first-order bandpasses, another cause for poor comparisons is the use of 40 A bandpasses instead of O'Connell's 30 A TABLE 14 83

COMPARISON OF SCHMIDTKE PHOTOMETRY TO O'CONNELL PHOTOMETRY

FOR THE STAR a Del (SPECTRAL TYPE B9 IV)

SCHMIDTKE3 0 'CONNELL DIFFERENCE Normalized Normalized (s - 0)

3570 0.804 0.821 -0.017 3620 0.782 0.808 -0.026 3784 0.074 0.109 -0.035 3798 0.306 0.342 -0.036 3815 -0.121 -0.081 -0.040 3835 0.306 0.328 -0.022 3860 -0.235 -0.221 -0.024 3889 0.302 0.359 -0.057 3910 -0.203 -0.204 0.001 3933 -0.226 -0.232 0.006 4015 -0.261 -0.258 -0.003 4101 0.310 0.342 -0.032 4200 -0.240 -0.216 -0.024 4270 -0.195 -0.193 -0.002 4305 -0.156 -0.162 0.006 4340 0.387 0.410 -0.023 4400 -0.160 -0.151 -0.009 4430 -0.17 1 -0.156 -0.015 4500 -0.151 -0.138 -0.013 5050 0.000 0.000 • • • • • 5175 -0.011 0.041 -0.052 5300 0.037 0.049 -0.012 5820 0.157 0.164 -0.007 5892 0.186 0.200 -0.014. 6100 0. 189 0.214 -0.025 6180 0.198 0.225 -0.027 6370 0.257 0.273 -0.016 7050 0.360 0.380 -0.020 7100 0.379 0.388 -0.009 7400 0.421 0.439 -0.018 TABLE 14 (continued) 84

COMPARISON OF SCHMIDTKE PHOTOMETRY TO O'CONNELL PHOTOMETRY

FOR THE STAR 109 Vir (SPECTRAL TYPE AO V)

SCHMIDTKE3 0 1 CONNELL DIFFER] Normalized Normalized (s - 0

3570 1.088 1 .068 0.020 3620 1 .060 1.057 0.003 3784 0.306 0.292 0.014 3798 0.495 0.509 -0.014 3815 0.069 0.055 0.014 3835 0.483 0.517 -0.034 3860 -0.111 -0.119 0.008 3889 0.466 0.520 -0.054 3910 -0.074 -0.134 0.060 3933 -0.130 -0.141 0.011 4015 -0.211 -0.205 -0 . 006 4101 0.432 0.501 -0.069 4200 -0.207 -0.170 -0.037 4270 -0.170 -0.146 -0.024 4305 -0.117 -0.095 -0.022 4340 0.482 0.541 -0.059 4400 -0.130 -0.100 -0.030 4430 -0.153 -0.119 -0.034 4500 -0.132 -0.112 -0.020 5050 0.000 0.000 • • • • • 5175 -0.013 0.029 -0.042 5300 0.028 0.049 -0.021 5820 0.141 0.147 -0.006 5892 0.172 0.187 -0.015 6100 0.162 0.182 -0.020 6180 0.173 0.208 -0.035 6370 0.226 0.250 -0.024 7050 0.327 0.342 -0.015 7 100 0.330 0.345 -0.015 7400 0.37 1 0.394 -0.023 TABLE 14 (continued) 85

COMPARISON OF SCHMIDTKE PHOTOMETRY TO O'CONNELL PHOTOMETRY

FOR THE STAR 109 Vir (SPECTRAL TYPE AO V)

SCHMIDTKEb O'CONNELL DIFFERE Normalized Normalized (S - 0)

3570 1.094 1.068 0.026 3620 1 .087 1.057 0.030 3784 0.288 0.292 -0.004 3798 0.543 0.509 0.034 3815 0.050 0.055 -0.005 3835 0.547 0.517 0.030 3860 -0.118 -0.119 0.001 3889 0.504 0.520 -0.016 3910 -0. 128 -0. 134 0.006 3933 -0.156 -0.141 -0.015 4015 -0.204 -0.205. 0.001 4101 0.535 0.501 0.034 4200 -0.167 -0.170 0.003 4270 -0.151 -0.146 -0.005 4305 -0.098 -0.095 -0.003 4340 0.536 0.541 -0.005 4400 -0.112 -0.100 -0.012 4430 -0.119 -0.119 0.000 4500 -0.099 -0.112 0.013 4785 -0.069 -0.058 -0.011 4861 0.551 0.561 -0.010 5050 0.000 0.000 • • • • • 5050 0.000 0.000 • • • • • 5175 0.044 0.029 0.015 5300 0.051 0.049 0.002 5820 0.159 0.147 0.012 5892 0.176 0.187 -0.011 6100 0.181 0.182 -0.001 6180 0.211 0.208 0.003 6370 0.267 0.250 0.017 7050 0.336 0.342 -0.006 7100 0.356 0.345 0.011 7400 0.402 0.394 0.008 8050 0.502 0.486 0.016 8190 0.514 0.507 0.007 8400 0.546 0.545 0.001 8542 0.579 0.554 0.025 8800 0.483 0.462 0.021 8880 0.636 0.650 -0.014 9190 0.545 0.542 0.003 9950 0.571 0.551 0.020 10400 0.598 0.580 0.018 TABLE 14 (continued) 86

COMPARISON OF SCHMIDTKE PHOTOMETRY TO O'CONNELL PHOTOMETRY 3 FOR THE STAR ^ Ori (SPECTRAL TYPE F6 V)

A SCHMIDTKE 0 'CONNELL DIFFERENCE Normalized Normalized (s - 0)

3570 1 . 174 1.186 -0.012 3620 1.134 1.153 -0.019 3784 0.707 0.714 -0.007 3798 0.835 0.826 0.009 3815 0. 683 0.680 0 .003 3835 1 .003 0.991 0.012 3860 0.553 0.565 -0.012 3889 0.786 0.779 0.007 3910 0.542 0.564 -0.022 3933 1.066 1.060 0.006 4015 0.356 0.345 0.011 4101 0.580 0.560 0.020 4200 0.277 0.285 -0.008 4270 0.254 0.258 -0 . 004 4305 0.400 0.404 -0 . 004 4340 0.452 0.435 0.017 4400 0.200 0.211 -0.011 4430 0.159 0.163 -0.004 4500 0.113 0.097 0.016 4785 -0.003 -0.006 0.003 4861 0.291 0.288 0.003 5050 0.000 0.000 • • ■ o • 5050 0.000 0.000 • • • 0 • 5175 0.036 0.045 -0.009 5300 -0.057 -0.063 0.006 5820 -0.128 -0. 136 0.008 5892 -0.107 -0.102 -0.005 6100 -0.152 -0.131 -0.021 6180 -0.140 -0.115 -0.025 6370 -0.125 -0.153 0.028 7050 -0.184 -0.154 -0.030 7100 -0.173 -0.192 0.019 7400 -0.157 -0.153 -0.004 8050 -0.184 -0.146 -0.038 8190 -0.171 -0.181 0.010 8400 -0.180 -0.195 0.015 8542 -0.097 -0.091 -0.006 8800 -0.142 -0.144 0.002 8880 -0.109 -0.132 0.023 9190 -0.132 -0.132 0.000 9950 -0.166 -0.157 -0.009 10400 -0.175 -0.180 0.005 TABLE 14 (continued) 87

COMPARISON OF SCHMIDTKE PHOTOMETRY TO O'CONNELL PHOTOMETRY

FOR THE STAR 61 Leo (SPECTRAL TYPE MO III) b X SCHMIDTKE O ’CONNELL DIFFER] Normalized Normalized (S - 0

5050 0.000 0.000 • • • • • 5175 0.148 0.179 -0.031 5300 -0.397 -0.369 -0.028 5820 -0.849 -0.855 0.006 5892 -0.630 -0.611 -0.019 6100 -1.028 -1.013 -0.015 6 180 -0.842 -0.875 0.033 6370 -1.062 -1.085 0.023 7050 -1.454 -1.474 0.020 7100 -1.314 -1 .325 0.011 7400 -1.637 -1.677 0.040 8050 -1.883 -1.871 -0.012 8190 -1.915 -1.872 -0.043 8400 -1.971 -1.938 -0.033 8542 -1.869 -1.847 -0.022 8800 -2.046 -2.026 -0.020 8880 -2.073 -2.066 -0 .007 9190 -2.069 -2.015 -0.054 9950 -2.298 -2.252 -0.046 10400 -2 .386 -2.323 -0.063 TABLE 14 (continued) 88

COMPARISON OF SCHMIDTKE PHOTOMETRY TO O'CONNELL PHOTOMETRY

FOR THE STAR 16 Cyg B (SPECTRAL TYPE G4 V) a SCHMIDTKE 0 'CONNELL DIFFERENCE Normalized Normalized (S - 0)

3570 1.607 1.597 0.010 3620 1 .434 1.467 -0.033 3784 1.051 1.055 -0.004 3798 1.192 1.211 -0.019 3815 1 .246 1 .254 -0.008 3835 1 . 629 1.650 -0.021 3860 1.281 1 .308 -0.027 3889 1.216 1.266 -0.05 0 3910 1.009 1.001 0.008 3933 1.628 1.614 0.014 4015 0. 602 0.613 -0.011 4101 0.622 0.657 -0.035 4200 0.510 0.527 -0.017 4270 0.542 0.533 0.009 4305 0.831 0.810 0.021 4340 0.485 0.494 -0.009 4400 0.407 0.407 0.000 4430 0.293 0.290 0.003 4500 0.176 0.169 0.007 5050 0.000 0.000 • • • • • 5175 0.046 0.126 -0.080 5300 -0.106 -0.112 0.006 5820 -0.224 -0.234 0.010 5892 -0.192 -0.185 -0.007 6100 -0.276 -0.270 -0.006 6180 -0.277 -0.278 0.001 6370 -0.306 -0.3 10 0.004 7050 -0.387 -0.398 0.011 7100 -0.381 -0.385 0.004 7400 -0.381 -0.381 0.000 TABLE 14 (continued) 89

COMPARISON OF SCHMIDTKE PHOTOMETRY TO O'CONNELL PHOTOMETRY

FOR THE STAR 61 Cyg A (SPECTRAL TYPE K5 V)

SCHMIDTKE3 O'CONNELL DIFFERE Normalized Normalized (S - 0)

3570 2.718 2.845 -0.127 3620 2.466 2.391 0.075 3784 2.022 2.059 -0.057 3798 2. 194 2.175 0.019 3835 2.728 2.589 0.139 3860 2.400 2.388 0.012 3889 2.270 2.267 0.003 3910 2.043 2.028 0.015 3933 2.531 2.553 -0.022 4015 1.268 1.236 0.032 4101 1 .052 1.127 -0.075 4200 0.993 1.004 -0.0 11 4305 1 .092 1.055 0.037 4340 0.552 0.606 -0.054 4400 0.587 0.579 0.008 4430 0.446 0.481 -0.035 4500 0.132 0.136 -0.004 5050 0.000 0.000 • • • • • 5175 0.185 0.231 -0.046 5300 -0.419 -0.388 -0.031 5820 -0.812 -0.827 0.015 5892 -0.610 -0.540 -0.070 6100 -0.924 -0.883 -0.041 6180 -0.894 -0.916 0.022 6370 -1 .004 -0.976 -0.028 7050 -1.224 -1.199 -0.025 7100 -1.213 -1 . 196 -0.017 7400 -1.295 -1.267 -0.028 TABLE 14 (continued) 90

COMPARISON OF SCHMIDTKE PHOTOMETRY TO O'CONNELL PHOTOMETRY

FOR THE STAR 29 Her (SPECTRAL TYPE K7 III)

SCHMIDTKE3 0 'CONNELL DIFFERENCE ' Normalized Normalized (S - 0)

3570 3.780 4.022 -0.242 3620 3.416 3.396 0.020 3784 2.900 3.052 -0.152 3798 3.171 3.215 -0.044 3815 3.214 3.433 -0.219 3835 3.572 3.562 0.010 3860 3.283 3.360 -0.077 3889 3.072 3.091 -0.019 3910 2.846 2 .892 -0.046 3933 3.612 3.697 -0.085 4 015 1.916 1 .940 -0.024 4101 , 1.659 1.788 -0.129 4200 1 .626 1 .688 -0.062 4270 1.440 1 .455 -0.015 4305 1 .540 1 .536 0.004 4340 0.957 1 .034 -0.077 4400 0.976 1 .027 -0.051 4430 0.818 0.869 -0.051 4500 0.498 0.522 -0.024 5050 0.000 0.000 • • • • • 5175 0.105 0.161 -0.056 5300 -0.375 -0.333 -0.042 5820 -0.792 -0.767 -0.025 5892 -0.675 -0.613 -0.062 6100 -0.966 -0.894 -0.072 6180 -0.885 -0.816 -0.069 6370 -1.031 -0.982 -0.049 7050 -1.367 -1.359 -0.008 7100 -1 .307 -1.275 -0.032 7400 -1 .525 -1.425 -0.100

91 ) 0 * • • * • * • • * 0.015 0.001 0.00 7 0.00 (s (s - -0.068 -0.171 -0.049 -0.063 -0.029 -0.064 -0.072 -0. 163 -0. -0.112 -0.072 -0.044 -0.046 -0.039 -0.050 -0.066 -0.093 -0.088 -0.066 1.8701.772 1.556 1.543 1.0351.086 102 -0. -0.058 3.291 -0.013 4.1633.623 3.573 -0.218 3.223 3 .668 3 -0.054 2.973 -0.041 3.1393.450 3.352 -0.099 2.065 0.002 0.905 0.000 0 .568 0 0.264 0 'CONNELLNormalized DIFFERENCE -0.386 -0.823 -0.485 -0.997 -0.793 -1.445 -1.062 -1.278 -1.672 (continued) 14 TABLE TABLE

Normalized FOR FOR THE STAR Peg 55 (SPECTRAL TYPE Ml Illab) COMPARISON OF SCHMIDTKE PHOTOMETRY TO O'CONNELL PHOTOMETRY 3570 3570 3620 3798 3835 3.945 3.638 3.278 3.574 3784 3784 3815 3860 3889 3910 3.040 3933 3.279 3.303 3.155 2.932 3.614 CTIO observations. 4015 4015 4101 4200 4270 4305 4340 4400 2.067 4430 1.768 1.709 5050 1.527 1.550 0.977 1.022 5892 0.833 0.000 -0.597 LO observations. 4500 4500 5175 5300 5820 0.522 6180 0.101 7050 -0.425 -0.873 7400 -0.865 -1.538 -1.738 6100 6100 6370 7100 -1.063 -1.106 -1.366

A A SCHMIDTKE tfl ^3 92 i

0.2 Mg I a Del (B9 IV) 1 LO observations 0.1 is

C t*0 ' 0 0.0 ■p, ra-m ° □ O. ^ B - a ^ + + + + + “T - 0.1

- 0.2 0 - CONTINUUM '

,, 4- - FEATURE

0.2 Mg I 109 Vir (A0 V) X LO observations 0.1 □ 0.0 ++ +s-®P , D ^ a+ □ b- m + . +

- 0.1

-0 . 2 □ - CONTINUUM + - FEATURE

0 . 2 Mg 1 109 Vir (A0 V) i CTIO observations

0 . 1

0.0

-0 .1

- 0.2 □ - CONTINUUM + - FEATURE

0.4 0.5 0.6 0.7 0.8 0.9 1.0 Figure 1. Comparison of Schmidtke photometry to O'Connell photometry. Residuals (Schmidtke- O'Connell) are plotted as a function of wavelength (microns). 93

0 • 2 H MS 1 7T3 Ori (F6 V) X CTIO observations 0.1

0.0 cb D+0 f Q q+ □ + D+D+ + n a

- 0.1

-0 . 2 □ - CONTINUUM + - FEATURE

0 * 2 M S 1 61 Leo (MO III) 1 CTIO observations 0.1

+ + 13 m,CJ -0 . 1

-o' 2 □ - CONTINUUM + - FEATURE

0 •2 Mg 1 16 Cyg B (G4 V) 1 - LO observations 0.1

0.0 -c is, ^jflO n a Q+ ^ □ q- 0

- 0.1

-0 . 2 □ - CONTINUUM + - FEATURE 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Figure 1 (continued). 94 1------,— 7 -----i 0.2 Mg I 61 Cyg A (K5 V) • + 1 LO ob servat ions 0.1 □

□ + ■ +^ ° f * a 0 ■ + □ nf □ a + + a □ 111 + 4- i I-1 I-1 o o o o • • • □ 0

-0.2 0 - CONTINUUM ' « i + - FEATURE

- Mg I 29 Her ( K7 III) X LO ob s ervat ions

■ 0 + 0 0 - + 0 0 0 0 4- + CD ID + Q + o f + 4 - + 0 4- 0

0 - CONTINUUM ' 0 + - FEATURE 0 --1....- i

- Mg I 1 55 Peg (Ml 11 lab )' X LO ob serva t ions .

• 0 ++ 0 + 0

4*3- 0 0 0 0 □ + T + -tig. 0f 0 0 4- d 4- •

0 +

’ o 0 - CONTINUUM ' + - FEATUHE • 1

0.4 0.5 0.6 0.7 o 00 0.9 1.0 Figure i (co ntiriued). 95 bandpasses. The effect of this substitution can be seen in data for the Mg I feature. This study's photometry at

5175 A is systematically brighter than O'Connell's.

Furthermore, the amount of excess brightening tends to increase with later spectral types. This behavior is consistent with the ideas expressed in Section II.4.D.

An additional comparison, for 16 Vir, is presented in

Table 15 and Figure 2. Christensen (1978) investigated

16 Vir as part of a study of metal-poor stars; its nominal spectral type is K1 III. The star is included in this study because of its suspected duplicity from lunar occultation observations. Although the comparison with Christensen's photometry is poor in the blue, values in the red are in satisfactory agreement.

