Drivers of Change in Mudflat Macroinvertebrate Diversity

Total Page:16

File Type:pdf, Size:1020Kb

Drivers of Change in Mudflat Macroinvertebrate Diversity Drivers of change in mudflat macroinvertebrate diversity Shannon M. White School of Biological Sciences University of Portsmouth The thesis is submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy of the University of Portsmouth. October 2018 Declaration Whilst registered as a candidate for the above degree, I have not been registered for any other research award. The results and conclusions embodied in this thesis are the work of the named candidate and have not been submitted for any other academic award. Dedication To Mom and Dad, thank you for your constant love and support through all of my academic endeavors. Acknowledgements This project would not have been possible without the support of many, many people. First, I would like to thank my supervisors Dr Gordon Watson and Dr Roger Herbert for the opportunity to pursue this research and for willing to get their hands dirty on ‘ragworm day’. I’d especially like to thank Dr Watson for the many additional opportunities he has given me to further branch out in the field, from conference organizing committee member to CoCoast field assistant. I would like to thank David Clare, who inspires me daily with his quest for knowledge. Who as a partner has been ever-supportive and patient with me, and as a fellow benthic ecologist has shared valuable insights and through our many helpful discussions has helped to shape the project into what it is today. Thank you for helping me to keep perspective and helping me to grow as a scientist. Thank you to those who helped me with field work and IMS lab work, including the technical staff at IMS, Marc Martin, Graham Malyon, and Jenny Mackellar, I couldn’t have done this without you. Also, Teri Charlton, Kirstie Lucas, Ian Hendy, Joanne Younger, David Clare, and the many work experience and undergraduate students who helped me move mud around. Thank you also to my IMS postgrad family for their friendship and support. Thank you to Martin Devonshire and Peter Coxhead who introduced me to the world of biophysics during the energy reserve analysis and particular thanks to Martin for helping me with the method development. Thank you to Linley Hastewell for showing me how to use the mastersizer for sediment analysis and for carrying out LOI analyses for some of our survey samples. Jonathan Richir, thank you for helping us to successfully meet our tight survey schedule, for sharing tips on mapping as well as using the water quality database, and for your helpful insights on trace element pollution analyses. Thank you Martin Schaefer for sharing useful mapping resources and insights and to Paul Mayo for sharing GAMM code. To all of the agencies and individuals who provided datasets for the analysis or who took the time to meet with me to discuss potentially useful resources: Natural England, Environment Agency, Nigel Thomas, Sam Stanton, Chichester Harbour Conservancy, Rob Clark (IFCA), Sloyan Stray (MMO), Nick Randall (Queen’s Harbour master), and others. I would like to acknowledge the processing and identification of the faunal core samples by Hebog Environmental and MESL for the experimental and survey work, respectively. Thank you to David Clare, Gina Kolzenburg, and Thien Nguyen for helping with formatting of the thesis and to Michael Spence for discussing stats with me for my corrections. Abstract Global biodiversity loss is an internationally recognized problem that has consequences for ecosystem functioning and provision of ecosystem services and warrants investigation into drivers of change in biodiversity. In the context of natural variability, multiple anthropogenic stressors, and a changing climate, the identification of drivers of change is a complex issue. Here, an integrated approach (analysis of long-term datasets and experimental simulation) was employed to investigate drivers of change in intertidal mudflat macroinvertebrate diversity, using the Solent, on England’s south coast, as the study system. A model was developed to analyze survey datasets from the 1970s-2010s following a review process. Comparisons of the spatio-temporal patterns of change in diversity across an interconnected three-harbour system revealed differences at the harbour and within harbour scales, suggesting the relevance of local conditions for driving change versus dominance by a regional driver. Further, direct relationships were identified between diversity and within-harbour environmental conditions. In the context of a changing climate, temperature was investigated as a driver of change. The absence of a direct relationship between a regionally derived climate index and diversity and identification of the interaction of local seasonal water temperatures with local environmental conditions have highlighted