Primary Productivity of Intertidal Mudflats in the Wadden Sea: a Remote Sensing Method
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alternative Stable States of Tidal Marsh Vegetation Patterns and Channel Complexity
ECOHYDROLOGY Ecohydrol. (2016) Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/eco.1755 Alternative stable states of tidal marsh vegetation patterns and channel complexity K. B. Moffett1* and S. M. Gorelick2 1 School of the Environment, Washington State University Vancouver, Vancouver, WA, USA 2 Department of Earth System Science, Stanford University, Stanford, CA, USA ABSTRACT Intertidal marshes develop between uplands and mudflats, and develop vegetation zonation, via biogeomorphic feedbacks. Is the spatial configuration of vegetation and channels also biogeomorphically organized at the intermediate, marsh-scale? We used high-resolution aerial photographs and a decision-tree procedure to categorize marsh vegetation patterns and channel geometries for 113 tidal marshes in San Francisco Bay estuary and assessed these patterns’ relations to site characteristics. Interpretation was further informed by generalized linear mixed models using pattern-quantifying metrics from object-based image analysis to predict vegetation and channel pattern complexity. Vegetation pattern complexity was significantly related to marsh salinity but independent of marsh age and elevation. Channel complexity was significantly related to marsh age but independent of salinity and elevation. Vegetation pattern complexity and channel complexity were significantly related, forming two prevalent biogeomorphic states: complex versus simple vegetation-and-channel configurations. That this correspondence held across marsh ages (decades to millennia) -
The Evolution of the Artificial Wildbird Tidal Mudflat in Fukuoka, Japan
1 The Evolution of the MIA DOCTO + SCOTT WALLS Jacob Bintliff, Mariana Chavez, Daniela Peña Corvillon, Artificial Wildbird Tidal Johanna Hoffman, Katelyn Walker, UC Berkeley, LA 205 Studio Mudflat in Fukuoka, Japan Spring 2012 2 PRESENTATION CONTENT INTRODUCTION // SCIENTIFIC ANALYSIS // WETLAND DESIGN // HUMAN INTERFACE // CONCLUSIONS 3 CONTEXT 4 5 6 CONTEXT BEFORE PRESENT 7 ISLAND CITY 8 9 ITERATIONS ORIGINAL WETLAND PLAN 10 ITERATIONS JAPAN STUDENT WORKSHOP 11 ITERATIONS 2008 Land Use Plan ~8.5 - 9 ha ~12 ha ~10 ha ~10 ~7 ha Setup of the central area ~8.75 ha ~38.25 ha We will establish a lively ~7 ha interactive space by inviting urban functions such as commercial and ~ 6.75 ha corporate functions, and dissemination of information on education, ~2.25 ha Wild Bird Park 3.9 ha 3.1 ha School and Amenities culture, and art. Further, public transportation Green Space facilities and facilities for 4.1 ha convenience are invited Assigned Facilities Teriha Town to improve the business Hospital ~18 ha environment in the area. Apartments 4.1+ ha Joint Independent Houses Spcialist Clinic 1.8 ha ~1.5 ha Commercial Elderly Elderly Center? Center Planned Subdivision 1.6 ha 1.2 ha Coporate (Sold) 0.9 ha Planned Use/Mixed Use Idustrial and hatches based on legend color code and denote use type Research & Development Currently Built Port Warf 1000 m UC BERKELEY LAND USE PLAN 12 ITERATIONS UC BERKELEY LAND USE PLAN 13 ITERATIONS 16 Hectare Wild Bird Park UC BERKELEY - JAPAN WETLAND DESIGN 14 DESIGN GOALS Provide natural habitat for migrating bird species -
INTERTIDAL ZONATION Introduction to Oceanography Spring 2017 The
INTERTIDAL ZONATION Introduction to Oceanography Spring 2017 The Intertidal Zone is the narrow belt along the shoreline lying between the lowest and highest tide marks. The intertidal or littoral zone is subdivided broadly into four vertical zones based on the amount of time the zone is submerged. From highest to lowest, they are Supratidal or Spray Zone Upper Intertidal submergence time Middle Intertidal Littoral Zone influenced by tides Lower Intertidal Subtidal Sublittoral Zone permanently submerged The intertidal zone may also be subdivided on the basis of the vertical distribution of the species that dominate a particular zone. However, zone divisions should, in most cases, be regarded as approximate! No single system of subdivision gives perfectly consistent results everywhere. Please refer to the intertidal zonation scheme given in the attached