Landscape Genetics of a Seagrass Species in a Tidal Mudflat Lagoon

Total Page:16

File Type:pdf, Size:1020Kb

Landscape Genetics of a Seagrass Species in a Tidal Mudflat Lagoon Landscape genetics of a seagrass species in a tidal mudflat lagoon Buga Berković Tese para a obtenção do grau de doutor Doutoramento em Ciências do Mar, da Terra e do Ambiente Ramo Ciências do Mar Especialidade de Ecologia Marinha Orientadores Prof. a Dr. a Ester Serrão Prof. Dr. Filipe Alberto Faro 2015 Landscape genetics of a seagrass species in a tidal mudflat lagoon Buga Berković This dissertation is submitted to the University of Algarve, for the degree of Doctor of Philosophy in Sciences of Sea, Earth and Environment, area Marine Sciences, specialization Marine Ecology Supervisors: Prof. Dr. Ester Serrão Prof. Dr. Filipe Alberto Faro 2015 Declaração de autoria de trabalho Tese: Landscape genetics of seagrass species in a tidal mudflat lagoon Declaro ser a autora deste trabalho, que é original e inédito. Autores e trabalhos consultados estão devidamente citados no texto e constam da listagem de referências incluídas. © Copyright: Buga Berković A Universidade do Algarve tem o direito, perpétuo e sem limites geográficos, de arquivar e publicitar este trabalho através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, de o divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. 1 Apoio A presente tese teve o apoio da Fundação para a Ciência e Tecnologia (FCT), através da bolsa SFRH/BD/68570/2010 e do projecto RiaScapeGen PTDC/MAR/099887/2008 (PI Filipe Alberto). A secção de trabalho mostrada no capítulo dois foi financiada pela infraestrutura europeia ASSEMBLE (acordo de subvenção n. 227799) concedidos para o projecto DISPERSE. O trabalho foi realizado no laboratório do grupo MAREE no Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal. 2 Support This thesis was funded by Portuguese Science Foundation (FCT) through the doctoral grant SFRH/BD/68570/2010 and the project RiaScapeGen PTDC/MAR/099887/2008 (PI Filipe Alberto). Section of work shown in chapter two was funded by EU FP7 research infrastructure initiative Assemble (grant agreement no. 227799) awarded for the project DISPERSE. Work was carried out in the laboratory of MAREE group in the Centre of Marine Sciences CCMAR, University of Algarve, Campus Gambelas, Faro, Portugal. 3 Acknowledgments While working on this thesis, I have been very fortunate and immensely grateful for the love and support of colleagues, friends and family. First, I wish to thank my supervisors Filipe Alberto and Ester Serrão for this fantastic opportunity and experience. Regardless of the distance, time of the day or other duties they had, they were there for me and I’ve learnt so much from them. Filipe, thank you for the countless hours of Skype, for the cosy space to experience the cold Milwaukee winter and all the patience and care you put into me and this work. Ester, thank you for being there any time I needed you, for constant support, all the ideas and advice you gave me. I’d like to also extend my gratitude to Susana Cabaço, an unofficial supervisor, for giving up much of her time to share her knowledge of science, seagrasses and life with me. I wish to thank the MAREE lab group in CCMAR where an essential part of this work was carried out. Most importantly I’d like to acknowledge Nelson and Licínia. You know what you did, and you know what it means for this thesis and me. You are both incredible and I wouldn’t hesitate a moment to work again with you. Fieldwork in the mudflats of the Ria Formosa was unique but dirty work and luckily there is a long list of people to thank! Firstly, Diogo and Sue, who ventured into the deepest mud with me. And everyone who lent a hand, Francisco, Carmen, Licínia, Nelson, Maria, Juan, Filipe, Onno and my skippers - Bruno C. and Bruno F. I thank you all from the bottom of my heart. For every breaking dawn, every hot midday sun, every low tide that exposed the wonderful world of mud and seagrasses. For all the mud, sweat, the car rides, kilometres in kayaks, skipper services, and the best company I could ever wished for. It was the experience of a lifetime and I would gladly repeat it with all of you! I also wish to thank the other researchers and colleagues with whom I collaborated for a number of different tasks that made this thesis possible. They are Pedro Duarte, Fernando Canovas, Rui Santos, Per Jonsson, João Reis, Oscar Ferreira and Andre Pacheco. Thanks go also to my two students, who helped me with my work but also helped me to learn how to teach, collaborate and mentor, Sue and Federica, thank you. Next, to my friends and family. I am lucky to have met so many amazing people throughout this journey. These friends have literally become a family to me, my Faro family, 4 became a part of me. They have helped me to come where I am and were present at every step along the way. This