the relevance of local context for predicting the way in which climate change effects may manifest. The results suggest the potential for macroalgal cover to act as a driver in this system, as direct relationships as well as relationships modified by the preceding seasonal temperatures were identified with respect to diversity, though the data available to test these relationships were limited. The effects of discrete temperature events were also investigated as a driver of change by simulating heat waves in a large outdoor mesocosm system designed to preserve natural sediment temperature profiles, solar and tidal cycles, and faunal densities. Community composition effects were not identified overall or for the abundance of shallow dwelling organisms that may be more vulnerable to extreme temperatures at the sediment surface. For the polychaete Alitta virens and the bivalve Cerastoderma edule, which exhibit different burrowing abilities, neither species exhibited higher mortality as a result of the heat wave simulations performed. Changes in energy reserves, however, suggested sublethal effects for both, which has implications for their vulnerability to the increased frequency, intensity, and duration of these events predicted for the future. The findings across these studies highlighted the relevance of local context to the patterns of change, suggesting that this must be accounted for in making predictions for how broad-scale climate change will drive change in biodiversity. For intertidal organisms potentially living close to their physiological limits, minimizing local anthropogenic stressors could benefit the current macroinvertebrate communities in the face of a changing climate. Abbreviations DAIN: Dissolved Inorganic Available Nitrogen Ea: Energy Available EA: Environment Agency ETCCDI: CCl/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices GAMM: Generalized Additive Mixed Model HW: Heat wave SSSI: Site of Special Scientific Interest STW: Sewage Treatment Works TEPI: Trace Element Pollution Index TT-DEWCE: Task Team on Definition of Extreme Weather and Climate Events WMO: World Meteorological Organization Contents Tables ............................................................................................................ iii Figures ........................................................................................................... v Chapter 1. General Introduction ..................................................................... 8 Chapter 2. Spatio-temporal patterns in diversity .......................................... 15 2.1 INTRODUCTION ............................................................................ 16 2.2 METHODS ...................................................................................... 22 2.2.1 Spatio-temporal analysis of diversity ........................................ 22 2.2.2 Environmental drivers of diversity............................................. 33 2.3 RESULTS ....................................................................................... 42 2.3.1 Faunal datasets ........................................................................ 42 2.3.2 Baseline model results ............................................................. 46 2.3.3 Environmental modeling results ............................................... 54 2.4 DISCUSSION ................................................................................. 64 Chapter 3. Temperature as a driver of change ............................................ 70 3.1 INTRODUCTION ............................................................................ 71 3.2 METHODS ...................................................................................... 76 3.2.1 Environmental data .................................................................. 76 3.2.2 Model summary ........................................................................ 79 3.3 RESULTS ....................................................................................... 83 3.3.1 Effects of regional air temperature extremity ............................ 83 3.3.2 Interaction of local water temperature with local environmental conditions .............................................................................................. 85 3.4 DISCUSSION ................................................................................. 92 Chapter 4. Heat waves as a driver of change .............................................. 98 4.1 INTRODUCTION ............................................................................ 99 4.2 METHODS .................................................................................... 104 4.2.1 Characterization of intertidal mudflat temperature variability .. 104
Recommended publications
  • Alternative Stable States of Tidal Marsh Vegetation Patterns and Channel Complexity