table (last page). Zonal Distribution of organisms is controlled by PHYSICAL factors (which set the UPPER limit of each zone): 1) tidal range 2) wave exposure or the degree of sheltering from surf 3) type of substrate, e.g., sand, cobble, rock 4) relative time exposed to air (controls overheating, desiccation, and salinity changes). BIOLOGICAL factors (which set the LOWER limit of each zone): 1) predation 2) competition for space 3) adaptation to biological or physical factors of the environment Species dominance patterns change abruptly in response to physical and/or biological factors. For example, tide pools provide permanently submerged areas in higher tidal zones; overhangs provide shaded areas of lower temperature; protected crevices provide permanently moist areas. Such subhabitats within a zone can contain quite different organisms from those typical for the zone. -
Journal of the Oklahoma Native Plant Society, Volume 2, Number 1
54 Oklahoma Native Plant Record Volume 2, Number 1, December 2002 Schoenoplectus hallii and S. saximontanus 2000 Wichita Mountain Wildlife Refuge Survey Dr. Lawrence K. Magrath Curator-USAO (OCLA) Herbarium Chickasha, OK 73018-5358 A survey to determine locations of populations of Schoenoplectus hallii and S. saximontanus was conducted at Wichita Mountains Wildlife Refuge in August and September 2000. One or both species were found at 20 of the 134 locations surveyed. A distinctive terminal achene character was found specifically that the transverse ridges of S. hallii appeared to be rounded and S. saximontanus appeared to be rounded with a projecting narrow wing. Basal macroachenes have not yet been properly described but are borne singly at the base of each culm and are about 3-4 times larger than the terminal achenes. It is speculated that amphicarpy may be related to grazing pressure, the basal macroachene being produced even if the upper portion is consumed, as a response to grazing. Both species are grazed/disturbed by bison, elk, and longhorns on the Refuge. Introduction the drawdown mud, sand, or gravel flats. A survey to determine locations of However in some places they occur in shallow populations of Schoenoplectus hallii (A. Gray) water up to a depth of about a foot [30.5cm]. S.G. Smith (Hall’s bulrush) and S. saximontanus They seem to compete with perennial emergent (Fernald) J. Raynal (Rocky Mountain bulrush) plants and with most emergent annuals. was conducted on the Wichita Mountains In addition to the 36 sites that I Wildlife Refuge during late August through personally examined, WMWR staff examined September 2000. -
Wetlands, Biodiversity and the Ramsar Convention
Wetlands, Biodiversity and the Ramsar Convention Wetlands, Biodiversity and the Ramsar Convention: the role of the Convention on Wetlands in the Conservation and Wise Use of Biodiversity edited by A. J. Hails Ramsar Convention Bureau Ministry of Environment and Forest, India 1996 [1997] Published by the Ramsar Convention Bureau, Gland, Switzerland, with the support of: • the General Directorate of Natural Resources and Environment, Ministry of the Walloon Region, Belgium • the Royal Danish Ministry of Foreign Affairs, Denmark • the National Forest and Nature Agency, Ministry of the Environment and Energy, Denmark • the Ministry of Environment and Forests, India • the Swedish Environmental Protection Agency, Sweden Copyright © Ramsar Convention Bureau, 1997. Reproduction of this publication for educational and other non-commercial purposes is authorised without prior perinission from the copyright holder, providing that full acknowledgement is given. Reproduction for resale or other commercial purposes is prohibited without the prior written permission of the copyright holder. The views of the authors expressed in this work do not necessarily reflect those of the Ramsar Convention Bureau or of the Ministry of the Environment of India. Note: the designation of geographical entities in this book, and the presentation of material, do not imply the expression of any opinion whatsoever on the part of the Ranasar Convention Bureau concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Citation: Halls, A.J. (ed.), 1997. Wetlands, Biodiversity and the Ramsar Convention: The Role of the Convention on Wetlands in the Conservation and Wise Use of Biodiversity. -