11.6. CALCULATION OF COLORS AND INDICES

11.6.A. PHOTOMETRIC COLORS

With the normalized data of Section II.4, colors are calculated using the equation: COLORi = -2.5*log1() vv + F (A2)' (7) + F (A.) vv v' 4 . where

Fv (A .) = flux per unit frequency at A 10~0 .4*m(A )

m(A.) = normalized magnitude from Table 12 or 13

j =1,4 TABLE 15 96

COMPARISON OF SCHMIDTKE PHOTOMETRY TO CHRISTENSEN PHOTOMETRY

FOR THE STAR 16 Vir (PROGRAM STAR)

SCHMIDTKE3 CHRISTENSEN DIFFERE Normalized Normalized (S - C)

3570 3.061 2.84 0.22 3620 2.475 2.44 0.04 3784 2.136 2.24 -0.10 3798 2.355 2.43 -0.08 3815 2.563 2.61 -0.05 3835 2.815 2 .90 -0.08 3860 2.653 2.74 -0.09 3910 1 .906 2.08 -0.17 3933 2.819 2.83 -0.01 4015 1.252 1.36 -0.11 4101 1.182 1.26 -0.08 4200 1.172 1.26 -0.09 4270 0. 958 1 .08 -0.12 4305 1.277 1.31 -0.03 4400 0.713 0.78 -0.07 4430 0.577 0.65 -0.07 4500 0.314 0.39 -0.08 5050 0.000 0.00 • • • • 5175 0.067 0.10 -0.03 5300 -0.244 -0 .22 -0.02 5820 -0.567 -0 .53 -0.04 5892 -0.530 -0.46 -0.07 6100 -0.656 -0 .58 -0.08 6180 -0.661 -0.61 -0.05 6370 -0.720 -0.69 -0.03 7050 -0 .933 -0.87 -0.06 7100 -0.933 -0.88 -0.05 7400 -0.988 -0.92 -0.07 8050 -1.166 -1.06 -0.11

Q CTIO observations. 97

□ 0.2 Mg I 16 Vir 1 CTIO observations 0.1

0.0 + 0 □ + □ + 0 d " □ %. + + '8 *3 +■ 0 - 0.1 0 ■ 0 D 0

0 - 0.2 0 - CONTINUUM ' -l.. + - FERTURE 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Figure 2. Comparison of Schmidtke photometry to Christensen photometry. Residuals (Schmidtke- Christensen) are plotted as a function of wavelength (microns). 98

Six colors are formed using continuum bandpasses listed in

Table 16. The colors B/V and V/R are similar in behavior to their broad-band counterparts B-V and V-R (Iriarte et al.

1965). A diagram of V-R versus V/R is shown in Figure 3 for data from CTIO, LO, and O'Connell. The relationship is not linear because the various filters and bandpasses contain different amounts of line blanketing (e.g. a change in slope occurs at V/R=0.6). In addition, data points for supergiants and very hot stars fall below the locus of other data points because the broad-band colors have not been corrected for reddening.

II.6.B. PHOTOMETRIC INDICES

Photometric indices are calculated with the equation:

INDEX± = -2.5*log1{) (8) Fv ^a f e a t u r e ^

.f v ^a c o n t i n u u m \ whe re

Fv (AFEATURE) = fluX per Unlt wavelen§th at AFEATURE = (5050/1)2* 1 0 ~ ° * m(AFEATURE)

m ( A . TTTRp) = normalized magnitude FEATURE from Table 12 or 13

A = wavelength (Angstroms)

F (A ) = flux per unit wavelength V CONTINUUM . a FEATURE

FV (ACONTINUUM) defined in the next section. Twenty indices are formed using bandpasses listed in Table 17. TABLE ig 99

BANDPASSES FOR PHOTOMETRIC COLOR CALCULATIONS

COLOR

U/B 3570 3620 4270 4500 B/V 4270 ' 4500 5300 5820 V/R 5300 5820 7050 7400 R/I 7050 7400 8400 8800 1/10400 8400 8800 10400 10400 V/5050 5300 5820 5050 5050 b See Section II.6.A. Calculated for standards only, see Section II.6.D. 100

0.0 -%■

0 . 5 + X 1.0

. Y - PROG 1.5 £ - ] * - n + - JU © - ]V 2.0 X - V

. 0

.5

. 0

.5 - PROG

.0

.0

.5

.0

. 5

.0 0.5 0.0 0.5 1.0 1.5 2.0 Figure 3. V-R color as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). TABLE 17 101

BANDPASSES FOR PHOTOMETRIC INDEX AND CONTINUUM CALCULATIONS

INDEX ^BLUE af e a t u r e ared H 3798 3784 3798 3815 He I 3819 3784 3815 3860 H 3835 , 3815 3835 3860 bl 3835 3784 3835 3910 CN 3860 3784 3860 3910 H 3889 3860 3889 3910 Ca II 3933 3910 3933 4015 H 4101 4015 4101 4270 CN 4200 4015 4200 4270 CH 4305 4270 4305 4400 H 4340 4270 4340 4400 H 4861 4785 4861 5050 Mg I 5175 5050 5175 5300 Na I 5892 5820 5892 6100 TiO 6180 6100 6180 6370 TiO 7100 7050 7100 7400 Na I 8190 8050 8190 8400 Ca II 8542 8400 8542 8800 TiO 8880 8800 8880 9190 CN 9190 8800 9190 9950

^See Sections II.6.B and II.6.C. A line-blanketing index. 102

II.6.C. PHOTOMETRIC RELATIVE CONTINUA

In order to calculate a photometric index with equation

(8), an estimate of the continuum flux within a feature's bandpass must be calculated. This flux is estimated by a weighted sum of two nearby continuum bandpasses with the equation:

(9) FX (^CONTINUUM^ " FA <'ABLUE) +

^A^RED^ " FA^BLUE')''

^FEATURE " ABLUE

ARED “ ABLUE where

FA (ABLUE) = flux per unit wav®length Abl u e

Fa (Ared) = flux per unit wavelength at ARED

The blue and red continuum bandpasses used in the calculation are listed in Table 17.

II. 6.D. PHOTOMETRIC ABSOLUTE CONTINUA

For comparison stars, at each feature bandpass, an additional quantity is calculated with the equation:

(10) CONTINUUM. - - Z - S - l o S i o tv V l cLUiNlllNUUl’l o H U N U U M ” + V/5050 + Mv where

Fv (XC0NTINUUM) " flux per unlt frei-eucy ac *FEATURE

= (X/5050) • (^COHTIlguUM'

A = wavelength (Angstroms) 103

V/5050 = color from Section II.6.A

My = absolute visual magnitude for spectral type from Blaauw (1963) or Keenan (1978)

This quantity, an estimate of the absolute flux (converted to magnitudes) of the assumed continuum within a bandpass, is required by the numerical fitting procedure of Section

III.

II.6.E. CALCULATED VALUES

The calculated colors and indices are listed in

Table 18 for CTIO and Table 19 for LO. Figures 4 to 23 are plots of various indices versus V/R color. For comparison purposes, plots of O'Connell data, as supplemented by the survey of Turnrose (1976), are included. Superposed on each figure are three curves representing the adopted mean behavior of luminosity class I, III, and V stars.

Inspection of the figures shows that there is reasonable agreement among calculated indices from different data sources.

For many indices, some program stars deviate substantially from the mean behavior of single stars (i.e. the curves). For example, in Figure 4 a large number of program stars have very red V/R colors for their H 3798 index. These stars are double stars. Whereas the composite

V/R color is largely determined by the cool component, the TABLE 18 104

INDICES AND COLORS: CTIO 1 IN D ft A or . £ Cet e Er i R Do r COLOR H 3798 0.408 0.048 -0.06 4 He I 3819 -0.060 0.250 0.285 H 3835 0.587 0.352 -0.048 bl 3835 0.443 0.814 0.308 CN 3860 -0.154 0.507 0.300 H 3889 0.656 0.050 0.057 Ca11 3933 -0.053 0.724 0.927 H 4101 0.740 -0.036 -0.259 CN 4200 0.021 -0.029 -0 .248 CH 4305 0.025 0.312 0.003 H 4340 0.684 -0. 165 -0.107 H 4861 0.085 Mg I 5175 0.031 0.280 0.570 NaI 5892 0.011 0.096 1.219 TiO 6180 0.017 0.014 0.917 TiO 7100 0.012 0.004 0.946 NaI 8190 0.010 -0.658 Ca118 542 0.063 0.643 TiO 8880 -0.002 0.550 CN 9190 0.009 -0.220 U/B 1 .088 1.562 1.537 B/V -0.288 0 . 800 2.179 V/R -0.364 0.334 3.027 R/I 0.116 1.944 1/10400 0.151 1.614 TABLE 18 (continued) 105

INDICES AND COLORS: CTIO INDEX or 3 tt Or i 56 Ori T CMa COLOR H 3798 0.139 0.081 0.062 HeI 3819 0.040 0.192 0.013 H 3835 0.379 0.206 0.076 bl 3835 0.364 0. 700 0.083 CN 3860 0.053 0.602 0.000 H 3889 0.239 -0.026 0.099 CalI 3933 0.566 1.033 0.013 H 4101 0.259 0.044 0.137 CN 4200 0.004 0.251 0.023 CH 4305 0.161 0.351 -0.009 H 4340 0.227 -0.179 0.110 H 4861 0.295 0.118 0.120 Mg I 517 5 0.065 0.204 0.007 NaI 5892 0.028 0.099 0.033 TiO 6180 0.006 0.010 0.002 TiO 7100 0.008 0.056 -0.004 Nal 8190 0.013 0.028 -0.042 CaII8542 0.072 0.124 0.001 TiO 8880 0.032 -0.028 0.049 CN 9190 0.028 0.131 0.036 U/B 0.973 2 .242 -0.297 B/V 0.274 1.078 -0.504 V/R 0.078 0.389 -0.521 R/I 0.009 0.157 -0.307 1/10400 0.014 0.201 -0.289 TABLE 18 (continued) 106

INDICES AND COLORS: CTIO j. in u j j x\. v j j . COLOR £ Pup N Vel 61 Leo

H 3798 0.035 -0.027 0.102 He I 3819 0.000 0.281 0.231 H 3835 0.039 0.059 0.159 bl 3835 0.049 0.437 0.504 CN 3860 0.015 0.338 0.331 H 3889 0.054 0.031 0.058 CaII3933 -0.006 1.081 1.028 H 4101 0.079 0.053 -0.014 CN 4200 0.045 0.132 0.099 CH 4305 -0.005 0.241 0.198 H 4340 0.086 -0.215 -0.235 H 4861 0.047 0.003 Mg I 5175 0.014 0.329 0.357 Nal 5892 0.007 0.201 0.266 TiO 6180 0.010 0.116 0.197 TiO 7100 -0.015 0. 104 0.167 Nal 8190 -0.020 -0.005 0.004 CaII8542 -0.003 0.094 0.129 TiO 8880 0.030 -0.016 -0.022 CN 9190 0.001 0.047 0.066 U/B -0.323 2 .886 2.943 B/V -0.450 1.554 1.693 V/R -0.469 0.832 0.903 R/I -0.353 0.356 0.460 1/10400 -0 .270 0.363 0.377 TABLE 18 (continued) 107

INDICES AND COLORS: CTIO

INDEX or 1 „ V vir COLOR 0 Cen V810 Cen H 3798 -0.022 ' 0.053 0.065 He I 3819 0.095 0.055 0.224 H 3835 0.286 0.259 0 .235 bl 3835 0.245 0.209 0 . 533 CN 3860 -0.136 -0.118 0.264 H 3889 0.058 0.090 0.018 CaII3933 1.148 . 0.818 1 .065 H 4101 -0.047 0.023 -0.019 CN 4200 0.086 0.066 0.058 CH 4305 0.314 0.215 0. 198 H 4340 -0.008 0.068 -0.191 H 4861 0.248 0.259 Mg I 5175 0.146 0.123 0.398 Nal 5892 0.072 0.058 0.257 TiO 6180 0.023 0.031 0.256 TiO 7100 0.029 0.003 0.179 Nal 8190 0.036 0. 102 -0.016 CaII8542 0. 144 0.131 0.105 TiO 8880 0.039 0.063 0.023 CN 9190 0.001 0.008 -0.004 U/B 1.873 1 .305 2.762 B/V 0.685 0.325 1 .563 V/R 0.303 0.074 0.934 R/I 0.152 0.015 0.442 1/10400 0.096 0.028 0.387 TABLE is (continued) 108

INDICES AND COLORS: CTIO INDEX or COLOR e Vi r HR 517 1A 109 Vir H 3798 0.093 0.075 0.368 He I 3819 0.102 -0.005 -0.057

H 3835 0.267 - 0.011 0.574 bl 3835 0.811 0.133 0.441 CN 3860 0.778 0.229 -0.142 H 3889 0.016 -0.048 0.628

Call 3933 0.901 0.882 - 0.011 H 4101 0.044 -0.113 0.726 CN 4200 0.157 0.348 0.003 CH 4305 0.346 0.309 0.044 H 4340 0.094 -0.127 0.667 H 4861 0. 103 0.234 0.604 Mg I 5175 0. 126 0.251 0.022 Nal 5892 0.077 0.139 0.013 TiO 6180 0.007 0.055 0.008 TiO 7100 0.002 0.011 0.012 Nal 8190 0.001 0.095 -0.003 CaII8542 0.094 0.346 0.056 TiO 8880 0.021 -0.040 0.142 CN 9190 0.070 0.236 0.048 U/B 1.793 2.113 1.216 B/V 0.686 1.491 -0.229 V/R 0.325 0.520 -0.265 R/I 0.123 0.187 -0.146 1/10400 0.159 0.264 -0.084 TABLE 18 (continued) 109

INDICES AND COLORS: CTIO INDEX or HR 5825 COLOR T Sco y Oph H 3798 0. 158 0 107 0.372 He I 3819 0.024 0 041 -0.019 H 3835 0.371 0 135 0.578 bl 3835 0.319 0 146 0.451 CN 3860 -0.093 -0 017 -0.159 H 3889 0.268 0 182 0.667 CaII3933 0.466 -0 003 -0.081 H 4101 0.315 0 218 0.835 CN 4200 0.014 0 015 -0.002 CH 4305 0.114 -0 007 0.053 H 4340 0.290 0 189 0.7 69 H 4861 Mg I 517 5 0.042 -0 001 0.015 Nal 5892 0.020 0 032 0.011 TiO 6180 -0.010 0 004 -0.007 TiO 7100 0.000 0 002 0.026 Nal 8190 -0.012 -0 013 0.006 CaII8542 0.055 -0 001 0.057 TiO 8880 0.039 0 061 0.143 CN 9190 0.012 0 030 0.113 U/B 0.971 -0 210 1.267 B/V 0.219 -0 451 -0.244 V/R 0.063 -0 507 -0.295 R/I -0.079 -0 342 -0.149 1/10400 -0.007 -0 301 -0.096 TABLE 18 (continued) 110

INDICES AND COLORS: CTIO INDEX or COLOR HR 1219 HD 31244/5 HR 1772

H 3798 0.256 0.230 0.150 HeI 3819 0.022 0.015 0.024 H 3835 0.460 0.424 0.189 bl 3835 0.517 0.541 0.191 CN 3860 0.064 0.159 -0.017 H 3889 0.386 0.290 0.246 Ca113 9 3 3 0.312 0.331 0.038 H 4101 0.408 0.288 0.242 CN 4200 0.071 0.107 -0.019 CH 4305 0. 198 0.256 -0.007 H 4340 0.265 0.161 0.235 H 4861 0.318 0.227 0.204 Mg I 5175 0.067 0.068 -0.003 Nal 5892 0.046 0.030 0.027 TiO 6180 0.012 -0.015 0.002 TiO 7100 0.004 0.009 -0.001 Nal 8190 0.004 -0.105 -0.034 CaII8542 0.047 0.082 -0.021 TiO 8880 0.034 0.053 0.081 CN 9190 0.080 0.012 -0.029 U/B 1 . 504 1.454 0.238 B/V 0.448 0.570 -0.357 V/R 0.213 0.285 -0.409 R/I 0.092 0.256 -0.238 1/10400 0.277 0.195 -0.211 TABLE 18 (continued) 111

INDICES AND COLORS: CTIO INDEX or HR 2044 COLOR HR 2073 HR 2388 H 3798 0.251 0. 154 0.215 He I 3819 0.040 0.055 0.043 H 3835 0.487 0.392 0.416 bl 3835 0.527 0.645 0.600 CN 3860 0.027 0.330 0.235 H 3889 0.461 0.206 0.274 Ca113933 0.319 0.521 0.416 H 4101 0.487 0.226 0.260 CN 4200 0.075 0.127 0.113 CH 4305 0.182 0.304 0.265 H 4340 0.240 0.068 0.089 H 4861 0.289 0.184 0.206 Mg I 5175 0.142 0.094 0.094 Nal 5892 0.045 0.063 0.054 TiO 6180 0.007 0.016 0.013 TiO 7100 0.036 -0.003 0.052 Nal 8190 0.019 0.036 -0.007 CaII8542 0.117 0.160 0. 105 TiO 8880 0.032 0.022 0.002 CN 9190 0.071 0.091 0.057 U/B 1.633 1 .655 1 .589 B/V 0.565 0.723 0.653 V/R 0.315 0.319 0.325 R/I 0.147 0.102 0.117 1/10400 0.177 0.197 0. 144 TABLE 18 (continued) 112

INDICES AND COLORS: CTIO INDEX or COLOR HR 2786 HR 3056 e Car H 3798 0.086 0.229 0.158 He I 3819 O'.029 0.003 0.049 H 3835 0.221 0.359 0.226 bl 3835 0.443 0.392 0.250 CN 3860 0.312 0.046 -0.005 H 3889 0.038 0.287 0.270 Cal13933 0.684 0.204 0.123 H 4101 0.095 0.275 0.213 CN 4200 0. 150 0.147 0. 106 CH 4305 0.344 0.208 0.133 H 4340 0.019 0.080 0.007 H 4861 0.230 0.259 Mg I 5175 0.130 0.129 0.265 Nal 5892 0.038 0.089 0.217 TiO 6180 0.017 - 0.009 0.082 TiO 7100 -0.004 0.052 0.118 Nal 8190 0.016 0.019 0.011 CaII8542 0.160 0.116 0. 130 TiO 8880 -0.017 -0.044 -0.041 CN 9190 0.049 0.118 0.138 U/B 1.712 1.375 1 .069 B/V 0.826 0.924 1.313 V/R 0.354 0.505 0.770 R/I 0.144 0.230 0.327 1/10400 0.149 0.314 0.401 TABLE 18 (continued) 113

INDICES AND COLORS: CTIO

L D L A i. COLOR HR 3386 HR 3534 HR 3548

H 3798 0.289 0.256 0.181 ReI 3819 -0.023 -0.001 0.022 H 3835 0.482 0.474 0.325 bl 3835 0.501 0.478 0.490 CN 3860 0.044 0.006 0.227 H 3889 0.427 0.409 0.203 CaII3933 0.192 0.296 0.410 H 4101 0. 408 0.419 0.203 CN 4200 0.070 0.050 0.164 CH 4305 0. 163 0.171 0.258 H 4340 0.249 0.301 0.023 H 4861 0.320 0.354 0. 167 Mg I 5175 0. 100 0.077 0.106 Nal 5892 0.050 0.038 0.060 TiO 6180 0.032 0.015 0.013 TiO 7100 0. 004 0.008 0.024 Nal 8190 -0.009 -0.020 0.012 CaII8542 0.102 0.121 0.113 TiO 8880 0.014 0.053 -0.028 CN 9190 0.023 0.048 0.116 U/B 1.374 1.495 1 .522 B/V 0.414 0.356 0.797 V/R 0.219 0.180 0.414 R/I 0.069 -0.014 0.214 1/10400 0.166 0.111 0.209 TABLE 18 (continued) 114