    ECOHYDROLOGY Ecohydrol. (2016) Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/eco.1755 Alternative stable states of tidal marsh vegetation patterns and channel complexity K. B. Moffett1* and S. M. Gorelick2 1 School of the Environment, Washington State University Vancouver, Vancouver, WA, USA 2 Department of Earth System Science, Stanford University, Stanford, CA, USA ABSTRACT Intertidal marshes develop between uplands and mudflats, and develop vegetation zonation, via biogeomorphic feedbacks. Is the spatial configuration of vegetation and channels also biogeomorphically organized at the intermediate, marsh-scale? We used high-resolution aerial photographs and a decision-tree procedure to categorize marsh vegetation patterns and channel geometries for 113 tidal marshes in San Francisco Bay estuary and assessed these patterns’ relations to site characteristics. Interpretation was further informed by generalized linear mixed models using pattern-quantifying metrics from object-based image analysis to predict vegetation and channel pattern complexity. Vegetation pattern complexity was significantly related to marsh salinity but independent of marsh age and elevation. Channel complexity was significantly related to marsh age but independent of salinity and elevation. Vegetation pattern complexity and channel complexity were significantly related, forming two prevalent biogeomorphic states: complex versus simple vegetation-and-channel configurations. That this correspondence held across marsh ages (decades to millennia)
    [Show full text]
  • The Evolution of the Artificial Wildbird Tidal Mudflat in Fukuoka, Japan
    1 The Evolution of the MIA DOCTO + SCOTT WALLS Jacob Bintliff, Mariana Chavez, Daniela Peña Corvillon, Artificial Wildbird Tidal Johanna Hoffman, Katelyn Walker, UC Berkeley, LA 205 Studio Mudflat in Fukuoka, Japan Spring 2012 2 PRESENTATION CONTENT INTRODUCTION // SCIENTIFIC ANALYSIS // WETLAND DESIGN // HUMAN INTERFACE // CONCLUSIONS 3 CONTEXT 4 5 6 CONTEXT BEFORE PRESENT 7 ISLAND CITY 8 9 ITERATIONS ORIGINAL WETLAND PLAN 10 ITERATIONS JAPAN STUDENT WORKSHOP 11 ITERATIONS 2008 Land Use Plan ~8.5 - 9 ha ~12 ha ~10 ha ~10 ~7 ha Setup of the central area ~8.75 ha ~38.25 ha We will establish a lively ~7 ha interactive space by inviting urban functions such as commercial and ~ 6.75 ha corporate functions, and dissemination of information on education, ~2.25 ha Wild Bird Park 3.9 ha 3.1 ha School and Amenities culture, and art. Further, public transportation Green Space facilities and facilities for 4.1 ha convenience are invited Assigned Facilities Teriha Town to improve the business Hospital ~18 ha environment in the area. Apartments 4.1+ ha Joint Independent Houses Spcialist Clinic 1.8 ha ~1.5 ha Commercial Elderly Elderly Center? Center Planned Subdivision 1.6 ha 1.2 ha Coporate (Sold) 0.9 ha Planned Use/Mixed Use Idustrial and hatches based on legend color code and denote use type Research & Development Currently Built Port Warf 1000 m UC BERKELEY LAND USE PLAN 12 ITERATIONS UC BERKELEY LAND USE PLAN 13 ITERATIONS 16 Hectare Wild Bird Park UC BERKELEY - JAPAN WETLAND DESIGN 14 DESIGN GOALS Provide natural habitat for migrating bird species
    [Show full text]
  • Additions to and Revisions of the Amphipod (Crustacea: Amphipoda) Fauna of South Africa, with a List of Currently Known Species from the Region
    Additions to and revisions of the amphipod (Crustacea: Amphipoda) fauna of South Africa, with a list of currently known species from the region Rebecca Milne Department of Biological Sciences & Marine Research Institute, University of CapeTown, Rondebosch, 7700 South Africa & Charles L. Griffiths* Department of Biological Sciences & Marine Research Institute, University of CapeTown, Rondebosch, 7700 South Africa E-mail: [email protected] (with 13 figures) Received 25 June 2013. Accepted 23 August 2013 Three species of marine Amphipoda, Peramphithoe africana, Varohios serratus and Ceradocus isimangaliso, are described as new to science and an additional 13 species are recorded from South Africa for the first time. Twelve of these new records originate from collecting expeditions to Sodwana Bay in northern KwaZulu-Natal, while one is an introduced species newly recorded from Simon’s Town Harbour. In addition, we collate all additions and revisions to the regional amphipod fauna that have taken place since the last major monographs of each group and produce a comprehensive, updated faunal list for the region. A total of 483 amphipod species are currently recognized from continental South Africa and its Exclusive Economic Zone . Of these, 35 are restricted to freshwater habitats, seven are terrestrial forms, and the remainder either marine or estuarine. The fauna includes 117 members of the suborder Corophiidea, 260 of the suborder Gammaridea, 105 of the suborder Hyperiidea and a single described representative of the suborder Ingolfiellidea.