MUD CREATURE STUDY Overview: the Mudflats Support a Tremendous Amount of Life
MUD CREATURE STUDY Overview: The mudflats support a tremendous amount of life. In this activity, students will search for and study the creatures that live in bay mud. Content Standards Correlations: Science p. 307 Grades: K-6 TIME FRAME fOR TEACHING THIS ACTIVITY Key Concepts: Mud creatures live in high abundance in the Recommended Time: 30 minutes mudflats, providing food for Mud Creature Banner (7 minutes) migratory ducks and shorebirds • use the Mud Creature Banner to introduce students to mudflat and the endangered California habitat clapper rail. When the tide is out, Mudflat Food Pyramid (3 minutes) the mudflats are revealed and birds land on the mudflats to feed. • discuss the mudflat food pyramid, using poster Mud Creature Study (20 minutes) Objectives: • sieve mud in sieve set, using slough water Students will be able to: • distribute small samples of mud to petri dishes • name and describe two to three • look for mud creatures using hand lenses mud creatures • describe the mudflat food • use the microscopes for a closer view of mud creatures pyramid • if data sheets and pencils are provided, students can draw what • explain the importance of the they find mudflat habitat for migratory birds and endangered species Materials: How THIS ACTIVITY RELATES TO THE REFUGE'S RESOURCES Provided by the Refuge: What are the Refuge's resources? • 1 set mud creature ID cards • significant wildlife habitat • 1 mud creature flannel banner • endangered species • 1 mudflat food pyramid poster • 1 mud creature ID book • rhigratory birds • 1 four-layered sieve set What makes it necessary to manage the resources? • 1 dish of mud and trowel • Pollution, such as oil, paint, and household cleaners, when • 1 bucket of slough water dumped down storm drains enters the slough and mudflats and • 1 pitcher of slough water travels through the food chain, harming animals. -
Life in the Intertidal Zone
Life in the Rocky Intertidal Zone Tidepools provide a home for many animals. Tidepools are created by the changing water level, or tides. The high energy waves make this a harsh habitat, but the animals living here have adapted over time. When the earth, sun and moon align during the full and new moon we have extreme high and low tides. Generally, there are two high tides and two low tides a day. An example of low and high tide is seen on the right. There are three zones within the tidepools: the high zone, the middle zone, and the low zone. Animals are distributed based on their adaptations to different living (competition and predation) and non living (wave action and water loss) factors. The tidepools at Cabrillo are protected and have been monitored by the National Park Service since 1990. You may notice bolts in Low Tide the rocky intertidal, these are used to assist scientists in gathering data to monitor changes. Tidepool Etiquette: Human impact can hurt the animals. As you explore the tidepools, you may touch the animals living here, but only as gently as you would touch your own eyeball. Some animals may die if moved even a few inches from where they are found. Federal law prohibits collection and removal of any shells, rocks and marine specimens. Also, be aware of the changing tides, slippery rocks and unstable cliffs. Have fun exploring! High Tide High Zone The high zone is covered by the highest tides. Often this area is only sprayed by the (Supralittoral or crashing waves. -
Erosion and Accretion on a Mudflat: the Importance of Very 10.1002/2016JC012316 Shallow-Water Effects
PUBLICATIONS Journal of Geophysical Research: Oceans RESEARCH ARTICLE Erosion and Accretion on a Mudflat: The Importance of Very 10.1002/2016JC012316 Shallow-Water Effects Key Points: Benwei Shi1,2 , James R. Cooper3 , Paula D. Pratolongo4 , Shu Gao5 , T. J. Bouma6 , Very shallow water accounted for Gaocong Li1 , Chunyan Li2 , S.L. Yang5 , and YaPing Wang1,5 only 11% of the duration of the entire tidal cycle, but accounted for 1Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, China, 2Department 35% of bed-level changes 3 Erosion and accretion during very of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, USA, Department of Geography and 4 shallow water stages cannot be Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK, CONICET – Instituto Argentino de neglected when modeling Oceanografıa, CC 804, Bahıa Blanca, Argentina, 5State Key Laboratory of Estuarine and Coastal Research, East China morphodynamic processes Normal University, Shanghai, China, 6NIOZ Royal Netherlands Institute for Sea Research, Department of Estuarine and This study can improve our understanding of morphological Delta Systems, and Utrecht University, Yerseke, The Netherlands changes of intertidal mudflats within an entire tidal cycle Abstract Understanding erosion and accretion dynamics during an entire tidal cycle is important for Correspondence to: assessing their impacts on the habitats of biological communities and the long-term morphological Y. P. Wang, evolution of intertidal mudflats. However, previous studies often omitted erosion and accretion during very [email protected] shallow-water stages (VSWS, water depths < 0.20 m). It is during these VSWS that bottom friction becomes relatively strong and thus erosion and accretion dynamics are likely to differ from those during deeper Citation: flows. -
Spatial Patterns of Macrozoobenthos Assemblages in a Sentinel Coastal Lagoon: Biodiversity and Environmental Drivers
Journal of Marine Science and Engineering Article Spatial Patterns of Macrozoobenthos Assemblages in a Sentinel Coastal Lagoon: Biodiversity and Environmental Drivers Soilam Boutoumit 1,2,* , Oussama Bououarour 1 , Reda El Kamcha 1 , Pierre Pouzet 2 , Bendahhou Zourarah 3, Abdelaziz Benhoussa 1, Mohamed Maanan 2 and Hocein Bazairi 1,4 1 BioBio Research Center, BioEcoGen Laboratory, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Rabat 10106, Morocco; [email protected] (O.B.); [email protected] (R.E.K.); [email protected] (A.B.); [email protected] (H.B.) 2 LETG UMR CNRS 6554, University of Nantes, CEDEX 3, 44312 Nantes, France; [email protected] (P.P.); [email protected] (M.M.) 3 Marine Geosciences and Soil Sciences Laboratory, Associated Unit URAC 45, Faculty of Sciences, Chouaib Doukkali University, El Jadida 24000, Morocco; [email protected] 4 Institute of Life and Earth Sciences, Europa Point Campus, University of Gibraltar, Gibraltar GX11 1AA, Gibraltar * Correspondence: [email protected] Abstract: This study presents an assessment of the diversity and spatial distribution of benthic macrofauna communities along the Moulay Bousselham lagoon and discusses the environmental factors contributing to observed patterns. In the autumn of 2018, 68 stations were sampled with three replicates per station in subtidal and intertidal areas. Environmental conditions showed that the range of water temperature was from 25.0 ◦C to 12.3 ◦C, the salinity varied between 38.7 and 3.7, Citation: Boutoumit, S.; Bououarour, while the average of pH values fluctuated between 7.3 and 8.0. -
Intertidal Sand and Mudflats & Subtidal Mobile
INTERTIDAL SAND AND MUDFLATS & SUBTIDAL MOBILE SANDBANKS An overview of dynamic and sensitivity characteristics for conservation management of marine SACs M. Elliott. S.Nedwell, N.V.Jones, S.J.Read, N.D.Cutts & K.L.Hemingway Institute of Estuarine and Coastal Studies University of Hull August 1998 Prepared by Scottish Association for Marine Science (SAMS) for the UK Marine SACs Project, Task Manager, A.M.W. Wilson, SAMS Vol II Intertidal sand and mudflats & subtidal mobile sandbanks 1 Citation. M.Elliott, S.Nedwell, N.V.Jones, S.J.Read, N.D.Cutts, K.L.Hemingway. 1998. Intertidal Sand and Mudflats & Subtidal Mobile Sandbanks (volume II). An overview of dynamic and sensitivity characteristics for conservation management of marine SACs. Scottish Association for Marine Science (UK Marine SACs Project). 151 Pages. Vol II Intertidal sand and mudflats & subtidal mobile sandbanks 2 CONTENTS PREFACE 7 EXECUTIVE SUMMARY 9 I. INTRODUCTION 17 A. STUDY AIMS 17 B. NATURE AND IMPORTANCE OF THE BIOTOPE COMPLEXES 17 C. STATUS WITHIN OTHER BIOTOPE CLASSIFICATIONS 25 D. KEY POINTS FROM CHAPTER I. 27 II. ENVIRONMENTAL REQUIREMENTS AND PHYSICAL ATTRIBUTES 29 A. SPATIAL EXTENT 29 B. HYDROPHYSICAL REGIME 29 C. VERTICAL ELEVATION 33 D. SUBSTRATUM 36 E. KEY POINTS FROM CHAPTER II 43 III. BIOLOGY AND ECOLOGICAL FUNCTIONING 45 A. CHARACTERISTIC AND ASSOCIATED SPECIES 45 B. ECOLOGICAL FUNCTIONING AND PREDATOR-PREY RELATIONSHIPS 53 C. BIOLOGICAL AND ENVIRONMENTAL INTERACTIONS 58 D. KEY POINTS FROM CHAPTER III 65 IV. SENSITIVITY TO NATURAL EVENTS 67 A. POTENTIAL AGENTS OF CHANGE 67 B. KEY POINTS FROM CHAPTER IV 74 V. SENSITIVITY TO ANTHROPOGENIC ACTIVITIES 75 A. -