INDICES AND COLORS: CTIO INDEX or HR 3831 COLOR 0 Leo 9 An t

Ii 3 7 9 8 0.260 0.184 0.253 He I 3819 0.005 0.019 0.037 H 3835 0.447 0.382 0.467 bl 3835 0.407 0.300 0.451 CN 3860 -0.061 -0.131 -0.049 H 3889 0.454 0.294 0.422 CaII3933 0. 322 0.227 0.307 H 4101 0.644 0.322 0.463 CN 4200 0.018 0.050 0.075 CH 4305 0.109 0.110 0.175 H 4340 0.598 0.298 0.345 H 4861 0.627 0.371 0.402 Mg I 5175 0.028 0.068 0.102 Nal 5892 0.020 0.030 0.054 TiO 6180 0.008 -0.003 0.006 TiO 7100 - 0.012 -0.006 0.007 Nal 8190 -0.033 0.000 0.004 CaII8542 0.062 0.055 0.084 TiO 8880 0.077 0.008 0.035 CN 9190 0.033 0.010 0.070 U/B 1.270 1.293 1.515 B/V 0.016 0.272 0.308 V/R -0.092 0.067- 0.111 R/I -0.109 0.024 0.077 1/10400 -0.067 -0.009 0.112 TABLE 18 (continued) 115

INDICES AND COLORS: CTIO INDEX or COLOR p Ve 1 HR 4177 55 Leo

H 3798 0.229 0.024 0.166 He I 3819 0.021 0.232 0.028 H 3835 0.425 0.074 0.372 bl 3835 0.347 0.426 0.329 CN 3860 0.125 0.338 -0.083 H 3889 0.411 -0.015 0.271 CaI13933 0.171 0.944 0.483 H 4101 0.503 0.086 0.309 CN 4200 0.021 0.208 0.009 CH 4305 0.109 0.238 0.126 H 4340 0.463 -0.195 0.257 H 4861 0.481 0.136 0.296 MgI 5175 0.045 0.298 0.059 Nal 5892 0.023 0.192 0.026 TiO 6180 0.007 0.074 -0.015 TiO 7100 0.002 0.087 -0.005 Nal 8190 0.009 0.002 -0.019 CaII8542 0.053 0.137 0.053 TiO 8880 0.081 -0.030 0.050 CN 9190 0.004 0.068 0.006 U/B 1.130 2.863 1 .029 B/V 0.056 1 .723 0.271 V/R 0.042 0. 847 0.069' R/I 0.072 0.384 -0.003 1/10400 0.036 0.406 0.051 TABLE 18 (continued) 116

INDICES AND COLORS: CTIO INDEX or COLOR HR 4417 HR 4492 HR 4544

H 3798 0.286 0.277 0.079 He I 3819 0.017 0.011 0.162 H 3835 0.513 0.459 0.264 bl 3835 0.529 0.446 0.809 CN 3860 0.010 -0.026 0.716 H 3889 0.463 0.482 0.015 CaII3933 0.279 0.090 0.963 H 4101 0.482 0.477 0.025 CN 4200 0.041 0.062 0.126 CH 4305 0.160 0.172 0.375 H 4340 0.352 0.285 -0. 154 H 4861 0.372 0.284 0.120 Mg I 5175 0.074 0.138 0.174 Nal 5892 0.046 0.086 0.063

TiO 6180 0.006 - 0.012 0.012 TiO 7100 0.003 0.029 0.023 Nal 8190 0.016 -0.023 0.004 CaII8542 0.096 0.074 0.074 TiO 8880 0.009 0.004 -0.033 CN 9190 0.005 0.041 0.043 U/B 1.475 1 .499 1.916 B/V 0.287 0.670 0.880 V/R 0.158 0.444 0.449 R/I 0.044 0.203 0.122 1/10400 0.102 0.279 0.220 TABLE 18 (continued) 117

INDICES AND COLORS: CTIO INDEX or COLOR HD 103856 IT Vir O Vir

H 3798 0.198 0 347 0.389 He I 3819 0.020 - 0 006 -0.049 H 3835 0.370 0 552 0.615 bl 3835 0.318 0 447 0.486 CN 3860 0.089 -0 140 -0.141 H 3889 0.346 0 602 0.668 CaII3933 0.374 0 156 0.018 H 4101 0.416 0 707 0.779 CN 4200 0.016 -0 009 0.011 CH 4305 0.097 0 086 0.058 H 4340 0.370 0 652 0.716 H 4861 0.418 0 598 0.673 Mg I 5175 0. 048 0 035 0.026 Nal 5892 0. 032 0 015 0.022 TiO 6180 0.013 0 006 -0.001 TiO 7100 0.004 0 017 0.003 Nal 8190 0.007 -0 004 -0.011 CaII8542 0. 054 0 078 0.042 TiO 8880 0.053 0 109 0.125 CN 9190 0.019 0 062 0.044 U/B 1 .054 1 417 1.286 B/V 0.126 -0 127 -0.202 V/R 0.021 -0 174 -0.259 R/I 0.049 -0 080 -0.120 1/10400 0.058 -0 056 -0.077 TABLE 18 (continued) 118

INDICES AND COLORS: CTIO INDEX or COLOR 16 Vir T1 Crv HD 109241

H 3798 0.048 0.186 0.267 He I 3819 0.250 0.014 0.008 H 3835 0.214 0.389 0.486 bl 3835 0.775 0.329 0.393 CN 3860 0.659 -0.096 -0.135 H 3889 0.028 0.310 0.499 CaII3933 1 .087 0.470 0.336 H 4101 0.033 0.369 0.617 CN 4200 0.136 0.014 0.014 CH 4305 0.388 0.112 0. 125 H 4340 0.153 0.343 0.586 H 4861 0.349 0.535 Mg I 5175 0.192 0.058 0.037 Nal 5892 0.060 0.027 0.023

TiO 6180 0.014 - 0.002 -0.013 TiO 7 100 0.008 0.008 0.002

Nal 8190 0.001 - 0.012 0.033 CaII8542 0.071 0.055 0.027 TiO 8880 0.021 0.033 0.092 CN 91 90 0.049 0.008 0.014 U/B 2.140 1 . 046 1.296 B/V 1 . 006 0. 154 -0.028

V/R 0.543 0.016 - 0.110

R/I 0.250 -0.055 - 0.122 1/10400 0.243 0.000 -0.016 TABLE 18 (continued) 119

INDICES AND COLORS: CTIO INDEX or H Cen Vir COLOR 9 Mu s H 3798 0.289 0.102 0.056 He I 3819 0.038 0.089 0.003 H 3835 0.401 0.225 0.044 bl 3835 0.315 0.361 0.052 CN 3860 0.093 0.129 0.010 H 3889 0.431 0.115 0.069 Ca11 3 933 0.026 0.807 0.005 H 4101 0.476 0.014 0.080 CN 4200 0.008 0.019 0 .023 CH 4305 0. 006 0.131 -0.009 H 4340 0.443 -0.165 0.044 H 4861 0.408 0.051 0.069 MgI 5175 0.008 0.414 0.011 Nal 5892 0.007 0.442 0.381 TiO 6180 0.009 0.491 -0.006 TiO 7100 0. 006 0.383 0.042 Nal 8190 0.009 -0.041 -0.064 Ca118 54 2 0.023 0.147 -0.058 TiO 8880 0.204 0.035 0.020 CN 9190 0.019 0.006 0.010 U/B 0.651 2.504 -0.087 B/V 0.287 1 .656 0.064 V/R 0.322 1 .265 -0.435 R/I 0.207 0.576 -0.215

1/10400 0.148 0.468 - 0.112 TABLE 18 (continued) 120

INDICES AND COLORS: CTIO INDEX or 6 Vir HR 5008 Vir COLOR 85 H 3798 0.340 0.303 0. 343 He I 3819 -0.067 -0.012 -0. 055 H 3835 0.562 0.531 0. 590 bl 3835 0.428 0.410 0. 458 CN 3860 -0.137 -0.159 ■0. 140 H 3889 0.643 0.550 0. 712 Call 3933 0.039 0.036 0. 031 H 4101 0.735 0.707 0. 824 CN 4200 0.008 0.033 ■0. 007 CH 4305 0.047 0.113 Q. 071 H 4340 0.668 0.657 0. 750 H 4861 0.669 Mg I 5175 0.016 0.047 •0. 031 Nal 5892 0.025 0.031 0. 022 TiO 6180 -0.007 0.007 0. 007 TiO 7100 -0.016 0.015 0 . 018 Nal 8190 -0.022 CaII8542 0.038 TiO 8880 0.177 CN 9190 0.046 U/B 1.261 1.305 1 . 231 B/V -0.243 -0.072 -0. 205 V/R -0.279 -0.157 -0 . 258 R/I -0.183 1/10400 -0.055 TABLE 18 (continued) 121

INDICES AND COLORS: CTIO INDEX or COLOR HR 5207 HR 5308 ri Cen

H 3798 0.330 0.234 0.125 He I 3819 0.042 0.032 0.025 H 3835 0.474 0.346 0. 154 bl 3835 0.376 0.396 0.156 CN 3860 0.106 0.046 -0.018 H 3889 0.527 0.333 0.197 CalI 3933 0.035 0.281 0.017 H 4101 0.594 0.206 0.190 CN 4200 0.006 0.119 -0.009 CH 4305 0.022 0.168 -0.008 H 4340 0.553 -0.070 0.191 H 4861 0.516 0.086 Mg I 5175 0.006 0.271 0.012 Nal 5892 0.019 0.181 0.014 TiO 6180 0.013 0.056 -0.002 TiO 7100 0.008 0.063 -0.012 Nal 8190 0.011 0.012 -0.015 CaII8542 0.034 0.131 0.002 TiO 8880 0.114 -0.045 0.053 CN 9190 0.055 0.092 0.017 U/B 0.756 1.916 0.060 B/V 0.334 1.453 -0.388 V/R 0.353 0.817 -0.424 R/I 0.205 0.368 -0.337 1/10400 0. 194 0.420 -0.225 TABLE 18 (continued) 122

INDICES AND COLORS: CTIO INDEX or COLOR HR 5450 HD 130205/6 HR 5527 H 3798 0.051 0.212 0.218 He I 3 819 0.167 0.028 -0.003 H 3835 0. 138 0.328 0.397 bl 3835 0.737 0.387 0.332 CN 3860 0. 802 0.063 -0.092 H 3889 -0.109 0.326 0.246 Ca11 3933 1. 023 0.282 0.501 H 4101 0.068 0.198 0.229 CN 4200 0.225 0.133 0.045 CH 4305 0.409 0.193 0. 150 H 4340 -0.122 -0.083 0.230 H 4861 0. 107 MgI 5175 0.138 0.284 Nal 5892 0.055 0.167 TiO 6180 0.010 0.044 TiO 7100 0.018 0.054 Nal 8190 0.021 0.023 0.011 CaII8542 0.097 0.107 '0.135 TiO 8880 -0.052 -0.025 0.034 CN 9190 0.097 0.089 0.009 U/B 1 . 952 2.078 1 .408 B/V 0.903 1.659 V/R 0.410 0.911 R/I 0.114 0.407 1/10400 0.274 0.462 0.161 TABLE 18 (continued) 123

INDICES AND COLORS: INDEX or COLOR HR 5667 Y Gir HR 5929

H 3798 0.183 0.221 0.269 He 1 3819 -0.033 ' 0.003 ■0.007 H 3835 0.336 0.312 0.434 bl 3835 0.305 0.303 0.479 CN 3860 -0.019 -0.015 0.071 H 3889 0.252 0.349 0.364 Call 3933 0.365 0.045 0.221 H 4101 0.214 0.341 0.333 CN 4200 0.051 0.015 0.137 CH 4305 0.174 0.048 0.214 H 4340 0.197 0.291 0.115 H 4861 Mg I 5175 0.079 0.025 0.177 Nal 5892 0.020 0.054 0.097 TiO 6180 0.021 0.023 0.033 TiO 7100 0.008 0.008 0.030 Nal 8190 -0.016 0.008 0.032 CaII8542 0.124 0.065 0. 104 TiO 8880 0.021 0.033 ■0.052 CN 9190 0.036 0.044 0.073 U/B 1.127 0. 605 1.617 B/V 0.430 0.064 0.951 V/R 0.191 0.013 0.515 R/I 0.043 -0.055 0.210 1/10400 0.067 0.067 0.317 TABLE 18 (continued) 124

INDICES AND COLORS: CTIO INDEX or 6 No r COLOR HD 144534/5 H 3798 0.294 0.186 He I 3 819 0.008 0.046 H 3835 0.499 0.261 bl 3835 0.381 0.280 CN 3860 0.157 -0.008 H 3889 0.514 0.292 CaII3933 0. 008 0.150 H 4101 0.640 0.204 CN 4200 0. 033 0.099 CH 4305 0.097 0.093 H 4340 0.608 -0.013 H 4861 Mg I 5175 0.043 0.303 Nal 5892 0.016 0.199 TiO 6180 0. 004 0.120 TiO 7100 0.027 0.157 Nal 8190 0.011 0.008 CaII8542 0.056 0.132 TiO 8880 0.122 -0.034 CN 9190 0.037 0.113 U/B 1 .307 1 .408 B/V 0.027 1 .602 V/R 0. 137 1.053 R/I 0.112 0.454 1/10400 0.069 0.549 TABLE 19 125

INDICES AND COLORS: LOWELL OBSERVATORY INDEX or COLOR 31 Com 6 Com 83 UMa H 3798 0. 100 0.111 0.090 He I 3819 0.005 0.048 0.205 H 3835 0.328 0.421 0.148 bl 3835 0.369 0.498 0.416 CN 3860 0 . 058 0.076 0.236 H 3889 0.121 0.175 0.029 CalI 3933 0.594 0.657 0.919 H 4101 0.018 0.072 -0.081 CN 4200 -0.029 -0.057 0.009 CH 4305 0.253 0.246 0.153 H 4340 0.052 0.088 -0.221 Mg I 5175 0.038 0.089 0.334 Nal 5892 0.022 0.039 0.332 TiO 6180 0.015 0.013 0.311 TiO 7100 -0.007 0.015 0.272 U/B 1.178 1 .054 2.829 B/V 0.538 0.329 1.687 V/R 0.219 0.162 1.052

INDEX or COLOR 109 Vir l Dr a T He r H 3798 0.302 0.111 0.223 He I 3 819 -0.051 0.205 -0.015 H 3835 0.497 0.321 0.310 bl 3835 0.342 0.919 0.243 CN 3860 -0.177 0.772 -0.085 H 3889 0 .556 0.040 0.372 CalI 3933 -0.025 0.993 -0.004 H 4101 0.633 -0.001 0.356 CN 4200 -0.022 0.162 -0.023 CH 4305 0.043 0 .342 0.009 H 4340 0.632 -0.203 0.377 Mg I 517 5 -0.024 -0.046 Nal 5892 0.027 0.025 TiO 6180 -0.005 -0.009 TiO 7100 -0.002 0.003 U/B 1 .225 2.230 0.438 B/V -0.234 -0.365 V/R -0.266 -0.366 TABLE 19 (continued) 126

INDICES AND COLORS: LOWELL iOBSERVATORY

INDEX or 29 Her y He r Y Oph COLOR H 3798 0.142 0.087 0.310 HeI 3 819 0.177 0.103 -0.037 H 3835 0.328 0.346 0.533 bl 3835 0.694 0.723 0.378 CN 3860 0.416 0.504 -0.185 H 3889 0.061 0.073 0.620 Call 3933 1.038 0.729 -0.069 H 4101 -0.083 0.025 0.767 CN 4200 0.066 -0.011 -0.034 CH 4305 0 .240 0.354 0.060 H 4340 -0.215 -0.035 0.750 Mg I 5175 0.302 -0.031 Nal 5892 0.163 0.016 TiO 6180 0.101 -0.004 TiO 7100 0.083 0.003 U/B 2.713 1 .393 1.219 B/V 1.473 -0.260 V/R 0.845 -0.283

INDEX or < Aq 1 6 Cyg 16 Cyg B COLOR H 3798 0.053 0.163 0.058 He I 3819 0.016 0.018 0.109 H 3835 0.091 0.367 0.368 bl 3835 0.084 0.296 0.595 CN 3860 -0.023 -0.116 0.256 H 3889 0.116 0.276 0.099 Ca113 9 3 3 0.048 0.456 0.718 H 4101 0.143 0.279 0.042 CN 4200 -0.007 -0.017 -0.047 CH 4305 0.003 0.134 0.326 H 4340 0.161 0.316 0.016 Mg I 5175 -0.044 0.021 0.100 Nal 5892 0.073 0.029 0.046 TiO 6180 -0.004 -0.002 0.009 TiO 7100 -0.016 -0.001 0.006 U/B -0.183 1.029 1.173 B/V -0.445 0.159 0.510 V/R -0.470 0.056 0.217 TABLE 19 (continued) 127

INDICES AND COLORS: LOWELL OBSERVATORY INDEX or COLOR a Del E Aq r ? Cyg

H 3798 0.324 0.349 0.119 He I 3819 -0.061 •0.060 0. 124 H 3835 0.479 0.564 0.251 bl 3835 0.349 0.398 0.478 CN 3860 -0.137 -0.186 0.238 H 3889 0.519 0.608 0.117

CaII3933 -0.010 - 0.012 0.765 H 4101 0.554 0.678 -0.003 CN 4200 -0.022 -0.014 0.149 CH 4305 0.031 0.044 0.237 H 4340 0.565 0.676 -0.191

MgI 5175 -0.027 - 0.021 Nal 5892 0.023 0.020 TiO 6180 -0.008 -0.003 TiO 7100 0.012 0.001 U/B 0.966 1.323 2.622 B/V -0.269 -0.191 V/R -0.295 -0.254