    [Show full text]
  • Proceedings of the United States National Museum
    Proceedings of the United States National Museum SMITHSONIAN INSTITUTION . WASHINGTON, B.C. Volume 117 Number 3516 MARINE AMPHIPODA OF ATOLLS IN MICRONESIA By J. Laurens Barnard Associate Curator, Division of Crustacea Introduction Two large collections of intertidal and sublittoral Amphipoda were made on several atolls of Micronesia, one containing material coUected by Dr. D. P. Abbott of Stanford University and Dr. F. M. Bayer of the Smithsonian Institution on Ifaluk Atoll, and by Dr. Cadet Hand of the University of California on Kapingamarangi Atoll, and the other by Dr. D. J. Reish of Long Beach State CoUege, California, on Eniwetok, Majm-o, and Bikini atolls. The Abbott-Bayer-Hand collection was made avaUable to me by Dr. Fenner A. Chace, Jr. of the U.S. National Museum, and a small grant was provided' from the National Research Council for initial sorting of the specimens. The coUections of Dr. Reish were made possible by help from the Atomic Energy Commission. All specimens have been deposited m the U.S. National Museum. I am most grateful to the Beaudette Foundation for my support during this investigation. Dr. Abbott very kmdly reviewed the manuscript and made several valuable suggestions. Previous studies.— Tropical Pacific amphipods have not been studied extensively but the fauna would be expected to contam species common to other parts of the tropics, such as the Indian Ocean and Red Sea. Therefore, few of the common species in the coUections proved to be new, especially since Schellenberg (1938a) had already reported on coUections from Fiji, GUbert, EUice, MarshaU and 459 460 PROCEEDINGS OF THE NATIONAL MUSEUM vol.
    [Show full text]
  • The 17Th International Colloquium on Amphipoda
    Biodiversity Journal, 2017, 8 (2): 391–394 MONOGRAPH The 17th International Colloquium on Amphipoda Sabrina Lo Brutto1,2,*, Eugenia Schimmenti1 & Davide Iaciofano1 1Dept. STEBICEF, Section of Animal Biology, via Archirafi 18, Palermo, University of Palermo, Italy 2Museum of Zoology “Doderlein”, SIMUA, via Archirafi 16, University of Palermo, Italy *Corresponding author, email: [email protected] th th ABSTRACT The 17 International Colloquium on Amphipoda (17 ICA) has been organized by the University of Palermo (Sicily, Italy), and took place in Trapani, 4-7 September 2017. All the contributions have been published in the present monograph and include a wide range of topics. KEY WORDS International Colloquium on Amphipoda; ICA; Amphipoda. Received 30.04.2017; accepted 31.05.2017; printed 30.06.2017 Proceedings of the 17th International Colloquium on Amphipoda (17th ICA), September 4th-7th 2017, Trapani (Italy) The first International Colloquium on Amphi- Poland, Turkey, Norway, Brazil and Canada within poda was held in Verona in 1969, as a simple meet- the Scientific Committee: ing of specialists interested in the Systematics of Sabrina Lo Brutto (Coordinator) - University of Gammarus and Niphargus. Palermo, Italy Now, after 48 years, the Colloquium reached the Elvira De Matthaeis - University La Sapienza, 17th edition, held at the “Polo Territoriale della Italy Provincia di Trapani”, a site of the University of Felicita Scapini - University of Firenze, Italy Palermo, in Italy; and for the second time in Sicily Alberto Ugolini - University of Firenze, Italy (Lo Brutto et al., 2013). Maria Beatrice Scipione - Stazione Zoologica The Organizing and Scientific Committees were Anton Dohrn, Italy composed by people from different countries.