was more than I could have ever asked for. I thank you for living with me, letting me in your homes, fighting through the bureaucracy with me, being my personal translators, drivers, drinking buddies, tourist guides, hiking buddies, cooking partners and most of all friends. In more or less chronological order: Catarina C., Maria, Carlos, Ana C., Ana L., Joana B., Nelson, Diogo, Gonçalo, Tania A., Tania P., Xana, Dinarte, Joana M., Licínia, André, Patricia, Carlos S., Carla, Ruben and Rita, thank you! And a special thank you to my Croatians in Portugal, Martina and Marin, thanks for endless great days of feeling like home! Lara, Anja, Bruna, Miguel and Juan … few words can suffice. You made the difference. You are with me, no matter how scattered around the world we are. Because of you distance doesn’t matter, time zones are just a thing to keep us awake until weird hours and home is all over the world. I love you guys! Finally and most importantly – mama, tata i buraz, volim vas najviše na svijetu i hvala za sve što ste istrpili i sve što činite za mene. Ne bih bila ovo što jesam bez vas! 5 Abstract In this thesis I looked at different components of dispersal in the seagrass Zostera noltii , from the dispersal potential of both sexual and asexual propagules to indirect genetic estimation and landscape genetics analysis. Methodological approaches The first part of the work focused on understanding the dispersal biology of the species, previously undescribed. Dispersal is defined by three phases: propagule separation, transport and settlement. Initial phases of dispersal were studied in the experimental study aiming to define the dispersal potential of the propagules. In the following study I evaluated success of post-dispersal settlement of the fragments – propagules shown to have the highest dispersal potential. To evaluate dispersal potential of sexual and asexual propagules of Z. noltii I quantified spatial and temporal scales of possible dispersal in still water and under different currents. I estimated sinking rates of seeds and changes over time in shoot buoyancy, shoot viability, fragment breakage, shoot growth rate and spathe release rate of floating fragments. To determine the fate of fragments after the dispersal, I quantified survival, rooting and development of vegetative fragments following dispersal and settlement. In case of successful establishment I analysed parameters which might depict the future of the established fragment, i.e. state of the apical shoot, branching and biomass. I tested the effect of two independent factors - the initial fragment size and the dispersal regime, i.e. different ratios of period of floating and settlement in sediment within 10 weeks of experiment. The second part of this thesis aimed to estimate the spatial genetic structure across the whole population of Z. noltii in the Ria Formosa lagoon (about 84 km 2), using an individual-based sampling design where four ramets were sampled in each of 803 sampling plots randomly distributed over this seagrass habitat. Sampled ramets were processed utilizing nine polymorphic microsatellite markers to identify their multi locus genotypes (MLGs). Then I looked at the frequency of sampling particular MLGs (clonal frequency) and the spatial distribution of MLGs sampled multiple times. Due to the wide spatial distribution of clones observed, I applied a commonly used clonal age estimation method which excludes the possibility of long distance dispersal of vegetative fragments (LDD), but iteratively corrected the age estimates in each step by combining sampling locations with spatially 6 explicit sea-level data for the time the clone would have been initiated. Finally, I looked at the association between disturbance, i.e. sediment dynamics associated with the barrier islands, and clonal richness at the landscape scale. The final chapter of this thesis presents the results of high resolution landscape genetics analyses carried out on the same data set as the clonal structure analysis. I used the digital terrain model to extract spatial variables (elevation, slope, aspect, curvature of the terrain), while the dynamic parameters (current velocity, direction and flow) were obtained from the hydrodynamic model EcoDynamo. Identification of clusters or groups was done using different clustering methods implemented in STRUCUTRE software, Geneland package and Discriminant Analysis of Principal Components. Spatial autocorrelation analysis was used to test the hypothesis of random spatial distribution of MLGs. Linear models served to test the association between landscape-derived pairwise distances and the pairwise genetic distances (Loiselle kinship coefficient). The dependent variables were Euclidian distance and four additional measures of connectivity across the landscape (cost distance, hydrographical distance and two tide-dependent resistance distances).