COLOR 61 Cyg A 7T Peg 5 5 Peg

H 3798 0.059 0.170 0.138 He I 3819 0.183 -0.011 0.142 H 3835 0.370 0.358 0.285 bl 3835 0.711 0.259 0.578 CN 3860 0.375 -0.135 0.329 H 3889 0.089 0.245 0.080 CaII3933 0. 703 0.499 0.930 H 4101 -0.145 0.203 -0.098 CN 4200 -0.124 0.003 0.049 CH 4305 0.174 0.149 0.178 H 4340 -0.235 0.239 -0.256 MgI 5175 0. 406 0.017 0.326 Nal 5892 0.231 0.017 0.326 TiO 6180 0.054 0.002 0.211 TiO 7100 0.022 0.010 0.201 U/B 2.084 1.269 2.869 B/V 1.134 0.233 1.584 V/R 0.627 0.069 0.971 TABLE 19 (continued) 128

INDICES AND COLORS: LOWELL OBSERVATORY INDEX or COLOR HR 5983 HR 6497 HR 6560

H 3798 0.252 0.317 0.239 He I 3819 0.005 ■0.031 0.011 H 3835 0.472 0.521 0.462 bl 3835 0.479 0.485 0.464 CN 3860 0.006 ■0.028 •0.006 H 3889 0.435 0.505 0.379 CalI3933 0.216 0.122 0.320 H 4101 0.390 0.459 0.367 CN 4200 0.022 0.007 0.037 CH 4305 0.179 0.145 0.194 H 4340 0.299 0.330 0.297 Mg I 5175 0.042 0.030 0.055 Nal 5892 0.052 0.060 0.044 TiO 6180 0.010 0.016 0.004

TiO 7100 0. 005 ■ 0.002 0.009 U/B 1.478 1.468 1.561 B/V 0.384 0.468 0.383 V/R 0.224 0.272 0.227

INDEX or COLOR HR 6902 H 3798 0.248 He I 3819 -0.008 H 3835 0.433 bl 3835 0.495 CN 3860 0.097 H 3889 0.339 Call3933 0.259 H 4101 0.231 CN 4200 0.087 CH 4305 0.242 H 4340 0.122 Mg I 5175 0.067 Nal 5892 0.066 TiO 6180 0.017 TiO 7100 0.016 U/B 1 .565 B/V 0.835 V/R 0.461 129

LUM=3

LUM = 1

. 2

Y Y Y - PROG

+ - ]I] .4

.0

. 2

Y - PROG

.4

. 0

. 2

+ - HI .4

0.5 0.0 0.51.0 1.5 2 . 0 Figure 4. H 3798 index as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 130

LUM = 1 0.0

0.1 LUM=5

0.2 - V - PROG LUM = 3 + - ]U

0.0

0 .1

0 . 2 ■ Y - FROG

0.0

0.1

0.2 ] 11

-0.5 0.0 0.5 1.0 1.5 2.0 Figure 5. He I 3819 index as a function of V/R color. Data are from CTIO (top), LO (middle), and O ’Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 131

0. 00 LUM = 1 LUM=5

0 . 25

Y - PROG 0.50 in

0.00

0. 25

Y - PROG 0 . 50

0 . 00

0.25

0.50

0.5 0.0 0.5 1.0 1.5 2.0 Figure 6. H 3835 index as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 132

.0 LUM=1

.4 LUM= 3

Y - PROG . 8

.0

.4

.8

.0 DID

.4

. 8 + - in

0.5 0.0 1.0 1.50.5 2 . 0 Figure 7. bl 3835 index as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 133

.0 LUM=1

.4 LUM=3 LUM = 5

Y - PROG

.8

. 0

.4

. 8

.0

.4

+ - HI .8

0.5 0.0 1. 00.5 1.5 2.0 Figure 8. CN 3860 index as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 134

LUM=1 .0

LUM= 5

.3

. 6 Y - FROG jn

.0

. 3

Y - PROG . 6 4- - ]I]

.0

. 3

. 6 in

0.0 0.5 1.00.5 2 . 0 Figure 9. H 3889 index as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 135

.0

.5

LUM = 1

Y - PROG .0 LUM=3

.0

. 5

Y - PROG

. 0 in

.0

.5

□ □

.0

0.5 0.0 0.5 1.0 1.5 2.0 Figure 10. Ca II 3933 index as a function of V/R color. Data are from CTIO (top), LO (middle), and O ’Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 136 ■“1-- —— □ LUM=5V LUJM=3->U____. o o

gY / / / i LUM=1/ yY Y Y \y \ ( f / \ Y • k / Y YY 0.4 J £ vY ■ ■ \Y £ yY Y y - >

Y - PROG □ - 1 A - ]I 00 o + - m t> - IV - X - V ■ 1 - -..... t I

.0

. 4

Y - PROG

in . 8

. 0

.4

+ - in 8

0.5 0.50.0 1.51.0 2 . 0 Figure 11. H 4101 index as a function of V/R color. Data are from CTIO (top), LO (middle), and O ’Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 137

-0.15 LUM = 5 LUM= 3

0.00 LUM=1

0.15

Y - PROG 0 . 30 + - in

-0.15

0.00

0.15

Y - PROG 0 .30

-0 .15

0.00

0.15

0 . 30 + - in

0.5 0.0 1.00.5 1.5 2 . 0 Figure 12. CN 4200 index as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 138

.0 LUM=5 LUM= 3

. 2

Y - FROG

.4

.0

.2

Y - FROG

.4

.0

. 2

.4

-0.5 0.0 0.5 1.0 1.5 2.0 Figure 13. CH 4305 index as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 139

LUM= 3,5

. 0 Y Y

« 3 YY

Y - PROG .6

.0

3

Y - PROG . 6 in

.0

3

.6 + - in

0.5 0.0 1.0 1.50.5 2.0 Figure 14. H 4340 index as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 140

LUM=5 0.00

LUM = 1 0.25

0.50 Y - PROG -

0.00

0.25

0.50

no data

0.00

0 . 25

0.50

+ - H]

0.5 0.0 0.5 1.0 1.5 2.0 Figure 15. H 4861 index as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 141

0.00

0.25

0.50 Y - PROG < - L U M >

+ - ]I] LU

0.00

0.25

0.50 Y - PROG

0.00

0.25

0.50

+ - in

0.5 0.0 1.0 1.50.5 2.0 Figure 16. Mg I 5175 index as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 142 .0

.5 LUM= 3 -

LUM= 1

Y - PRDC LUM=5 .0 'A

.0

. 5

Y - PROG . 0

.0

. 5

.0 in

0.5 0.0 0.5 1.0 1.5 2.0 Figure 17. Na I 5892 index as a function of V/R color. Data are from CTIO (top), L0 (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 143

0.00 jag* n^ - ^ r v y%v^

0.25

LUM=5 0.50 Y - FROG

LUM=1,3

T T 0 . 00 <*> &&

0.25

0 .50 Y - PROG

0.00

0.25

a*

0.50

+ - in

0.5 0.0 0.5 1.0 1.5 2 . 0 Figure 18. TiO 6180 index as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. &gyr'A^ ~ «fr’ ’i^nr

Y - PROG O - ] A - ]l + - HI O - ]V X - V

Y - PROG

II]

0.5 0 . 0 0.5 1.0 1.5 2 . 0 Figure 19. TiO 7100 index as a function of V/R color. Data are from CTI0 (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 145

- 0.1

0.0 vy

0.1 Y - PROG LUM= 5

■------1------1------—i------r

- 0.1

0.0

0.1

no data

J------1------1______I______l______L

- 0.1

0.0 x x

0.1

0.0 0.5 1.0 1.5 2.0 Figure 20. Na I 8190 index as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 146

0.00 LUM = 5

0. 15 LUM=3

y - FROG LUM = 1 0 . 30 .a - ] + - in

0.00

0.15

0. 30 no data

0.00

0.15

0.30

0.5 0.0 0.5 1.0 1. 5 2.0 Figure 21. Ca II 8542 index as a function' of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. . 1 LUM=1

.0 LUM=5

. 1 LUM= 3

Y - PROG

. 2 Y + j I ] o IV X - V ' * ._■■■» ■ ■ _ ■

t------1------r------1------1 — 1,1 111 ■ i

. 1

. 0

. 1

. 2 no data

j------1------1------1------■ i

. 1 x

.0

. 1

. 2 + - in o - IV x - v ------L— -0.5 0.0 0.5 1.0 1.5 2.0 Figure 22. TiO 8880 index as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 148

. 1 LUM= 5

.0 LUM= 3

. 1 LUM=1

Y - PROG . 2

-0.1

.0

.1

. 2 no data

. 1

.0

.1

.2 -□

-0.5 0.0 0.5 1.0 1.5 2.0 Figure 23. CN 9190 index as a function of V/R color. Data are from CTI0 (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 149 composite H 3798 index is largely determined by the hot component. This phenomenon is found in all diagrams of ultraviolet and blue features.

Corresponding to each plot of index versus V/R color, there is a plot of absolute continuum (hereafter referred to as continuum) versus V/R color. These plots are shown in

Figures 24 to 43. As in the index plots, three curves representing the adopted mean behavior of luminosity class

I, III, and V stars are superposed on the figures.

It is assumed that the curves drawn in these figures are accurate representations of single star behavior. It is also assumed that the curves can be linearly interpolated.

For this study, the luminosity classification is not quantized but is a continuous parameter, LUM; the transformation from luminosity class to LUM is given in

Table 20. For example, a luminosity class of Illb is equivalent to a LUM of 3.25. The value of an index or continuum value for LUM=3.25 is "1/8 the way" from the LUM=3 to the LUM=5 curve. A star’s indices and continuum values, therefore, are uniquely specified by two parameters, V/R and

LUM. Furthermore, it is possible to calculate the partial derivatives of an index or continuum value with respect to unit changes in V/R or LUM. To facilitate these calculations, the three curves in each figure have been digitized at intervals of 0.02 magnitude in V/R. The value of an index or continuum for a given set of V/R and LUM is 150

LUM=1

LUM=3

10. LUM=5 15 .

5.

0.

5 .

10.

15 .

nm 0 5 .

0.

5 .

10 .

15 . in

0.5 0 . 0 0.5 1.0 1.5 2.0 Figure 24. H 3798 continuum as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 151

0*"^ X ' a function °£ °-° r>tinuum as a (middledl, -°-3 „ He I « X 9 contiM 0 (t„p>ik^ ° ed w!“col« : »-) • ; er * beHavi°r •* ^ ” 1” °

I"* 0alCd°“ ^ c^d% t e«”S reSI>eCt 3, , 111, aTlU class *-> 152

-5. LUM=1 0.

5.

10. LUM=5 15. in

5 .

0.

5.

10.

15 .

mm 0 5 .

0.

5 .

10.

15.

0.5 0.0 0.5 1.0 1.5 2.0 Figure 26. H 3835 continuum as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 153

LUM= 1

LUM= 3

10. LUM= 5 15 + - 31]

5 .

0.

5.

10.

15.

J35 5 .

0.

5 .

10.

15 .

0.5 0.0 0.5 1.0 1.5 2.0 Figure 27. bl 3835 continuum as a function of V/R color. Data are from CTIO (top), L0 (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 154

-5 . LUM = 1 0.

5. LUM= 3

10. LUM= 5 15 . . A

-5 .

0.

5 .

10.

15 . + - 3 1 J

-5 .

0.

5 .

10.

15.

0.5 0.0 0.5 1.0 1 . 5 2.0 Figure 28. CN 3860 continuum as a function of V/R color. Data are from CTI0 (top), LO (middle), and O ’Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 155

LUM=1

LUM= 3

10. LUM= 5 15. + - m

5 .

0.

5.

10.

15.

5 .

0.

5.

10.

15. in

0.5 0 . 0 0.5 1.0 1.5 2.0 Figure 29. H 3889 continuum as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 156

5 . LUM = 1

0 .

5 . LUM=3

10. LUM = 5 15.

5 .

0.

5 .

10.

15.

pm 0 5 .

0.

5.

10.

15.

-0.5 0.0 0.5 1.0 2.01.5 Figure 30. Ca II 3933 continuum as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 157

5 . LUM=1

0. LUM=3 5 .

10.

15. in

5 .

0 .

5 .

10.

15 .

5 .

0 .

5.

10.

15 .

0.5 0 . 0 0.5 1.0 1.5 2.0 Figure 31. H 4101 continuum as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 158

5 . LUM = 1

0.

LUM=3 5 .

10. LUM = 5

15 . + - ]U

5 .

0 .

5.

10.

in

CD0 □ 5 .

0.

5 .

10.

15 .

-0.5 0.0 0.5 1.0 1.5 2.0 Figure 32. CN 4200 continuum as a function of V/R color. Data are from CTIO (top), L0 (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 159

5 . LUM = 1

0. LUM = 3 5 .

10. LUM=5

15. -?

5 .

0.

5 .

10 .

15 . + - ]U

5 .

0.

5 .

10.

15.

0.5 0.0 0.5 1.0 1. 5 2.0 Figure 33. CH 4305 continuum as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 160

10.

15 .

10 .

15.

10 .

15.

function of £LS 3- H 4340 continuumJ. W " V LO (middle)» Figure n CTIO (top) 103,.' Data are from 'labeled V/R color The curves - Connell (bottom). - of luminosity and 0'C- tean behavior 3~ and 5 describe the tively• "'and V stars, respect- class I, 1«. 161

LUM=1 5 .

0. LUM = 3 5 .

LUM= 5 10.

15.

5 .

0.

5 .

10.

15. no data

5 .

0.

5.

10 .

15 .

-0.5 0.0 0.5 1.0 1.5 2.0 Figure 35. H 4861 continuum as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 162

LUM = 1 5 .

0. LUM= 3 5 .

10. LUM = 5

15 . + - in

5.

0 .

5 .

10.

15 . in

5 . •Sth—&

0.

5.

10.

15.

0.5 0.0 0.5 1.0 1.5 2.0 Figure 36. Mg I 5175 continuum as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 163

LUM=1

0. LUM=3

5. LUM=5 10.

15 . in

5 .

0.

5 .

10.

15.

0.

5.

10.

15. ] i]

-0.5 0.0 0.5 1.0 1.5 2.0 Figure 37. Na I 5892 continuum as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 164

LUM=1 5 .

0. LUM= 3

5 . LUM= 5 10 .

15 .

5 .

0.

5 .

10.

15. . A

+4hph- os>Q&>

10.

0.5 0.0 0.5 1.0 1.5 2.0 Figure 38. TiO 6180 continuum as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 165

LUM=1

LUM= 3

LUM = 5 10 .

313

10.

15. + - 31]

5 . Dq

0.

5.

10.

15 .

---'------1------> I______i______l_J -0.5 0.0 0.5 1.0 1.5 2.0 Figure 39. TiO 7100 continuum as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 166

5 .

0.

5. LUM=5 10.

15. -f

5 .

0.

5 .

10.

15 . no data

5.

0.

5.

10.

15 .

0.5 0.0 0.5 1.0 1.5 2.0 Figure 40. Na I 8190 continuum as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 167

LUM= 3

LUM=5 10.

15. + - ]n

5 .

0 .

5 .

10.

15 . no data

5 .

0.

5 .

10.

15 .

-0.50 . 0 0.51.0 1.5 2 . 0 Figure 41. Ca II 8542 continuum as a function of V/R color. Data are from CTI0 (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 168

LUM=3

LUM=5 10.

15.

5 .

0 .

5 .

10.

15 . no data

5 .

0.

5 .

10.

15.

-0.5 0.0 0.5 1.0 1.5 2.0 Figure 42. TiO 8880 continuum as a function of V/R color. Data are from CTI0 (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. 169

LUM = 1 -5. LUM=3 0.

5 . ,LUM = 5 10.

-A - II 15 . + ' JIJ

5 .

0.

5.

10.

15 . no data

-5 .

0 .

5.

10.

15. + - nj

0.5 0.0 0.5 1.0 1.5 2.0 Figure 43. CN 9190 continuum as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respectively. TABLE 20 170

TRANSFORMATION FROM LUMINOSITY CLASS TO LUM

LVJMINOSITY LUM CLASS

la 0.75 lab 1.00 lb 1.25 Ib-IIa 1.50 Ila 1.75 Ilab 2.00 Ilb 2.2 5 Ilb-IIIa 2.50 Ilia 2.75 Illab 3.00 IIlb 3.25 IIlb-IVa 3.50 IVa 3.75 IVab 4.00 IVb 4.25 IV-V 4.50 Va 5.00* a Luminosity class V is not divided into sub-classes. 171 found by two-dimensional interpolation in the V/R - LUM plane. By calculating values of an index or continuum for

V/R ± AV/R and LUM ± ALUM (where AV/R and ALUM are small), estimates of the slopes (i.e. partial derivatives) can be found. III. DOUBLE STAR MODEL

III.l. GENERAL CONSIDERATIONS

With an interactive computer program, observed indices

of composites are compared to predicted indices of pairs of

single stars, and the values of V/R and LUM are adjusted

until a "best" fit is found. Specifically, the Fortran

subprogram CURFIT (Bevington 1969) is used to find a least-

squares solution by means of the Marquardt algorithm.

Values of the parameters V/RSTAR1> LUMSTAR1’ V^RSTAR2» and

LUM are sought so that the quantity: S T AR 2 2 2 E(INDEX. , , INDEX. , = X t11) v i,double,obs i ,double,calc is a minimum. CURFIT requires two supporting subprograms

that calculate not only the value of INDEX^ double calc ^ut

also its partial derivatives with respect to each parameter.

Details of these calculations are given in the next section.

The main program repeatedly calls CURFIT until a stable solution is obtained. An estimate of the error for each parameter is returned by CURFIT. These errors are indicative of the range through which parameters may vary 2 without significantly changing X •

172 173

III.2. SPECIFIC CALCULATIONS

The calculation of INDEX. , , , and its partial x,double,calc derivatives requires several intermediate steps.

Step 1. By means of the interpolation described in

Section II.6 .E, values of the it^1 index, its corresponding continuum, and all partial derivatives are calculated for each component:

INDEXi,SIAR3 coNTimjuMijSTAR;i

8iroEXi.STAR.i

3V/RSTARj

31t,EEXi.STARi

8LUMSTARj

c o n t i n u u m .

8V/^RSTARj 3C0NTINUUM.