    [Show full text]
  • Journal of the Oklahoma Native Plant Society, Volume 2, Number 1
    54 Oklahoma Native Plant Record Volume 2, Number 1, December 2002 Schoenoplectus hallii and S. saximontanus 2000 Wichita Mountain Wildlife Refuge Survey Dr. Lawrence K. Magrath Curator-USAO (OCLA) Herbarium Chickasha, OK 73018-5358 A survey to determine locations of populations of Schoenoplectus hallii and S. saximontanus was conducted at Wichita Mountains Wildlife Refuge in August and September 2000. One or both species were found at 20 of the 134 locations surveyed. A distinctive terminal achene character was found specifically that the transverse ridges of S. hallii appeared to be rounded and S. saximontanus appeared to be rounded with a projecting narrow wing. Basal macroachenes have not yet been properly described but are borne singly at the base of each culm and are about 3-4 times larger than the terminal achenes. It is speculated that amphicarpy may be related to grazing pressure, the basal macroachene being produced even if the upper portion is consumed, as a response to grazing. Both species are grazed/disturbed by bison, elk, and longhorns on the Refuge. Introduction the drawdown mud, sand, or gravel flats. A survey to determine locations of However in some places they occur in shallow populations of Schoenoplectus hallii (A. Gray) water up to a depth of about a foot [30.5cm]. S.G. Smith (Hall’s bulrush) and S. saximontanus They seem to compete with perennial emergent (Fernald) J. Raynal (Rocky Mountain bulrush) plants and with most emergent annuals. was conducted on the Wichita Mountains In addition to the 36 sites that I Wildlife Refuge during late August through personally examined, WMWR staff examined September 2000.
    [Show full text]
  • Wetlands, Biodiversity and the Ramsar Convention
    Wetlands, Biodiversity and the Ramsar Convention Wetlands, Biodiversity and the Ramsar Convention: the role of the Convention on Wetlands in the Conservation and Wise Use of Biodiversity edited by A. J. Hails Ramsar Convention Bureau Ministry of Environment and Forest, India 1996 [1997] Published by the Ramsar Convention Bureau, Gland, Switzerland, with the support of: • the General Directorate of Natural Resources and Environment, Ministry of the Walloon Region, Belgium • the Royal Danish Ministry of Foreign Affairs, Denmark • the National Forest and Nature Agency, Ministry of the Environment and Energy, Denmark • the Ministry of Environment and Forests, India • the Swedish Environmental Protection Agency, Sweden Copyright © Ramsar Convention Bureau, 1997. Reproduction of this publication for educational and other non-commercial purposes is authorised without prior perinission from the copyright holder, providing that full acknowledgement is given. Reproduction for resale or other commercial purposes is prohibited without the prior written permission of the copyright holder. The views of the authors expressed in this work do not necessarily reflect those of the Ramsar Convention Bureau or of the Ministry of the Environment of India. Note: the designation of geographical entities in this book, and the presentation of material, do not imply the expression of any opinion whatsoever on the part of the Ranasar Convention Bureau concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Citation: Halls, A.J. (ed.), 1997. Wetlands, Biodiversity and the Ramsar Convention: The Role of the Convention on Wetlands in the Conservation and Wise Use of Biodiversity.
    [Show full text]
  • MUD CREATURE STUDY Overview: the Mudflats Support a Tremendous Amount of Life
    MUD CREATURE STUDY Overview: The mudflats support a tremendous amount of life. In this activity, students will search for and study the creatures that live in bay mud. Content Standards Correlations: Science p. 307 Grades: K-6 TIME FRAME fOR TEACHING THIS ACTIVITY Key Concepts: Mud creatures live in high abundance in the Recommended Time: 30 minutes mudflats, providing food for Mud Creature Banner (7 minutes) migratory ducks and shorebirds • use the Mud Creature Banner to introduce students to mudflat and the endangered California habitat clapper rail. When the tide is out, Mudflat Food Pyramid (3 minutes) the mudflats are revealed and birds land on the mudflats to feed. • discuss the mudflat food pyramid, using poster Mud Creature Study (20 minutes) Objectives: • sieve mud in sieve set, using slough water Students will be able to: • distribute small samples of mud to petri dishes • name and describe two to three • look for mud creatures using hand lenses mud creatures • describe the mudflat food • use the microscopes for a closer view of mud creatures pyramid • if data sheets and pencils are provided, students can draw what • explain the importance of the they find mudflat habitat for migratory birds and endangered species Materials: How THIS ACTIVITY RELATES TO THE REFUGE'S RESOURCES Provided by the Refuge: What are the Refuge's resources? • 1 set mud creature ID cards • significant wildlife habitat • 1 mud creature flannel banner • endangered species • 1 mudflat food pyramid poster • 1 mud creature ID book • rhigratory birds • 1 four-layered sieve set What makes it necessary to manage the resources? • 1 dish of mud and trowel • Pollution, such as oil, paint, and household cleaners, when • 1 bucket of slough water dumped down storm drains enters the slough and mudflats and • 1 pitcher of slough water travels through the food chain, harming animals.