Wave Energy and Intertidal Productivity (Leaf Area Index/Myfilus Californianus/Postelsia/Rocky Shore/Zonation) EGBERT G
Proc. Natl. Acad. Sci. USA Vol. 84, pp. 1314-1318, March 1987 Ecology Wave energy and intertidal productivity (leaf area index/Myfilus californianus/Postelsia/rocky shore/zonation) EGBERT G. LEIGH, JR.*, ROBERT T. PAINEt, JAMES F. QUINNt, AND THOMAS H. SUCHANEKt§ *Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Panama; tDepartment of Zoology NJ-15, University of Washington, Seattle, WA 98195; tDivision of Environmental Studies, University of California at Davis, Davis, CA 95616; and §Bodega Marine Laboratory, P. 0. Box 247, Bodega Bay, CA 94923 Contributed by Robert T. Paine, October 20, 1986 ABSTRACT In the northeastern Pacific, intertidal zones we estimate standing crop and productivity in different zones of the most wave-beaten shores receive more energy from of exposed and sheltered rocky shores of Tatoosh Island (480 breaking waves than from the sun. Despite severe mortality 19' N, 1240 40' W), showing that intertidal productivity is from winter storms, communities at some wave-beaten sites much higher in wave-beaten settings. Finally, we consider produce an extraordinary quantity of dry matter per unit area the various roles waves may play in enhancing the produc- of shore per year. At wave-beaten sites of Tatoosh Island, WA, tivity of intertidal organisms. sea palms, Postelsia palmaeformis, can produce >10 kg of dry matter, or 1.5 x 108 J. per m2 in a good year. Extraordinarily METHODS productive organisms such as Postelsia are restricted to wave- The Power Supplied by Breaking Waves. Calculating the beaten sites. Intertidal organisms cannot transform wave power carried by waves in the open ocean. Waves generated energy into chemical energy, as photosynthetic plants trans- anywhere in the ocean-dissipate most of their energy against form solar energy, nor can intertidal organisms "harness" some shore as surf (13, 14). -
Intertidal Zonation of Two Gastropods, Nerita Plicata and Morula Granulata, in Moorea, French Polynesia
INTERTIDAL ZONATION OF TWO GASTROPODS, NERITA PLICATA AND MORULA GRANULATA, IN MOOREA, FRENCH POLYNESIA VANESSA R. WORMSER Integrative Biology, University of California, Berkeley, California 94720 USA Abstract. Intertidal zonation of organisms is a key factor in ecological community structure and the existence of fundamental and realized niches. The zonation of two species of gastropods, Nerita plicata and Morula granulata were investigated using field observations and lab experimentation. The Nerita plicata were found on the upper limits of the intertidal zone while the Morula granulata were found on the lower limits. The distribution of each species was observed and the possible causes of this zonation were examined. Three main factors, desiccation, flow resistance and shell size were tested for their zonation. In the field, shell measurements of each species were made to see if a vertical shell size gradient existed; the results showed an upshore shell size gradient for each species. In the lab, experiments were run to see if the zonation preference found in the field existed in the lab as well. This experiment confirmed that a zonation between these species does in fact exist. Additional experiments were run to test desiccation and flow resistance between each species. A difference in desiccation rates and flow resistance were found with the Nerita plicata being more resistant to both flow and desiccation. The findings of this study provide an understanding on why zonation between these two species could exist as well as why zonation is important within an intertidal community and ecosystems as a whole. Key words: community structure; gastropod; zonation; intertidal; morphometrics; Morula granulata; Nerita plicata; Mo’orea, French Polynesia; INTRODUCTION The main goal of an ecological survey is to because of the high species diversity, the explore and understand the key dynamic convenience of the habitat as well as the easy relationships among organisms living in a collection of the sessile organisms that inhabit community (Elton 1966).