8LUMSTARj where

j = 1,2

Step 2. The results of Step 1 are converted from magnitude-type units to intensity-type units:

Ri, STARj - 10-“-4 ™ i , S T A R 3

W. ,T1S. - 10-°-4 -C0HIIm™i,STARj (13) 1 j b 1A K J

, 3INDEXl.STARj/factor (14)

3V/RSTARj 3V/ESTARJ 174

9Ri STARi 9INDEX L j -?.A a r J = ------l_v_S T A R J,/ f actor (15)

9LUMSTARj 9LUMSTARj

^ S T A R j = ! i 0™ UUM,i>_^ R j ,/factor (16)

9V/RSTARj 9V/RSTARj ^ S?ARj = ^ T .^ Mi»ST,A_RJL/factor (17) 9LUMSTARj 9LUMSTARj where

factor - -2.5.1og1 0 [e]/R._STARj

3 - 1,2

The quantity W is a weight corresponding to the absolute intensity of the estimated continuum flux at the feature's wavelength. The quantity R is a filling factor which represents the fraction of the estimated continuum in the feature bandpass filled by stellar flux. For example, an index of 2.5 corresponds to a filling factor of 0.10; the bandpass is "10 percent full."

Step 3. The results of Step 2 are used to calculate the following quantities for the double star:

Ri,double,calc = tWi,STARI*Ri,STARI + (18) W • R 1 / i,STAR2 i,S TAR2

TW + W 1 L i,STARI i,STAR2 w 8Ri.double.calc _ 1.STARI i , S1AR1 (19) w + w 8v /r stari 3v /r stari L i, STARI i , STAR2J w 9R i , S T A R I i,S T A R 2 7 ----- i

9 l u m s t a r i .(Wi, STARI + Wi,STAR2)

^Ri,STARI Ri,STAR2] 175

3R W ^Ri,double,calc i,STARI i,STARI (20) 3LUM SLUM w + w STARI STARI i,STARI i,STAR2. r} R i,STARI Wi,STAR2 3 V / R cw + w ) STARI K i ,STARI i,S TAR 2

^Ri,STARI Ri,STAR2''

W ^Rj,double,calc 9R.i,STAR2. „ m ~ ^ 1, STAR2 (21) 3V/R 3V/R W + W STAR2 STAR2 L i , S TAR2 i , S TAR1, w + 9Ri,STAR2. i,STARI (W + W ) 3LUMSTAR2 . i,STAR2 i,STARI

^R1, STAR2 Ri,STARl-*

W ^Ri,double,calc 8Ri,STAR2 i,S TAR 2 (22) 3LUM 3LUM W + W S TAR 2 STAR2 . i,STAR2 i,STARl 3R. w + i,S TAR2. i,START (u + w ) 8V/RSTAR2 i,STAR2 i,STARI

'■Ri,STAR2 Ri,STARI''

As stated in equation (18), the double star's filling factor is simply a weighted sum of the components' filling factors.

This is the basic relationship used in the modeling procedure and is shown schematically in Figure 44. It is assumed that the system to be modeled is a physical double composed of two two normal stars.

Step 4. The results of Step 3 are converted from intensity-type units to magnitude-type units: 176

t FA

F A

f F-,

BLUE FEATURE RED Figure 44. Schematic representation of weights and filling factors. For star 1, the observed flux within a feature bandpass and the estimated continuum flux within that bandpass are a. and 3. respectively. weight is defined by a factor is defined by R^=a^/B-. Similarly, for star 2, W„ = a? and R =a„/f3„. For the composite light of stars 1 and 2 , rj vi =(a,+a0)/(B-,+B0), which by substitu- double 1 2 1 2 , tion is equivalent to Edouble-(Wl * V V E2)/< V V - 177

INDEX. , .. . -2.5»log_[R. , , ] (23) x , double,calc 10 i,double,calc 8 INDEX. , ,, , 3R. , .. . ______i,double,calc = x,double,calc.factor (24)

9V//r s t a r i 9V//r s t a r i 9 INDEX. , ' . 9R . , , ______x ,double,calc = x,double,calc. factor (25)

9l u m s t a r i 9l u m s t a r i 9 INDEX. , 1 9R. , ,, , ______x,double,calc = x,double,calc tfactor (26)

8Vy/RSTAR2 8V//RSTAR2 9 INDEX. , . 3R. , a1/> ______x , double,calc = x,double,calc . factor (27)

9LUMSTAR2 9LUMSTAR2 where

factor = -2.5,log,_[e]/R. , ,. , 10 x,double,calc Steps 1 to 4 are repeated for each observed index, and the results are used as input to the CURFIT subprogram.

With successive iterations of CURFIT, the parameters may yield a stable solution. In most cases the process converges to a unique set of parameters. For some systems, however, the parameters may oscillate among (usually only two) nearly identical solutions. Parameter space can be likened to a potential well. The nearly identical solutions lie near, but not at, the bottom. This behavior is most likely the result of the digitization of the index and continuum curves at finite intervals. For systems with this symptom, the adopted parameters are simply means of the oscillatory parameters. For other systems, there is no stable acceptable solution; the stars are unresolved. The parameters may oscillate erratically or may converge to 178 non-physical solutions (e.g. LUM substantially less than 1 or greater than 5).

III.3. OPTIONS

Incorporated into the interactive computer program used for the modeling process are several options. After each iteration, the selection of options can be changed so as to guide the program toward a stable solution. There are four categories of options.

1) The program must be supplied with initial values of parameters V/R and LUM for each component. If the solution becomes unstable, new values can be assigned. For example, an appropriate set of initial values for a classical composite spectrum star (cool giant and hot dwarf) are

V/R =0.3, LUM =3.0, V/R„m,„o“-0.3, and LUM__A O =5.0. STARI STARI 5 STAR2 STAR2 2) For a given star, the photometry coverage may be incomplete. Naturally, the program models only the observed indices, but it may be desirable to further restrict the number of indices in the solution. For example, several program objects are not doubles but are single Am or Ap stars. It is possible to restrict the classification process to just hydrogen line indices or some other set of indices .

3) Within the program there is the ability to modify the numerical weight of each index in the least squares solution according to the rms values of the original 179

photometry. This option was not used; all indices were assigned a weight of unity in all models.

4) For individual objects, it may be desirable to fix

the values of some parameters and solve for the remaining ones. As a result, there is not one model, but four models.

They are a "2-star 4-parm" (2*4P) model which solves for all four parameters; a "2-star 3-parm" (2*3P) model which solves for V/R , LUM , and V/R„ „„„ given a fixed value for STARI STARI’ STAR2 & LUM ; a "1-star 2-parm" (1*2P) model which solves for STAR2 V/Rstari anc* k^STARl* anc* 3 "l-star l-parm" (1*1P) model which solves for V/RgT^R^ Siven a fixed value for kUMgT^R^*

Several program stars are known to be triple systems. Trial models of the "3-star 6-parm" and "3-star 5-parm" variety were tried but did not produce stable solutions.

III.4. TRANSFORMATIONS

The output of the least squares solution is a refined set of the parameters V/R and LUM for each component. In order to compare these results with other observers' data it is necessary to transform the parameters into commonly used quantities. Three transformations are made: to spectral type, to B-V color, and to (from which

AM^' s can be calculated).

The transformation from V/R and LUM to spectral type is defined by the following procedure. The values of V/R and

LUM are rounded to the nearest multiple of 0.01 and 0.25, 180 respectively. From Table 21, the temperature type corresponding to these rounded values is found by interpolation. The table was constructed by correlating calculated V/R colors (i.e from the single star models of

Section IV.2) with spectral types for stars with accurate MK classifications. From Table 20 the luminosity class corresponding to the rounded value of LUM is determined.

For example, a star with V/R=-0.172 and LUM=3.950 has rounded values of -0.17 and 4.00. The spectral type consists of an A6 .2 temperature type and a IVab luminosity class .

The transformation from V/R and LUM to B-V color is defined by a different procedure. The value of V/R is rounded to the nearest multiple of 0 .01, but the value of

LUM is rounded to either 3.00 or 5.00. From Table 22 the value of B-V corresponding to these rounded values is determined. No interpolation is necessary. The table was constructed by correlating observed B-V colors (Iriarte et al. 1965) with observed V/R colors (i.e. from the energy distributions, not from the single star models) for unreddened stars. For the previous example (V/R=-0.172 and

LUM=3.950), the value of B-V is 0.17.

The transformation from V/R and LUM to absolute magnitude (M^) is defined by Figure 45. As in Figures 4 to

43, three curves are superposed that represent the mean behavior of luminosity class I, III, and V stars. For each TABLE 21 181

TRANSFORMATION FROM V/R AND LUM TO TEMPERATURE TYPE

V/R TEMPERATURE TYPE S ii • LUM=3. LUM=

-0.58 06. 1 07.3 -0.57 06.7 07.7 -0.56 07 .3 08.1 07.9 -0.55 07.9 08.6 08.3 -0.54 08 . 6 09.0 08.7 -0.53 09.3 09.4 09.1 -0.52 09.9 09.8 09.6 -0.51 BO. 6 BO. 2 BO.3 -0.50 B1.3 BO. 6 BO.7 -0.49 B2. 1 Bl. 1 Bl .0 -0.48 B3.0 B1 . 5 Bl . 3 -0.47 B3.8 Bl. 9 B1.6 -0.46 B4.6 B2.3 Bl . 8 -0 o 45 B4 . 7 B2 . 8 B2 . 0 -0.44 B4. 8 B3 . 2 B2 . 1 -0.43 B4 . 9 B3.6 B2 . 8 -0.42 B4.9 B4. 1 B 3 . 8 -0.41 B5.0 B4.5 B4.7 -0.40 B5. 1 B4 . 9 B4.9 -0.39 B 5 . 2 B5.4 B5.0 -0.38 B5.3 B5.8 B6.7 -0.37 B6.0 B 6 . 2 B7.9 -0.36 B6 . 6 B6.7 B8.0 -0.35 B7.2 B7.1 B8 . 1 -0.34 B7.7 B7.5 B8.6 -0.33 B8.2 B8.0 B9.0 -0.32 B8.7 B8.4 B9. 5 -0.31 B9 . 1 B8.9 B9.9 -0.30 B9.6 B9 . 3 AO. 3 -0.29 AO. 1 B9.8 AO. 6 -0.28 AO. 6 AO. 3 A1 .0 -0.27 A1 . 1 AO. 7 A1 . 1 -0.26 A1 . 5 A1 . 2 A1.5 -0.25 A2.0 A1 . 6 A2. 0 -0.24 A2.5 A2 . 1 A2. 5 -0.23 A2.9 A2.6 A3. 1 -0.22 A3. 4 A3.0 A3. 9 -0.21 A3. 9 A3. 5 A4.7 -0.20 A4.3 A3. 9 A5.5 -0.19 A4.8 A4.4 A6 .2 -0.18 A5.3 A4.9 A6.8 -0.17 A5.7 A5.3 A7.1 -0.16 A6.2 A5.7 A7 .2 -0.15 A6 . 6 A6 .1 A7.2 -0.14 A7.1 A6.5 A7.2 -0.13 A7.5 A6.9 A7.4 -0.12 A8.0 A7.2 A7.7 TABLE 21 (continued) 182

TRANSFORMATION FROM V/R AND LUM TO TEMPERATURE TYPE

V/R TEMPERATURE TYPE LUM-1. LUM=3. LUM= 5

-0. 11 A8.5 A7.6 A8.0 -0.10 A8.9 A8.0 A8 . 2 -0.09 A9.4 AS.4 A8.5 -0.08 A9.8 A8.8 A8 . 8 -0.07 F0.3 FO. 2 A9 . 1 -0.06 FO. 7 FO. 7 A9.3 -0.05 FI. 2 FI . 1 A9.6 -0.04 FI.6 FI .4 A9.8 -0.03 F2.0 FI.7 FO.O -0.02 F2.5 F2.0 FO. 2 -0.01 F2.9 F2.2 FO. 7 0.00 F3.4 F2.4 FI .3 0.01 F3.8 F2.6 FI .9 0.02 F4.2 F2. 8 F2.4 0.03 F4.6 F3.0 F3.0 0.04 F5.0 F3. 3 F3. 6 0.05 F5.5 F3. 5 F4.2 0.06 F5.9 F3.8 F4 .8 0.07 F6.3 F4. 1 F5.3 0.08 F6.7 F4.5 F5.9 0.09 F 7 . 1 F5.0 F6.2 0.10 F7 . 5 F5.5 F6.8 0.11 F7 .9 F6.0 F7.3 0.12 F8.3 F6.6 F7.9 0.13 F8.6 F7.2 F8 . 4 0.14 F9.0 F7.8 F8.9 0.15 F9.4 F8.4 F9.4 0.16 F9.8 F9.0 F9 . 9 0.17 GO.2 F9.6 GO. 0 0.18 GO.5 GO.2 GO. 2 0.19 GO.9 GO.9 G2. 5 0.20 G1.2 G1.5 G3. 6 0.21 G1.6 G2.1 G4.2 0.22 G2.0 G2.8 G4.8 0.23 G2.3 G3.4 G5.4 0.24 G2.7 G4.0 G5.9 0.25 G3.0 G4.6 G6.5 0.26 G3.4 G5.2 G7.0 0.27 G3.7 G5.8 G7.5 0.28 G4.0 G6.3 G8.0 0.29 G4.4 G6.9 KO.O 0.30 G4.7 G7.4 K0.3 0.31 G5.0 G7.9 K0.4 0.32 G5.4 G8.4 KO. 6 0.33 G5.7 G8 . 8 K0.7 0.34 G6.0 G9.2 K0.9 0.35 G6.3 G9.6 K1.3 TABLE 21 (continued) 183

TRANSFORMATION FROM V/R AND LUM TO TEMPERATURE TYPE

V/R TEMPERATURE TYPE LUM=1. LUM=3. LUM= 5

0.36 G6. 7 G9.9 K 1. 7 0.37 G7.0 G9.9 K2. 1 0.38 G7.3 G9.9 K2. 5 0.39 G7.6 G9.9 K2. 8 0.40 G7.9 G9.9 K3.0 0.41 G8.2 G9.9 K3. 1 0.42 G8.5 G9.9 K3.2 0.43 G8.8 G9.9 K3. 3 0.44 G9. 1 G9.9 K3.3 0.45 G9.4 KO. 2 K3.4 0.46 G9.7 K0.5 K3.5 0.47 KO.O K0.8 K3. 6 0.48 KO. 3 K 1. 1 K3.6 0.49 KO. 6 K1.4 K3.7 0.50 K0.9 K1.6 K3. 8 0.51 K1. 2 K1.9 K3. 8 0.52 K1.5 K2. 2 K3.9 0.53 K1.6 K2.5 K4.0 0.54 K1.7 K2. 7 K4. 1 0.55 K1.8 K3.0 K4. 2 0.56 K1.9 K3. 1 K4.3 0.57 K2.0 K3. 2 K4.4 0.58 K2. 1 K3.2 K4 . 5 0.59 K2.2 K3.2 K4.5 0.60 K2.3 K3 . 2 K4.6 0.61 K2.4 K3.2 K4.7 0.62 K2. 5 K3.2 K4.8 0.63 K2. 6 K3.2 K4.9 0.64 K2.6 K3.2 K5 .0 0.65 K2.7 K3.2 K5.0 0.66 K2.8 K3.2 K5. 1 0.67 K2.9 K3.2 K5. 1 0.68 K3.0 K3.2 K5 . 1 0.69 K3. 1 K3.2 K5 . 1 0.70 K3.2 K3.3 K5. 1 0.71 K3.3 K3.3 K5. 1 0.72 K3.4 K3.4 K5. 2 0.73 K3.5 K3. 5 K5.2 0.74 K3.6 K3.6 K5.2 0.75 K3.7 K3.7 K5. 2 0.76 K3. 8 K3.8 K5.2 0.77 K3.9 K3.9 K5.3 0.78 K4.0 K4.0 K5.3 0.79 K4.1 K4. 1 K5.3 0.80 K4.2 K4.2 K5.4 0.81 K4.3 K4.3 K5.4 0.82 K4.4 K4.4 K5.4 TABLE 21 (continued) 184

TRANSFORMATION FROM V/R AND LUM TO TEMPERATURE TYPE

V/R TEMPERATURE TYPE LUM=1. LUM=3. LUM=5

0.83 K4.5 . K4.5 K5.5 0.84 K4.6 K4.6 K5.5 0.85 K4.7 K4.7 K5.6 0.86 K4.7 K4.9 K5. 6 0.87 K4.8 K5.0 K5.7 0.88 K4.9 K5.1 K5.7 0.89 K5.0 K5.2 K5.8 0.90 K5.1 K5.3 K5.8 0.91 K5.2 K5.4 K5. 9 0.92 K5.3 K5.5 K5.9 0.93 K5.4 K5.6 MO. 0 0.94 K5. 5 K5.7 MO. 1 0.95 K5.6 K5. 8 MO. 1 0.96 K5.7 K5.9 MO. 2 0.97 K5. 8 MO. 0 MO. 2 0.98 K5. 9 MO. 1 MO. 3 0.99 MO. 0 MO. 2 MO. 3 1 .00 MO. 1 MO. 3 MO. 4 1.01 MO. 2 MO. 5 MO. 4 1.02 MO. 3 MO. 6 MO. 5 1.03 MO. 4 MO. 7 MO. 5 1 .04 MO. 5 MO. 8 MO. 6 1 .05 MO. 6 MO. 9 MO. 7 1 .06 MO. 7 Ml .0 MO. 7 1.07 MO. 8 Ml . 1 MO. 8 1 .08 MO. 9 Ml .2 MO. 8 1.09 MO. 9 Ml.3 MO. 9 1.10 Ml .0 Ml .4 Ml .0 1.11 Mi . 1 Ml.5 Ml .0 1.12 Ml. 2 Ml. 6 Ml. 1 1 .13 Ml . 3 Ml.7 Ml. 1 1.14 Ml .4 Ml .8 Ml.2 1.15 Ml. 5 M2 . 0 Ml . 3 1.16 Ml. 6 M2. 1 Ml.3 1.17 Ml . 7 M2.2 Ml .4 1 .18 Ml . 8 M2. 3 Ml. 5 1.19 Ml. 9 M2. 4 Ml.5 1 .20 M2.0 M2. 5 Ml.6 1.21 M2. 6 Ml. 7 1.22 M2. 7 Ml .7 1.23 M2. 7 Ml.8 1.24 M2. 8 Ml. 9 1.25 M2. 8 Ml.9 1.26 M2. 9 M2.0 1.27 M2. 9 M2. 1 1.28 M2. 9 M2. 2 1.29 M3.0 M2. 3 TABLE 22 185

TRANSFORMATION FROM V/R AND LUM TO B-V COLOR

V/R B-V COLOR LUM=3. LUM=5.