    [Show full text]
  • Erosion and Accretion on a Mudflat: the Importance of Very 10.1002/2016JC012316 Shallow-Water Effects
    PUBLICATIONS Journal of Geophysical Research: Oceans RESEARCH ARTICLE Erosion and Accretion on a Mudflat: The Importance of Very 10.1002/2016JC012316 Shallow-Water Effects Key Points: Benwei Shi1,2 , James R. Cooper3 , Paula D. Pratolongo4 , Shu Gao5 , T. J. Bouma6 , Very shallow water accounted for Gaocong Li1 , Chunyan Li2 , S.L. Yang5 , and YaPing Wang1,5 only 11% of the duration of the entire tidal cycle, but accounted for 1Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, China, 2Department 35% of bed-level changes 3 Erosion and accretion during very of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, USA, Department of Geography and 4 shallow water stages cannot be Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK, CONICET – Instituto Argentino de neglected when modeling Oceanografıa, CC 804, Bahıa Blanca, Argentina, 5State Key Laboratory of Estuarine and Coastal Research, East China morphodynamic processes Normal University, Shanghai, China, 6NIOZ Royal Netherlands Institute for Sea Research, Department of Estuarine and This study can improve our understanding of morphological Delta Systems, and Utrecht University, Yerseke, The Netherlands changes of intertidal mudflats within an entire tidal cycle Abstract Understanding erosion and accretion dynamics during an entire tidal cycle is important for Correspondence to: assessing their impacts on the habitats of biological communities and the long-term morphological Y. P. Wang, evolution of intertidal mudflats. However, previous studies often omitted erosion and accretion during very [email protected] shallow-water stages (VSWS, water depths < 0.20 m). It is during these VSWS that bottom friction becomes relatively strong and thus erosion and accretion dynamics are likely to differ from those during deeper Citation: flows.
    [Show full text]
  • Gammaridean Amphipoda from the South China Sea
    UC San Diego Naga Report Title Gammaridean Amphipoda from the South China Sea Permalink https://escholarship.org/uc/item/58g617zq Author Imbach, Marilyn Clark Publication Date 1967 eScholarship.org Powered by the California Digital Library University of California NAGA REPORT Volume 4, Part 1 Scientific Results of Marine Investigations of the South China Sea and the Gulf of Thailand 1959-1961 Sponsored by South Viet Natll, Thailand and the United States of Atnerica The University of California Scripps Institution of Oceanography La Jolla, California 1967 EDITORS: EDWARD BRINTON, MILNER B. SCHAEFER, WARREN S. WOOSTER ASSISTANT EDITOR: VIRGINIA A. WYLLIE Editorial Advisors: Jorgen Knu·dsen (Denmark) James L. Faughn (USA) Le van Thoi (Viet Nam) Boon Indrambarya (Thailand) Raoul Serene (UNESCO) Printing of this volume was made possible through the support of the National Science Foundation. The NAGA Expedition was supported by the International Cooperation Administration Contract ICAc-1085. ARTS & CRAFTS PRESS, SAN DIEGO, CALIFORNIA CONTENTS The portunid crabs (Crustacea : Portunidae) collected by theNAGA Expedition by W. Stephenson ------ 4 Gammaridean Amphipoda from the South China Sea by Marilyn Clark Inlbach ---------------- 39 3 GAMMARIDEAN AMPHIPODA FROM THE SOUTH CHINA SEA by MARILYN CLARK 1MBACH GAMMARIDEAN AMPHIPODA FROM THE SOUTH CHINA SEA CONTENTS Page Introduction 43 Acknowledgments 43 Chart I 44 Table I 46 Table 2 49 Systematics 53 LYSIANASSIDAE Lepidepecreum nudum new species 53 Lysianassa cinghalensis (Stebbing) 53 Socarnes