-0.57 -0.21 -0.56 -0.21 -0.55 -0.21 -0.54 -0.21 -0.53 -0.21 -0.52 -0.21 -0.51 -0.21 -0.50 -0.21 -0.49 -0.21 -0.48 -0.21 -0.47 -0.21 -0.46 -0.21 -0.45 -0.21 -0.44 -0.21 -0.43 -0.20 -0.42 -0.19 -0.41 -0.18 -0.40 -0.17 -0.39 -0.15 -0.38 -0.13 -0.37 -0.09 -0.36 -0.11 -0.08 -0.35 -0.10 -0.08 -0.34 -0.09 -0.07 -0.33 -0.08 -0.06 -0.32 -0.07 -0.04 -0.31 -0.06 -0.02 -0.30 -0.05 0.00 -0.29 -0.04 0.01 -0.28 -0.03 0.01 -0.27 -0.01 0.01 -0.26 0.00 0.01 -0.25 0.02 0.01 -0.24 0.04 0.02 -0.23 0.06 0.03 -0.22 0.08 0.04 -0.21 0.10 0.06 -0.20 0.12 0.08 -0.19 0.14 0.10 -0.18 0.15 0.12 -0.17 0.17 0.14 -0.16 0.18 0.17 -0.15 0.18 0.20 -0.14 0.19 0.27 -0.13 0.20 0.29 -0.12 0.20 0.31 -0.11 0.21 0.31 TABLE 22 (continued) 186

TRANSFORMATION FROM V/R AND LUM TO B-V COLOR

V/R B-V COLOR LUM=3. LUM = 5

-0.10 0.21 0.31 -0.09 0.22 0.31 -0 . 08 0.23 0.31 -0.07 0.23 0.32 -0.06 0.24 0.32 -0.05 0.25 0.32 -0.04 0.27 0.32 -0.03 0.28 0.33 -0.02 0.30 0.33 -0.01 0.31 0.33 0.00 0.33 0.33 0.01 0.35 0.34 0.02 0.36 0.34 0.03 0.38 0.34 0.04 0.39 0.38 0 .05 0.41 0.45 0.06 0.43 0.46 0.07 0.44 0.47 0.08 0.46 0.47 0.09 0.47 0.48 0.10 0.49 0.49 0.11 0.51 0.49 0.12 0.52 0.50 0.13 0.54 0.51 0.14 0.56 0.59 0.15 0.57 0.60 0.16 0.59 0.60 0.17 0.61 0.60 0.18 0.62 0.61 0.19 0.64 0.62 0.20 0.66 0.64 0.21 0.68 0.65 0.22 0.69 0.67 0.23 0.71 0.73 0.24 0.73 0.77 0.25 0.75 0.79 0.26 0.76 0.79 0.27 0.78 0.79 0.28 0.80 0.79 0.29 0.82 0.80 0.30 0.83 0.82 0.31 0.85 0.84 0.32 0.87 0.86 0.33 0.89 0.88 0.34 0.91 0.90 0.35 0.93 0.91 0.36 0.94 0.93 TABLE 22 (continued) 187

TRANSFORMATION FROM V/R AND LUM TO B-V COLOR

V/R B-V COLOR LUM=3. LUM=5.

0.37 0.96 0.95 0.38 0.97 0.97 0.39 0.99 0.98 0.40 1.01 1.00 0.41 1.03 1.01 0.42 1.05 1.02 0.43 1.07. 1.03 0.44 1.09 1.03 0.45 1.11 1.04 0.46 1.13 1.05 0.47 1.14 1.06 0.48 1.16 1.07 0.49 1.18 1.07 0.50 1.20 1.08 0.51 1.22 1.09 0.52 1.23 1.10 0.53 1.25 1.11 0 . 54 1.27 1.12 0.55 1 .28 1.12 0 . 56 1.29 1.13 0.57 1.31 1.14 0.58 1.31 1.15 0.59 1.32 1.16 0 . 60 1.33 1.17 0.61 1.33 1.18 0.62 1.34 1.18 0.63 1.34 1.19 0. 64 1 .34 1 .20 0.65 1.35 1.21 0.66 1.36 1.22 0.67 1 .37 1.23 0. 68 1.39 1.24 0.69 1.41 1.25 0.70 1 .43 1.26 0.71 1 .44 1.27 0.72 1.46 1.27 0.73 1.47 1.28 0.74 1.48 1 .29 0.75 1.49 1.30 0.76 1.49 1.31 0.77 1.49 1.32 0.78 1.49 1.33 0.79 1.49 1.34 0.80 1 .49 1.35 0.81 1.49 1.36 0.82 1.49 0 . 83 1.49 TABLE 22 (continued) 188

TRANSFORMATION FROM V/R AND LUM TO B V COLOR

V/R B-V COLOR LUM=3

0.84 1.49 0.85 1 .50 0.86 1 .50 0.87 1.51 0.88 1.52 0.89 1.53 0.90 1 .54 0.91 1 .55 0.92 1.56 0.93 1.57 0.94 1.61 0.95 1 .63 0 .96 1.63 0.97 1.63 0.98 1.64 0.99 1 .64 1.00 1 .64 1.01 1 .64 1.02 1.64 1.03 1 .64 1.04 1. 64 1.05 1 .64 1.06 1 .64 1.07 1 .63 1.08 1.63 1 .09 1.63 1.10 1 .62 1.11 1 .62 1.12 1.62 1.13 1.61 1.14 1.61 1.15 1. 60 1.16 1 .60 1 .17 1 .60 1.18 1 .59 1.19 1.59 1.20 1.59 1.21 1 .59 1.22 1.58 1.23 1.58 1.24 1.58 1.25 1.58 1.26 1.57 1.27 1.57 1.28 1.57 1.29 1.57 1 .30 1.57 189

LUM = 1 -5 .

0 . LUM= 3

5. LUM = 5 10.

15.

-5 .

0 .

5.

10 .

15.

-5 .

0 .

5 .

10.

15.

-0.5 0.0 0.5 1.0 1.5 2.0 Figure 45. Absolute visual magnitude (My) as a function of V/R color. Data are from CTIO (top), LO (middle), and O'Connell (bottom). The curves labeled LUM=1, 3, and 5 describe the mean behavior of luminosity class I, III, and V stars, respec- t ively. 190 component, is found by means of two- dimensional interpolation of the mean curves. IV. RESULTS

IV.I. REPRESENTATIVE SOLUTIONS

In this section, a representative solution using each of the four models of Section III.3 is given. In addition, an example of the optional analysis technique applied to Am and Ap stars is presented.

IV.I.A. "1-STAR 1-PARM" MODEL

The spectral indices of all comparison stars were analyzed with the 1*1P model with a fixed value of LUM appropriate for each star's luminosity class. An example of such analysis is given in Table 23 for CTIO data of 109 Vir.

The nominal spectral type is AO V, and the value of LUM has been fixed at 5.000. The least squares fit by the CURFIT subprogram produces an optimal value of V/R=-0.296 which, from Table 21, corresponds to a spectral type of AO.3 V. A

1*2P model can not be applied to data of early-type stars because the index behavior, as defined by the mean curves in

Figures 4 to 23, is virtually independent of luminosity class. For stars with reddening-corrected V/R >0.2, a 1*2P model can be applied to stellar indices.

191 TABLE 23 192

SINGLE STAR MODEL FOR 109 Vir

INDEX OBS CALC O-C

H 3798 0.368 0.358 0.010 He I 3819 -0.057 -0.047 -0.010 H 3835 0.574 0.547 0.027 bl 3835 0.441 0.425 0.016 CN 3860 -0.142 -0.132 -0.010 H 3889 0.628 0.616 0.012 Ca II 3933 -0.011 0.002 -0.013 H 4101 0.726 0.786 -0.060 CN 4200 0.003 -0.006 0.009 CH 4305 0.044 0.043 0.001 H 4340 0.667 0.679 -0.012 H 4861 0.604 0.600 0.004 Mg I 5175 0.022 0.015 0.007 Na I 5892 0.013 0.032 -0.019 TiO 6180 0.008 0.005 0.003 TiO 7100 0.012 -0.012 0.024 Na I 8190 -0.003 -0.008 0.005 Ca II 8542 0.056 0.039 0.017 TiO 8880 0 .142 0.148 -0.006 CN 9190 0 . 048 0.034 0.014

rms 0.019

V/R=-0.296 ±0.001 LUM= 5.000

Spectral type: AO.3 V 193

IV.l.B. "1-STAR 2-PARM" MODEL

The results of an application of a 1*2P model to data

for e Vir are shown in Table 24. The final parameters are

V/R=0.360 and LUM=2.828 which translate to a G9.6 Ilia

spectral type. This classification agrees well with the

G8 III type published by Keenan and Pitts (1980).

IV.l.C. "2-STAR 3-PARM" MODEL

A 2*3P model is presented in Table 25 for ip Vir, an

M3 III spectroscopic standard (Keenan and Pitts 1980).

Duplicity of this star was discovered by Walker (1975) with

a single-channel lunar occultation observation at 6100 A . A

small secondary occultation occurred after the primary

event, with an estimated difference between components of

4.4 magnitudes. Walker suggested that the companion may be

late G dwarf. The composite spectral type based upon

photometric spectral indices is M2.8 Illb + F5.9 V, with an

estimated visual magnitude difference of 3.6 magnitudes. At

6100 A, the 2*3P solution predicts a Am closer to 4.0 magnitudes. This value is in good agreement with Walker's

value in light of the extreme difficulty in estimating large

Am values from occultation tracings.

The question of when to use 2*3P models needs to be

addressed. One of the purported advantages of using a least

squares technique on spectral index data is the ability to TABLE 24 194

SINGLE STAR MODEL FOR E Vir

INDEX OBS CALC O-C

H 3798 0.093 0.113 - 0.020 He I 3819 0.102 0.137 -0.035 H 3835 0.267 0.310 -0.043 bl 3835 0.811 0.828 -0.017 CN 3860 0.778 0.746 0.032 H 3889 -0.016 0.021 -0.037 Ca II 3933 0.901 0.906 -0.005 H 4101 0.044 0.053 -0.009 CN 4200 0.157 0.121 0.036 CH 4305 0.346 0.373 -0.027 H 4340 -0.094 -0.123 0.029 H 4861 0. 103 0.138 -0.035 Mg I 5175 0.126 0.163 -0.037

Na I 5892 0.077 0.079 - 0.002 TiO 6180 0.007 0.012 -0.005 TiO 7100 0.002 0.006 -0.004 Na I 8190 0.001 0.008 -0.007 Ca II 8542 0.094 0.102 -0.008 TiO 8880 -0.021 -0.038 0.017 CN 9190 0.070 0.065 0.005

rms 0.025

V/R= 0.360 ± 0.008 LUM= 2.828 ± 0.992

Spectral type: G9.6 Ilia TABLE 25 195

DOUBLE STAR MODEL FOR ij; Vir

INDEX OBS CALC O-C

H 3798 0.102 0.058 0.044 He I 3819 0.089 0.131 -0.042 H 3835 0.225 0.222 0.003 bl 3835 0.361 0.379 -0.018 CN 3860 0.129 0.145 -0.016

H 3889 0.115 0.125 - 0.010 Ca II 3933 0.807 0.762 0.045 H 4101 0.014 0.040 -0.026 CN 4200 0.019 0.010 0.009 CH 4305 0.131 0.117 0.014 H 4340 -0.165 -0.140 -0.025 H 4861 0.051 0.040 0.011 Mg I 5175 0.414 0.510 -0.096 Na I 5892 0.442 0.474 -0.032 TiO 6180 0.491 0.434 0.057 TiO 7100 0.383 0.372 0.011

Na I 8190 -0.041 -0.021 - 0.020 Ca II 8542 0.147 0.160 -0.013 TiO 8880 0.035 0.040 -0.005

CN 9190 0.006 0.028 - 0.022

rms 0.034

V/R ,= 1.256 ±0.034 LUMSTAR1= 3.202 ±0.166 V/R^AR1= 0.083 ±0.016

LUMSct TAR^ 5 2 = 5.000 Spectral type: M2.8 Illb + F5.9 V 196 solve for all four parameters simultaneously. Why, then, constrain the solution to a fixed value of For STAR2 this study, with one exception, a 2*3P model is used if, and only if, the range of values for LUM includes the value S TAR 2 5.000. In many cases, the estimated error in LUM „ is J ’ STAR2 large enough to consider the predicted value indeterminate.

For Vir, a 2*4P model yields the following parameters:

V/rstari=1 *260 ± 0 *038’ lumstari=3-115 ±0-172’ V/R =0. 107 ± 0.015, and L U M _ „ „ =4 . 34 7 ± 2 .406. It is STAR2 STAR2 obvious that LUM =4.347 is not the "best" solution. The STAR2 companion is assumed to be a dwarf, and a new solution is found with a 2*3P model. The one exception noted above is for tt Vir. A 2*4P model did not stablize; LUM values of both components varied about the value 3.000. Therefore, a

2*3P model was applied with LUM =3.000. D 1A K /

IV.l.D. "2-STAR 4—PARM" MODEL

The 2*4P model for HR 1219, given in Table 26, yields a spectral classification of G5.7 Ilb-IIIa + A4.4 Ilia. This classification is in agreement with Hynek (1938), who states that the primary is GO or later. The HD spectral type for this star is F2A^.

IV.I.E. Am/Ap STAR MODEL

A large number of Am and Ap (Am/Ap) stars can be found in Hynek's list of composites (Markowitz 1969, Young 1971, TABLE 26 197

DOUBLE STAR MODEL FOR HR 1219

INDEX OBS CALC O-C

H 3798 0.256 0.258 -0.002 He I 3819 0.022 0.017 0.005 H 3835 0.460 0.463 -0.003 bl 3835 0.517 0.509 0.008 CN 3860 0.064 0.076 -0.012 H 3889 0.386 0.401 -0.015 Ca II 3933 0.312 0.322 -0.010 H 4101 0.408 0.400 0.008 CN 4200 0.071 0.035 0.036 CH 4305 0. 198 0.204 -0.006 H 4340 0.265 0.273 -0.008 H 4861 0.318 0.337 -0.019 Mg I 5175 0.067 0.093 -0.026 Na I 5892 0.046 0.058 -0.012 TiO 6180 0.012 0.007 0.005 TiO 7 100 0.004 -0.002 0.006 Na I 8190 0.0 04 0.011 -0.007 Ca II 8542 0.047 0.088 -0.041 TiO 8880 0.034 0.007 0.027 CN 9190 0 .080 0.055 0.025

rms 0.018

V/R = 0.284 ±0.047 LUM^i;^, = 2 .583 ±0.116 V/RSTAR2=~0 *193 ± 0 -008 LUMSTAR2= 2 *851 4 0.102

Spectral type: G5.7 Ilb-IIIa + A4.4 Ilia Ginestet et al. 1980). Among the program stars in Table 2, there are at least five such stars. Four of these were noted by the author as being Am/Ap stars prior to the time of data analysis. The fifth star, HD 109241, was recognized during the course of data analysis. A general trait of these stars is a strong K-line relative to the other spectral features. For HD 109241, a 1*1P model (LUM=5.000) using all Indices produced a residual (observed minus calculated value) at Ca II 3933 A of 0.099 magnitudes. The next largest residual was 0.034, and the rms value for all residuals was 0.029. From this information it was deduced that the star may be an Am/Ap star (for this study, the two types can not be differentiated). The model described in

Table 27 is divided into two parts. The first is a classification of B8.6 V: based solely upon hydrogen line indices. The second part is a classification of A9.3 V: based upon "non-hot" spectral line indices. "Non-hot" indices exclude not only hydrogen lines but also the He I index at 3819 A and the line-blanketing index at 3835 &.

Although the latter is a useful measure for cool stars, it is simply another hydrogen line index when applied to warm stars. The spectral classification for HD 109241 assigned by Hoffleit (1950) is F4(ml)A5(K) which describes independent visual assessments for metal line and K-line portions of the spectrum. Although it is not present in this example, it is common practice to give an additional TABLE 27 199

Am/Ap STAR MODEL FOR HD 109241

BASED UPON HYDROGEN LINE INDICES:

INDEX OBS CALC O-C

H 3798 0.267 0.320 -0.053 H 3835 0.486 0.464 0.022 H 3889 0.499 0.520 -0.021 H 4101 0.617 0.611 0.006 H 4340 0.586 0.588 -0.002 H 4861 0.535 0.516 0.019

rms 0.026

V/R=-0.3 3 6 ± 0.000 LUM= 5.000

Spectral type: B8.6 V:

BASED UPON "NON-HOT" LINE INDICES:

INDEX OBS CALC O-C

CN 3860 -0.135 -0.148 0.013 Ca II 3933 0 .336 0.324 0.012 CN 4200 0.014 0.010 0.004 CH 4305 0.125 0.119 0.006 Mg I 5175 0.037 0.056 -0.019 Na I 5892 0.023 0.033 -0.010 TiO 6180 -0.013 0.005 -0.018 TiO 7100 0.002 -0.010 0.012 Na I 8190 0.033 0.001 0.032 Ca II 8542 0.027 0.066 -0.039 TiO 8880 0.092 0.049 0.043 CN 9190 0.014 0.034 -0.020

rms 0.022

V/R=-0.064 ±0.008 LUM= 5.000

Spectral type: A9.3 V: 200

classification based upon the visual assessment of the hydrogen lines. The procedure used in Table 27 to separate

the hydrogen from "non-hot" lines was devised to yield comparable information. In the photometric index solution, however, there is no model based solely upon the K-line. A classification based upon just one index is subject to large errors unless the photometry and its calibrations are extremely accurate.

IV.2. COMPARISON STAR SOLUTIONS

As a means of testing the modeling process, 1*1P and

1*2P solutions were found not only for the comparison stars in Table 3 but also for O'Connell's stars. The sample is restricted to those stars with a minimum of 15 measured line indices and an observed V/R color. From CTIO data there are

14 stars (the super-luminous stars Cen, V810 Cen, and

HR 5171A as well as the extremely cool star R Dor not included). Likewise, from LO data there are 14 stars. The solutions are presented in Table 28. Observed V/R values refer to the de-reddened energy distribution, and the observed LUM values correspond to the spectroscopic luminosity class. Calculated V/R and LUM values are from

1*1P and 1*2P models. In the former case, LUM is fixed at the spectroscopically-determined value. TABLE 28 201

V/R’S AND LUM'S OF COMPARISON STARS

1-STAR 1-PARM" MODELS FOR CTIO STARS:

STAR SPECTRAL V/R LUM V/R LUM TYPE Observed Ca 1culated

£2 Cet B9 III -0.364 3.000 -0.288 3.000 £ ^Er i K2 V 0.334 5.000 0.312 5.000 tt Ori F6 V 0.078 5.000 0.082 5.000 56 Ori K1.5 Ilb 0.389 2.250 0.536 2.250 T CMa 09 lb -0.521 1.250 -0.475 1 .250 K Pup 05 If -0.469 1.000 -0.518 1.000 N Vel K5 III 0.832 3.000 0.849 3 .000 6 1 Le o MO III 0.903 3.000 0 .898 3.000 v Vir Ml Illab 0.934 3.000 0.928 3.000 E Vir G8 III 0.325 3.000 0.363 3.000 109 Vir AO V -0.265 5.000 -0.296 5.000 g Lup F 5 IV-V 0.063 4.500 0.041 4 .500 T Sco BO V -0.507 5.000 -0.469 5.000 y Oph AO V -0.295 5.000 -0.274 5.000

"1-STAR 2-PARM" MODELS FOR CTIO STARS:

STAR SPECTRAL V/R LUM V/R LUM TYPE Observed Calculated e Eri K2 V 0.334 5.000 0.307 5.181 56 Ori K1.5 lib 0.389 2.250 0.481 1.692 N Vel K5 III 0.832 3.000 0.830 2.372 61 Leo MO III 0.903 3.000 0.895 2.858 v Vir Ml Illab 0.934 3.000 0.935 3.054 e Vir G8 III 0.325 3.000 0.360 2.828 TITLE 28 (continued) 202

V/R'S AND LUM’S OF COMPARISON STARS

"1-STAR 1-PARM” MODELS FOR LOWELL OBSERVATORY STARS:

STAR SPECTRAL V/R LUM V/R LUM TYPE Observed Ca1culat ed

31 Com GO IIIp 0.219 3 .000 0.149 3.000 8 Com GO V 0.162 5.000 0. 158 5.000 83 UMa M2 Illab Ba 0.7: 1.052 3 .000 1.035 3 .000 109 Vir AO V -0.266 5.000 -0.329 5.000 T Her B5 IV -0.366 4.000 -0.397 4.000 29 Her K7 III 0.845 3.000 0.729 3.000 Y Oph AO V -0.283 5.000 -0.297 5 .000 < Aql BO.5 III -0.470 3.000 -0.521 3.000 0 Cyg F4 V 0.056 5.000 0.038 5.000 16 Cyg B G4 V 0.217 5.000 0.201 5.000 a Del B9 IV -0.295 4.000 -0.343 4.000 £ Aqr A1 V -0.254 5.000 -0.312 5.000 61 Cyg B K5 V 0.627 5.000 0.524 5.000 tt Peg F 5 II-III 0.069 2.500 0.062 2 .500 55 Peg Ml Illab 0.971 3 .000 0.923 3.000

1-STAR 2-PARM" MODELS FOR LOWELL OBSERVATORY STARS:

STAR SPECTRAL V/R LUM V/R LUM TYPE Observed Ca1culat ed

3 1 Com GO IIIp 0.219 3.000 0.153 186 83 UMa M2 Illab Ba 0 1.052 3.000 1.024 300 29 Her K7 III 0.845 3.000 0.709 2 16 16 Cyg B G4 V 0.217 5.000 0.202 926 61 Cyg A K5 V 0.627 5.000 0.490 288 5 5 Peg Ml Illab 0.971 3.000 0.907 296 203

IV.2.A. ALL STARS

From the comparisons in Table 28, the mean residuals in

V/R for 1*1P models are -0.018 ±0.050 (a ,) and n-1 0.044 ±0.034 for CTIO and LO data, respectively. In all 14 examples, the calculated V/R for LO data is numerically too small, which implies too early a spectral type. No explanation of this phenomenon is offered. In comparison, for a sample of'80 O'Connell stars, the mean residual in V/R is 0. 005 ± 0.042.

IV.2.B. STARS WITH V/R>0.2

If the samples of stars are further reduced to only those stars with observed V/R >0.2, 1*2P models can be calculated for the data. The mean residuals in V/R for 6

CTIO, 6 LO, and 38 O'Connell stars are -0.015 ±0.043,

0.074 ±0.052, and -0.04 ±0.054. The corresponding mean differences in LUM are +0.212 ±0.324, -0.035 ±0.440, and

-0.026 ±0.564. It is interesting to note that the mean error in LUM is small for LO data despite the relatively large error in V/R. The overall agreement between observed and model parameters leads to two conclusions. First, the digitization of the mean curves in Figures 4 to 43 was performed at satisfactorily small intervals. Second, the modeling technique appears to be adequate. At the la level,

V/R is predicted to within 0.05 magnitudes which corresponds 204 to 2 temperature subclasses near AO V and to 1.5 subclasses near K1 III. Similarly, LUM is predicted to within one-half of a luminosity class, which is comparable to spectroscopic evaluations .

IV.3. PROGRAM STAR SOLUTIONS

IV.3.A. DOUBLE STARS

A majority of program stars were successfully modeled by a double star solution. The results for these stars are listed in Table 29. For each component, V/R and LUM parameters are given. If LUM=3.000 or LUM=5.000, a 2*3P model was used, otherwise a 2*4P model was applied.

Included in the table are the transformed values for spectral type, B-V color, and M^. Inspection of the results shows a very large number of moderately luminous components with 1.5

SPECTRAL TYPES OF COMPOSITE SPECTRUM STARS

STAR V/R LUM SPECTRAL TYPE B-V Mv HR 1219 0.284 2.583 G5.7 Ilb-IIIa 0.80 -1.044 -0.193 2.851 A4.4 Ilia 0.14 -0.480

HD 31244/5 0.252 2.471 G4. 2 Ilb-IIIa 0.75 -1.377 -0.329 5.000 B9.0 V -0.06 0.466

HR 2044 0.399 3.281 K0.3 m b 1.01 1.028 -0.194 5.000 A6 . 2 V 0.10 1.934

HR 2073 0.311 2.339 G6 . 8 I lb 0 .85 -1.841 -0.300 5.000 AO. 3 V 0.00 0.922

HR 2388 0.343 2.219 G8.0 I lb 0.91 -2.236 -0.220 2.884 A3.0 Illab 0.08 -0.462

HR 3056 0.481 1.612 KO. 5 Ia-IIb 1.16 -4.168 -0.312 2.312 B9 .0 I lb -0.06 -2.751 e Car 0.819 1.899 K4.4 Ilab 1 .49 -3.582 -0.415 5.000 B3. 8 V -0.19 -1.563

HR 3386 0.295 2.371 G6.4 I lb 0.83 -1.730 -0.301 2.964 B9 . 3 Illab -0.05 -0.752

HR 3534 0.174 2.839 F9.7 Ilia 0.61 -0.119 -0.285 5.000 A 1 . 0 V 0.01 1.120

HR 3548 0.404 2.082 G8.9 Ilab 1.01 -2.7 16 -0.370 5.000 B7 .9 V -0.09 -0.368 o Leo 0.052 1.639 F4. 8 I la 0.41 -4.130 -0.362 2.310 B6.7 I lb -0.11 -3.470

0 Ant 0.313 3.747 G8 . 8 I Va 0.85 2.436 -0.133 5.000 A7.4 V 0.29 2.132 p Vel -0.128 2.281 A7 . 1 I lb 0.20 -2.205 -0.382 5.000 B6.7 V -0.13 -0.662

HR 4177 0.763 1.445 K3.8 Ib-IIa 1.49 -4.674 -0.208 5.000 A4.7 V 0.06 1.867 TABLE 29 (continued) 206

SPECTRAL TYPES OF COMPOSITE SPECTRUM STARS

STAR V/R LUM SPECTRAL TYPE B-V M V 55 Leo 0.042 4.843 F3. 6 V 0.38 2.706 0.258 5.000 G7 .0 V 0.79 5.575

HR 4417 0.228 3.260 G3.6 m b 0.71 0.988 -0.294 5.000 A2 . 5 V 0.02 1.689

HR 4492 0.439 2.323 G9.6 I lb 1 .09 -2.007 -0.294 2.755 B9.8 Ilia -0.04 -1.290 tt Vir -0.226 3.262 A2. 7 Illb 0.06 0.122 -0.130 3.000 A6 . 9 III 0.20 0 . 120

^ Vir 1.256 3.202 M2 . 8 11 lb 1 .57 -0.332 0.083 5.000 F5 . 9 V 0.47 3.250

HR 5308 0.762 2.109 K3.8 Ilab 1 .49 -2.927 -0.351 5.000 B8 .1 V -0.08 0.029

HD 130205/6 0.731 2.061 K3 . 5 Ilab 1.47 -2.981 -0.359 5.000 B8 . 0 V -0.08 -0.127

AX Cir 0.096 1 .980 F 6 . 5 I lab 0.49 -2.978 -0.360 5 .000 B8 . 0 V -0.08 -0.166

Y Ci r 0.291 2.832 G6 . 6 Ilia 0.82 -0.252 -0.395 5.000 B4. 9 V -0.17 -0.987

HR 5 92 9 0.465 2.017 KO. 1 Ilab 1.13 -2.947 -0.305 2.806 B9.3 Ilia -0.05 -1.261

HR 5983 0.230 2 .339 G3.0 I lb 0.71 -1.790 -0.270 2.769 AO. 8 Ilia -0.01 -1.064

HR 6497 0.354 2.937 G9.6 Illab 0.93 0.014 -0.315 5.000: B9.5 V: -0.04 0.707

HR 6560 0.203 2.394 G1.4 Ilb-IIIa 0.66 -1.599 -0.213 2.709 A3. 4 Ilia 0.10 -0.991

HR 6902 0^251 2.419 G4.2 Ilb-IIIa 0.75 -1.542 -0.356 5.000: B8 . 0 V: -0.08 -0.061 NOTES TO TABLE 29 207

HR 1219. Observed object is primary of wide Innes double star with Am=&.7 and sep.=23.2" (Hoffleit 1964). Primary is double with Am=0.0 and sep.=0.107" (Finsen 1960) Primary classified K0 III + A5 (Jaschek and Jaschek 1960) .

HD 31244/5. Double star with Am=0.1 and sep.=0.5" (Hynek 1938). Classified K3 II-III + B5 (Jaschek and Jaschek 1960) .

HR 2044. Double star measurements: Am=0.7 and sep.=0.22" at p.a. = 239. 3° (Worley 1972).

HR 2073. Innes double star; classified K0 + A3 (Hoffleit 1964) .

HR 2388. Innes double star; classified GO + A3 (Hoffleit 1964) .

HR 3056. Innes double star with Am=2.2 and sep.=1.1"; classified K0 + A2 (Hoffleit 1964).

e Car. Classified K0 II + B (Hoffleit 1964).

HR 3386. Innes double star with Am=1.2 and sep.=1.3” (Hoffleit 1964). Classified K0 III + A3 (Jaschek and Jaschek 1960).

HR 3534. Innes double star with Am=0.0 and sep. =0.1" (Hoffleit 1964). Classified G8 III + A2 (Jaschek and Jaschek 1960) .

HR 3548. Innes double star; classified K0 + A5 (Hoffleit 1964).

o Leo. Observed object is primary of ADS 7480 with Am=6.0 and sep.=85.4"; primary is spectroscopic binary (Hoffleit 1964). Primary classified A1-A3 + F8-G0 (Lutz 1972).

0 Ant. Double star with Am=0.0 and sep.=0.100 (Finsen 1953). Classified F6 V + F8 V (Edwards 1976).

p Vel. Innes double star with Am=0.5 and sep.=0.7"; primary is spectroscopic binary (Hoffleit 1964). Classified A0- A1 V + F3-F5 IV + F3-F5 V (Evans 1956).

HR 4177. Observed object is primary of Innes double star with Afn=3.0 and sep. = 15.0" (Hoffleit 1964). Primary classified K0 II (Eggen 1973). NOTES TO TABLE 29 (continued) 208

55 Leo. ADS 7982 with Am=4.5 and sep.=1.0"; primary is spectroscopic binary (Hoffleit 1964). Occultation observations have resolved primary with Am=2.0 and vector sep. = 0.001" (Dunham 1974). Classified F2 III (Malaroda 1975) .

HR 4417. Innes double star with Am=0.4 and sep. =0.3"; classified GO + A2 (Hoffleit 1964).

HR 4492. Observed object is primary of Innes double star with Am=6.9 and sep. =38.7"; primary is double1 with Am=0.8 and sep.=0c2" (Hoffleit 1964). Primary classified G2 III + A (Buscombe and Dickens 1964).

7T Vir. Spectroscopic binary (Hoffleit 1964). Occultation double star with Aro=2.0 and vector sep.=0.011" (Dunham 1974). Classified A5 V (Cowley et al. 1969). ip Vir. Occultation double star with Am =4.4 and vector sep. = 0.040" (Walker 1 975). A second occultation observation yielded the tentative parameters Am = 2.86 and vector sep.=0.085" (Evans et al. 1977). Classified M3 III (Keenan and Pitts 1980).

HR 5308. Innes double star; classified K0 + A2 (Hoffleit 1964) .

HD 130205/6 . Double star with Am=0.0 and sep.=0.13" (Hynek 1938). Classified K5 + A0 (Humphreys and Ney 1974).

AX Cir. Innes double star with Am=0.0 and sep.=0.5" (Hoffleit 1964). Classified G3 II + B8 (Jaschek and Jaschek 1960) .

Y Cir. Innes double star (Hoffleit 1964). Double star measurements: Am=0.4 and sep.=0.90" at p.a. = 32.5° (Holden 1976). Classified as optical double, B5 + F8 V (Buscombe and Barkstrom 1971).

HR 5929. Innes double star (Hoffleit 1964). Classified G5 III + A2 V: (Landi et al. 1977).

HR 5983. Spectroscopic binary (Hoffleit 1964). Classified F7 III + A2 V (Markowitz 1969).

HR 6497. Triple spectroscopic system' (Hoffleit 1964). Classified GO II + Al V (Markowitz 1969). Classified GO II + B8 V + Al V (Young 1971).

HR 6560. Spectroscopic binary (Hoffleit 1964). Classified G5 III + A7 V (Markowitz 1969). Classified K0 III + Al V (Young 1971). NOTES TO TABLE 29 (continued) 209

6902. Spectroscopic binary (Hoffleit 1964). Classified G8 III + AO V (Markowitz 1969). Classified G8 III + B9 V (Young 1971). 210

IV.3.B. Am/Ap STARS

The derived parameters and spectral types for the five recognized Am/Ap stars are given in Table 30. The notation in the table was discussed in Section IV.I.E. In all cases, a value of LUM=5.000 was used in the modeling procedure.

IV.3.C. UNRESOLVED STARS

The remaining program stars could not be analyzed by either a double star or Am/Ap model. The stars are unresolved in spectral type. The "best" mean types from a

1*1P or 1*2P model are shown in Table 31. The extensive use of LUM=5.000 in these calculations is for convenience only.

Because the modeling technique can not determine the luminosity parameter for single early-type stars, the assignment of LUM=5.000 is quite arbitrary. The classifications in Table 31 are of widely different quality.

For some systems, the components may be similar in spectral type, and the mean type is a useful indicator of the kinds of stars in the systems. For other systems, however, the mean type may have no resemblance to any component within the system. The inability to resolve the components may be the result of the presence of either an abnormal star (e.g. abundance variations) or more than two stars. TABLE 30 211

SPECTRAL TYPES OF Am/Ap STARS

STAR V/R LUM SPECTRAL TYPE

HR 3831 -0.333 5.000: B9 .0 V: (hydrogen 1ine s) -0.066 5.000: A9 . 1 V: ("non-hot" lines)

HD 109241 -0.336 5.000: B8 . 6 V: (hydrogen lines) -0.064 5.000: A9.3 V: ("non-hot" lines)

I Cen -0.369 5.000: B7 .9 V: (hydrogen lines) -0.301 5.000: AO. 3 V: ("non-hot" lines)

HR 5008 -0.311 5.000: B9.9 V: (hydrogen lines) -0.247 5.000: A2. 0 V: ( "non-hot" lines)

6 Nor -0.331 5.000: B9.0 V: (hydrogen lines) -0.253 5.000: A2 . 0 V : ( "non-hot" lines) NOTES TO TABLE 30 212

HR 3831. Innes double star with Am=2.8 and sep.=3.5" (Hoffleit 1964). Classified FOp Sr-Cr-Eu (Jaschek and Jaschek 1959) .

HD 109241. Classified F4(ml)A5(k) (Hoffleit 1950).

X Cen. Classified B8p Mn-Si (Babcock 1958).

HR 5008. Classified A3(k)A5(h)A7(ml) (Jaschek and Jaschek 1960).

S Nor. Innes double star (Hoffleit 1964). Classified A3(k) A7 (h)A9HI(ml) (Jaschek and Jaschek i960). TABLE 31 213

MEAN SPECTRAL TYPES OF UNRESOLVED STARS

STAR V/R LUM SPECTRAL TYPE

HR 1772 -0.447 5.000: B 2 V :

HR 2786 0.193 5.000: G2.5 V:

HR 4544 0.393 2.510 G9.3 Ilb-IIIa

HD 103856 -0.019 5.000: FO. 2 V:

U Vir -0.260 5.000: Al . 5 V :

16 Vir 0.465 2.226 KO. 2 I lb

U Crv 0.014 5.000: FI . 9 V:

9 Mu s -0.654 5.000: 0 V:

0 Vir -0.294 5.000: AO. 6 V :

85 Vir -0.250 5.000: A2.0 V :

HR 5207 -0.338 5.000: B 8 . 6 V: r\ Cen -0.465 5.000: B1 .8 V :

HR 5450 0.427: 2.506: G9 . 6 : Ila-IIIb:

HR 5667 0.067 5.000: F 5 . 3 V:

HD 144534/5 0.119 5.000: F7.9 V: NOTES TO TABLE 31 214

HR 1772. Innes double star with Am=5.7 and sep.=2.2" (Hoffleit 1964). Classified B5 IVnp (Hiltner et al. 1969 ) .

HR 2786. GO II (Malaroda 1975).

HR 4544. Spectroscopic binary; classified KO IV (Hoffleit 1964). Occultation triple (?) star with Am=0.7 (A-B), vector sep.=0.01" (A-B), Am=1.8 : (A-C), and vector sep. = 0.08" (A-C) (White 1980).

HD 103856. Rossiter double star with Am=4 and sep.=2.6" (Hynek 1933) . p Vir. Spectroscopic binary (Hoffleit 1964). Occultation double star with Am=0.4 and vector sep.=0.008" (Dunham 1974). Resolved by means of speckle interferometry with sep.=0.118" at p.a.=150° (McAlister 1977). Classified A2 IV (Cowley et al. 1969).

16 Vir. Occultation double star with Am=0.0 and vector sep. = 0.6" (Dunham 1974). Classified Kl III+ with CN slightly weak and 4172 strong (Keenan and Keller 1953). p Crv. Spectroscopic binary (Hoffleit 1964). Classified F2 III-IV with two spectra (Malaroda 1975).