    [Show full text]
  • Bolinas Lagoon Ecosystem Restoration Feasibility Project
    Bolinas Lagoon Ecosystem Restoration Feasibility Project Marin County Open Space District With Funding from the California State Coastal Conservancy & the U.S. Army Corps of Engineers July 2006 Bolinas Lagoon Ecosystem Restoration Feasibility Project Final Public Reports Table of Contents Volume I I Executive Summary II Projecting the Future of Bolinas Lagoon ¢¡¤£ ¥ £ ¦¨§©£ ¥ ¥ £ ¤£ ¢ Volume II III Recent (1850-2005) and late Holocene (400-1850) Sedimentation Rates at Bolinas Lagoon ¤!#"%$&" '(!)*+#, - ./1032#4 5(276 2#8 IV Conceptual Littoral Sediment Budget 9¢:¤; < ; =¨>©; < < ; ? @ABCAA D¤E; ? F GA V Project Reformulation Advisory Committee Summary of Draft Public Report S S TT H¢I¢J%KMLN7OPORQ VI Peer Review and Public Comments on Previous Drafts Reports with Responses U¢V¤W X W Y¨Z©W X X W [ \]^_]] `¤aW [ b c] de¢f a. Peer Reviews of Administrative Draft Report and Responses b. Public Comment Letters on Public Draft Report c. Response to Public Comment Letters Report Availability The report is available in multiple formats: • The report may be read and downloaded from www.marinopenspace.org • CDs are available on request by writing to William Carmen, Project Manager Bolinas Lagoon Ecosystem Restoration Feasibility Study MCOSD 3501 Civic Center Drive Suite 415 San Rafael, CA 94903 Or email: [email protected] • Hard copies of the report are on loan at the following locations: Marin County Library Branches: Bolinas, Stinson Beach, Civic Center, Fairfax, Inverness, Marin City, Novato, Pt. Reyes Station & San Geronimo Valley.
    [Show full text]
  • Habitat Comparison Walk Grades
    HHHaaabbbiii tttaaat CCt ooompmpmpaaarrriii sssooon WWn aaalllk (K-2)(K-2)k Overview: In this activity, students will hike through and compare five different refuge habitats, looking for plants and animals in each habitat, and working on a Habitat Hunt Sheet. Content Standards Correlations: Science, p. 293 Grades: K-2 TTTiii mmme FFe rrramamame fofoe r CCr ooondndnduuuccctttinining TTg hihihis AAs CCCtttiii vvviii tytyty Key Concepts: A habitat Recommended Time: 30 minutes provides a home for a plant or Introduction (5 minutes) animal, with suitable food, • discuss the five habitats from the Eucalyptus Grove Overlook water, shelter, and space. • hand out binoculars, clipboards, pencils, and Habitat Hunt (if There are five habitats along provided) the trail: the upland, salt marsh, slough, mudflats, and Habitat Walk (22 minutes) salt pond. Each habitat • hike the trail from the Eucalyptus Grove Overlook to the Hunter’s supports plants and animals Cabin, walking through the upland, the salt marsh, over the slough that are adapted to living in it. and mudflats, and ending at the salt pond Objectives: • stop at the numbered stops on the map and lead discussions Students will be able to: about the habitats and the plants and animals in each habitat • identify and compare the Discussion (3 minutes) five habitats on the refuge • answer any questions about the Habitat Hunt, using the answer • identify one plant or animal sheet in each habitat • collect the equipment and Habitat Hunt Sheets Materials: Provided by the Refuge: HHHooow Thihihis AAs
    [Show full text]