9 Mus. Innes double star with Am=2.2 and sep.=5.8" (Hoffleit 1964). Classified B0 la + WC5:, strong CIII 4650 emission is only trace of a WC spectrum in blue violet region (Hiltner et al. 1969).

9 Vir. ADS 8801 with Am=5.0 and sep.=7.5" (Hoffleit 1964). Primary is spectroscopic binary and has been resolved by means of speckle interferometry with sep.=0.485" at p.a. = 142° (McAlister 1977). Primary classified Al V (Cowley et al. 1969).

85 Vir. Occultation triple star with Am=1.7 (A-B), vector sep. = 0.039" at p.a. = 149° (A-B), Am=1.9 (A-C), and vector sep. = 0.061" at p.a.=329° (A-C) (Dunham 1974). Classified A2 Vn (Cowley et al. 1969).

HR 5207. Observed object is primary of Innes double star with Am=2.0 and sep.=18.3" (Hoffleit 1964). Classified B9 Vn (Morris 1961). p Cen. Innes double star with Am=10.9 and sep.=5.6"; primary is double star with Am=0.0 and sep.=0.1" (Hoffleit 1964). Primary classified B1.5 Vn (Hiltner et al. 1969). NOTES TO TABLE 31 (continued) 215

HR 5450. Observed object is primary of Innes double star with Am=2.4 and sep.=19.8" (Hoffleit 1964). Primary is double star with Am=0.0 and sep.=0.141" (Finsen 1951). Classified K2 III + F2 V: (Landi et al. 1977).

HR 5667. Innes double star (Hoffleit 1964). Classified G5 la + B (Jaschek and Jaschek 1960).

HD 144534/5. Classified K0 + A2 (Drilling 1968). V. DISCUSSION

V. ABILITY TO RESOLVE DOUBLE STAR SYSTEMS

The analyses of Section IV.3 are subject to the same constraints as any other classification technique for composites. If the components are too similar or too different, the system has the appearance of a single star.

The limits of how far the technique can be "pushed" are difficult to quantify. Attention can be called to the occultation binary ip Vir, an MIC standard star with a faint dwarf companion, as an example of the procedure resolving a system with vastly different components. Rather than recapitulate the results from Section IV.3 and its tables, let us examine the statistical properties of using photometric indices to classify composites.

Table 32 is a summary by Hynek Class (Table 1) of the successes and failures of the classifying procedure. For this discussion, the program stars can be separated into three groups. The first group consists of stars in Classes

I to IV; a majority of these stars ought to be true doubles.

Indeed, 21 out of 29 stars were resolved by double star models. The success ratio is even greater than 21/29 because 3 of the 8 unresolved stars (namely I Cen, HR 5008,

216 TABLE 32 217

STATISTICAL DATA FOR ANALYZED MODELS

HYNEK DOUBLE Am/Ap UNRESOLVED TOTAL CLASS STAR STAR STAR

I 8 1 2 11

II 1 1

III 11 1 12

IV 1 1 3 5

V

VI 2 2 4

VII

VIII . 1 1 2

IX none3 3 6 9

TOTAL 24 5 15 44 - a,Occultation binary. 218 and HR 5207) are probably single. The second group consists of stars in Classes V to IX; a majority of these stars ought to be single stars. As shown in Table 32, none of the six stars in this group was modeled by a double star. The remaining group contains stars with no Hynek Class; the stars are occultation binaries. In principle, one would expect a high number of successful double star solutions for this group, but the statistics are just the opposite! Only

3 out of 9 stars were modeled by a double star. How, then, can this information be interpreted? A conclusion is that photometric spectral indices are no better, but no worse, spectrograms for the detection of composites. If the photometric technique were superior, a large number of the occultation binaries would be resolved. If the spectroscopic technique were superior’, a large number of

Hynek Class I to IV stars would be left unresolved in

Table 32. Thus, the photometric technique compliments, but does not supercede, the visual inspection of spectrograms.

A potential problem in the interpretation of Table 32 is the effect of unresolved multiple star systems. Indeed, several program stars are known triples, and as noted in

Section III.3, trial triple star models were tested.

However, the present sophistication of the modeling procedure was insufficient to resolve these systems into three stars. Therefore, the fact that a program star was not modeled by either a double star or an Am/Ap does not 219 imply that the star is single. In addition, the fact that a double star model was found for a given object does not negate the possibility of yet a third star in the system.

V.2. COMPARISON WITH OTHER CLASSIFICATIONS

In an ideal situation, there would be a moderate amount of data to which this study's results could be compared.

Unfortunately, this is not the case. The last published, systematic survey of southern composites is that of Hynek.

A direct, quantitative comparison with his spectral types would not yield useful information because his types are not based upon the MK classification system. Instead, they are only slight refinements of HD spectral types. An underlying goal of this project is to improve his classifications.

Comparisons with Markowitz's (1969) classifications of blue spectrograms, or with Young's (1971) classifications based upon broad- and intermediate-band photometry, are very limited because those studies were conducted from the northern hemisphere and included few of the stars for which good data were obtained in the present study. A spectroscopic survey of composites has been initiated by

Hendry (1981), but the results are not available. At present, therefore, the only direct comparisons are those commented upon in the notes to Tables 29 to 31. On the basis of objectivity, the spectral index technique used in this study is expected to yield more accurate 220 classifications than those derived from spectroscopy or broad-band photometry.

There is, however, one qualitative comparison with previous work that can be made of this study’s results. Are there a significant number of components falling in the

Hertzsprung gap? This phenomenon is present in the results of Kuhi (1963) as well as Markowitz. Inspection of

Table 29, however, does not reveal the same trend in this study's analyses. While it is true that there are a large number of components with spectral types in the G4 III to

G8 III range, there is only one star with a component directly in the Hertzsprung gap. The star is HR 3534 with an F9.7 Ilia + A1.0 V classification. (The G1.4 Ilb-IIIa +

A3.4 Ilia classification of HR 6560 is poorly determined.)

The fact that only one star was found in the Hertzsprung gap does not disqualify the accuracy of Kuhi's and Markowitz's results. Although the source list of program objects (Hynek

1938) is essentially the same for all studies, different samples were studied in each investigation. Until observations of a uniform program star sample are made with a variety of techniques, a judgement of the relative strengths and weaknesses of each classification technique must be postponed. 221

V.3. COMPARISON WITH THEORETICAL ISOCHRONES

The double star solutions of Table 29 can be directly compared to the theoretical isochrones of Ciardullo and

Demarque (1979 ) . Figure 46 contains a set of isochrones calibrated in terms of M^ and B-V for the composition parameters Y=0.20 and Z=0.01. Stars of the same age fall on the same line, assuming their compositions are identical.

The lines represent different ages and terminate in the upper-right corner of the diagram because the stellar models used to construct the isochrones were calculated only up to the start of helium burning. Superposed on the figure are the positions of the components from the double star solutions. A line connects each component with its companion. Under the assumption that the components of a double star are formed simultaneously, the end points of these lines ought to indicate the same stellar age. Many systems match this expectation. The star HR 4417 is an example. There are, however, many stars significantly above the whole set of isochrones. What can be said about these stars? Two explanations can be offered to account for the apparently abnormal placement of these systems. First, they may be extremely young. Second, they may contain components which have commenced helium burning. Because it is difficult to understand how so many young objects could be among the program stars, the latter explanation is the more 222

-4.

2 .

0 .

HR 4 417.

2 .

4 .

6 .

0.0 0.4 0.8 1.2 1 . 6 Figure 46. Composite spectrum stars in the My - B-V plane. The components of resolved stars are plotted as X' (CTIO) or ^ (LO) . A straight line connects each component with its companion. The curved lines are theoretical isochrones for compo­ sition parameters Y=0.20 and Z=0.01 (Ciardullo and Demarque 1979). 223 likely of the two.

There are two curious characteristics displayed in

Figure 46. One is the funneling nature of the isochrones.

The convergence of lines to the upper right actually assists the agreement between calculated double star solutions and isochrones. If a component is in the funnel, its companion can be in nearly any position in the left portion of the diagram and, within observational errors, be of equal age.

The second curious characteristic in Figure 46 is the apparent displacement of the lower envelope of composite stars from the lower envelope of isochrones. Presumably, both envelopes ought to describe the main sequence of stars.

However, the two envelopes are for different main sequences!

On the one hand, the main sequence formed from isochrones is for a zero-age main sequence (ZAMS). On the other hand, the main sequence defined by the lower set of data points in

Figure 46 is tied to the calibration of in Figure 45, which is for field stars. Such stars are slightly evolved.

Hence, the dwarf companions plotted in Figure 46 are expected to be brighter than their ZAMS counterparts.

V.4. SOURCES OF ERROR

There are two sources that can cause moderate errors in the classifications. The first source is in the modeling procedure. Specifically, it is assumed that the value of an index or continuum for the parameters V/R and LUM can be found by linear interpolation (Section II.6 .E). Although this assumption may be valid when considering the whole set of Indices and continua, the assumption is invalid in specific cases. For example, the observed Mg I 5175 index values (Figure 16) for luminosity class IV stars are approximately the same as for class III stars. The interpolation procedure, however, assumes that stars with

LUM=4 lie exactly half-way between the LUM=3 and LUM=5 curves. In other cases the situation is reversed; luminosity class IV stars may have index values comparable to class V stars. In a similar fashion, the index values for luminosity class II stars may approximate those of class

I stars in some figures and class III stars in others. The solution to this problem is to observe a larger sample of luminosity class II and IV stars so that additional calibration curves can be drawn in Figures 4 to 43 for LUM=2 and LUM=4. A quadratic interpolation technique could then be applied.

The second source of error in the classifications is in the transformation from model-calculated V/R and LUM to spectral type and B-V color. The solution, again, is to observe a larger grid of comparison stars so as to refine the transformation. 225

V.5. CONCLUSIONS

This study is an attempt to use a new technique to classify the individual components of composite spectrum stars and other close binary systems. The results of the investigation can be summarized by answering the four questions presented in Section 1.2.C.

1) With the spectrophotometric decomposition technique,

are large numbers of components of composites

classified around GO III? No, the number of

components in the Hertzsprung gap is small. A large

number, however, are found with G4 III to G8 III

spectral types.

2) Are systematic errors introduced into the results by

the decomposition technique? If there are

systematic errors, how can they be eliminated?

Because there is no other survey of composites with

the same sample of program stars, a judgement of the

external accuracy of this study's results can not be

made. Because of the inherent objectivity of the

technique, the internal accuracy is expected to be

quite good. The results from Lowell Observatory

data, however, are highly suspect as seen by the

systematic errors in the classification of

comparison stars.

3) How far can the decomposition of composite spectrum 226

stars be "pushed?" What are the limits within which

double stars may be detected and classified? Based

upon the statistical results of Table 32, the

ability to resolve the individual spectral types of

double stars with photometric indices is comparable

that of spectrogram inspection. A few notable

exceptions do exist, such as the classification of

ip Vir. In general, however, stars that were

previously recognized as composite by means of

spectrogram assessment were resolved in this study,

and stars unrecognized as binaries on spectrograms

(i.e. the occultation binaries) remain unresolved in

this study.

4) Can the classification technique identify stars with

common peculiarities? Yes, Am and Ap stars can be

recognized and classified by the photometric

spectral index technique.

There is one remaining question. To what other stars can the classification technique be applied? Observations of stars in common with Markowitz and Young may provide a means of evaluating the relative merit of the different methods. Another interesting sample of stars to study are the single-lined spectroscopic binaries. The spectral index technique may be able to detect and classify the fainter components in some of these systems. BIBLIOGRAPHY

Babcock, H. W. 1958, Ap. J. 128, 228.

Bahng, J. D. R. 1958, Ap. J. 128, 572.

Beavers, W. I. and Cook, D. B. 1980, Ap. J. Suppl. 44, 489.

Bettis, C. and Branch, D. 1975a, Pub. A.S.P. 87, 707.

______1975b, Pub. A.S.P. 87, 895.

Bevington, P. R. 1969, Data Reduction and Error Analysis for the Physical Sciences, (New York: McGraw-Hill).

Blaauw, A. 1963, in Basic Astronomical Data, K. Aa. Strand, ed. (Chicago: University of Chicago Press), p. 383.

Blanco, V. M. P., Demers, S., Douglass, G. G., and Fitzgerald, M. 1968, Pub. U.S. Naval Obs., Ser. II, Vol. 21.

Boeshaar, P. C. 1976, Dissertation, Ohio State University.

Buscombe, W. and Barkstrom, B. 1971, M.N.R.A.S. 152, 37.

Buscombe, W. and Dickens, C. R. 1964, M.N.R.A.S. 128, 499.

Christensen, C. G. 1978, A.J. 83, 244.

Christy, J. W. and Walker, R. L. 1969, Pub. A.S.P. 81, 643.

Ciardullo, R. B. and Demarque, P. 1979, Dudley Obs. Rep. No. 14, 317.

Corbally, C. J. and Garrison, R. F. 1980, Pub. A.S.P. 92, 493.

Cowley, A., Cowley, C., Jaschek, M., and Jaschek, C. 1969, A.J. 74, 375.

Deeming, T. J. 1960, M.N.R.A.S. 121, 52.

227 228 Drilling, J. S. 1968, A.J. 73, 590,

Dunham, D. W. 1974 (private communication circulated by the International Occultation Timing Association).

Edwards, T. W. 1976, A.J. 81, 245.

Eggen, 0. J. 1973, Pub. A.S.P. 85, 289.

Evans, D. S. 1956, M.N.R.A.S. 116, 537.

Evans, D. S., Fekel, F. C., and Silverberg, E. C. 1977, A.J. 82, 828.

Evans, D. S., Menzies, A., and Stoy, R. H. 1957, M.N.R.A.S. 117, 534.

Finsen, W. S. 1951, Union Obs. Cir No. 112, p. 94.

______1953, Union Obs. Cir. No. 113, p. 170.

______1960, Union Obs. Cir. No. 119, p. 333.

Gast, P. R. 1960, in Handbook of Geophysics, U.S. Air Force, Cambridge Research Center, Geophysics Research Directorate (rev. ed. ; New York: Macmillan), p. 16.21.

Ginestet, N., Pedoussant, A., Carquillat, J. M., and Nadal R. 1980, Astr. and Ap. 81, 333.

Goy, G. 1977, Astr. and Ap. 57, 449.

______1980, Astr. and Ap. 88, 370.

Griffin, R. E. and Redman, R. O. 1960, M.N.R.A.S. 120, 287.

Hayes, D. S. and Latham, D. W. 1975, Ap. J. 197, 593.

Hendry, E. M. 1981 (private communication).

Hiltner, W. A., Garrison, R. F., and Schild, R. E. 1969, Ap. J. 157, 313.

Hoffleit, D. 1950, Ann. Har. Col. Obs. 119, No. 1.

______1964, Catalogue of Bright Stars (New Haven: Yale University). 229 Holden, F. 1976, Pub. A.S.P. 88, 52.

Humphreys, R. M. and Ney, E. P. 1974, Ap. J. 194, 623.

Hynek, J. A. 1938, Contri. Perkins Obs., Ser. I, No. 10.

______1951, in Astrophysics, J. A. Hynek, ed. (New York: McGraw-Hill), p.448.

Iriarte, B., Johnson, H. L., Mitchell, R. I., and Wisniewski, W. K. 1965, Sky and Tel. 30, 21.

Jaschek, M. and Jaschek, C. 1959, Pub. A.S.P. 71, 48.

______1960, Pub. A.S.P. 72, 500.

Johnson, H. L. 1966, Ann. Rev. Astr. and Ap. 4, 193.

Jones, J. H. S. 1980 (S.A.A.O. preprint no. 238).

Keenan, P. C. 1978, in IAU Symposium No. 80, The HR Diagram, A. G. D. Philip and D. S. Hayes, eds. (Dordrecht: Reidel), p. 13.

Keenan, P. C. and Keller, G. 1953, Ap. J. 117, 241.

Keenan, P. G. and McNeil, R. C. 1976, An Atlas of Spectra of the Cooler Stars, (Columbus: Ohio State University Press).

Keenan, P. C. and Pitts, R. E. 1980, Ap. J. Suppl. 42, 541.

Kuhi , L. V. 1963, Pub. A.S.P. 75, 448.

Kuiper, G. P. 1935, Pub. A.S.P. 47, 121.

Landi, J., Jaschek, M, and Jaschek, C. 1977, An Atlas of Grating Stellar Spectra at Intermediate Dispersion (Cordoba: Universidad Nacional de Cordoba).

Lockwood, G. W., Dyck, H. M., and Ridgway, S. T. 1975, Ap. J. 195, 385.

Lutz, J. L. 1972, Thesis, Iowa State University.

MacFarlane, M. J. 1979, Univ. Texas Pub. Astr. No. 15.

Malaroda, S. 1975, A.J. 80, 637. 230

Markowitz, A. H. 1969, Dissertation, Ohio State University.

McAlister, H. A. 1975, Ap. J. 215, 159.

Morgan, W. W., Abt, H. A., and Tapscott, J. W. 1978, Revised MK Spectral Atlas for Stars Earlier than the , (Yerkes and Kitt Peak Observatories).

Morgan, W. W. and Keenan, P. C. 1973, Ann. Rev. Astr. and Ap. 11, 29.

Morris, P. M. 1961, M.N.R.A.S. 122, 325.

O'Connell, R. W. 1970, Dissertation, California Institute of Te chnology.

______1973, A.J. 78, 1074.

______1977 (private communication).

Schmidtke, P. C. 1981, Lowell Obs. Bull, (in press).

Shajn, G. 1926, Astron. Nachr. 228, 336.

Spinrad, H. and Taylor, B. J. 1969, Ap. J. 157, 1279.

______1971, Ap. J. Suppl. 22, 445.

Stephenson, C. B. and Nassau, J. J. 1961, Ap. J. 134, 222.

Taylor, B. J. 1970, Ap . J. Suppl. 22 , 177 .

Turnrose, B. E. 1976, Dissertation, California Institute of Technology.

Tug, H. 1980a, Astr. and Ap. Suppl. 39, 67.

______1980b (private communication).

Tug, H., White, N. M., and Lockwood, G. W. 1977, Astr. and Ap. 61 , 67 9.

Walker, A. R. 1975, M.N.R.A.S. 173, 29p.

White, N. M. (private communication).

Whitford, A. E. 1958, A.J. 63, 201. Wilson, R. E. 1970, Pub. A.S.P. 82, 146.

Worley, C. E. 1972, A.J. 77, 878.

Young, W. M. 1971, Dissertation, Ohio State University.