Recommended publications
  • Alternative Stable States of Tidal Marsh Vegetation Patterns and Channel Complexity
    ECOHYDROLOGY Ecohydrol. (2016) Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/eco.1755 Alternative stable states of tidal marsh vegetation patterns and channel complexity K. B. Moffett1* and S. M. Gorelick2 1 School of the Environment, Washington State University Vancouver, Vancouver, WA, USA 2 Department of Earth System Science, Stanford University, Stanford, CA, USA ABSTRACT Intertidal marshes develop between uplands and mudflats, and develop vegetation zonation, via biogeomorphic feedbacks. Is the spatial configuration of vegetation and channels also biogeomorphically organized at the intermediate, marsh-scale? We used high-resolution aerial photographs and a decision-tree procedure to categorize marsh vegetation patterns and channel geometries for 113 tidal marshes in San Francisco Bay estuary and assessed these patterns’ relations to site characteristics. Interpretation was further informed by generalized linear mixed models using pattern-quantifying metrics from object-based image analysis to predict vegetation and channel pattern complexity. Vegetation pattern complexity was significantly related to marsh salinity but independent of marsh age and elevation. Channel complexity was significantly related to marsh age but independent of salinity and elevation. Vegetation pattern complexity and channel complexity were significantly related, forming two prevalent biogeomorphic states: complex versus simple vegetation-and-channel configurations. That this correspondence held across marsh ages (decades to millennia)
    [Show full text]
  • The Evolution of the Artificial Wildbird Tidal Mudflat in Fukuoka, Japan
    1 The Evolution of the MIA DOCTO + SCOTT WALLS Jacob Bintliff, Mariana Chavez, Daniela Peña Corvillon, Artificial Wildbird Tidal Johanna Hoffman, Katelyn Walker, UC Berkeley, LA 205 Studio Mudflat in Fukuoka, Japan Spring 2012 2 PRESENTATION CONTENT INTRODUCTION // SCIENTIFIC ANALYSIS // WETLAND DESIGN // HUMAN INTERFACE // CONCLUSIONS 3 CONTEXT 4 5 6 CONTEXT BEFORE PRESENT 7 ISLAND CITY 8 9 ITERATIONS ORIGINAL WETLAND PLAN 10 ITERATIONS JAPAN STUDENT WORKSHOP 11 ITERATIONS 2008 Land Use Plan ~8.5 - 9 ha ~12 ha ~10 ha ~10 ~7 ha Setup of the central area ~8.75 ha ~38.25 ha We will establish a lively ~7 ha interactive space by inviting urban functions such as commercial and ~ 6.75 ha corporate functions, and dissemination of information on education, ~2.25 ha Wild Bird Park 3.9 ha 3.1 ha School and Amenities culture, and art. Further, public transportation Green Space facilities and facilities for 4.1 ha convenience are invited Assigned Facilities Teriha Town to improve the business Hospital ~18 ha environment in the area. Apartments 4.1+ ha Joint Independent Houses Spcialist Clinic 1.8 ha ~1.5 ha Commercial Elderly Elderly Center? Center Planned Subdivision 1.6 ha 1.2 ha Coporate (Sold) 0.9 ha Planned Use/Mixed Use Idustrial and hatches based on legend color code and denote use type Research & Development Currently Built Port Warf 1000 m UC BERKELEY LAND USE PLAN 12 ITERATIONS UC BERKELEY LAND USE PLAN 13 ITERATIONS 16 Hectare Wild Bird Park UC BERKELEY - JAPAN WETLAND DESIGN 14 DESIGN GOALS Provide natural habitat for migrating bird species
    [Show full text]
  • Journal of the Oklahoma Native Plant Society, Volume 2, Number 1
    54 Oklahoma Native Plant Record Volume 2, Number 1, December 2002 Schoenoplectus hallii and S. saximontanus 2000 Wichita Mountain Wildlife Refuge Survey Dr. Lawrence K. Magrath Curator-USAO (OCLA) Herbarium Chickasha, OK 73018-5358 A survey to determine locations of populations of Schoenoplectus hallii and S. saximontanus was conducted at Wichita Mountains Wildlife Refuge in August and September 2000. One or both species were found at 20 of the 134 locations surveyed. A distinctive terminal achene character was found specifically that the transverse ridges of S. hallii appeared to be rounded and S. saximontanus appeared to be rounded with a projecting narrow wing. Basal macroachenes have not yet been properly described but are borne singly at the base of each culm and are about 3-4 times larger than the terminal achenes. It is speculated that amphicarpy may be related to grazing pressure, the basal macroachene being produced even if the upper portion is consumed, as a response to grazing. Both species are grazed/disturbed by bison, elk, and longhorns on the Refuge. Introduction the drawdown mud, sand, or gravel flats. A survey to determine locations of However in some places they occur in shallow populations of Schoenoplectus hallii (A. Gray) water up to a depth of about a foot [30.5cm]. S.G. Smith (Hall’s bulrush) and S. saximontanus They seem to compete with perennial emergent (Fernald) J. Raynal (Rocky Mountain bulrush) plants and with most emergent annuals. was conducted on the Wichita Mountains In addition to the 36 sites that I Wildlife Refuge during late August through personally examined, WMWR staff examined September 2000.
    [Show full text]
  • Wetlands, Biodiversity and the Ramsar Convention
    Wetlands, Biodiversity and the Ramsar Convention Wetlands, Biodiversity and the Ramsar Convention: the role of the Convention on Wetlands in the Conservation and Wise Use of Biodiversity edited by A. J. Hails Ramsar Convention Bureau Ministry of Environment and Forest, India 1996 [1997] Published by the Ramsar Convention Bureau, Gland, Switzerland, with the support of: • the General Directorate of Natural Resources and Environment, Ministry of the Walloon Region, Belgium • the Royal Danish Ministry of Foreign Affairs, Denmark • the National Forest and Nature Agency, Ministry of the Environment and Energy, Denmark • the Ministry of Environment and Forests, India • the Swedish Environmental Protection Agency, Sweden Copyright © Ramsar Convention Bureau, 1997. Reproduction of this publication for educational and other non-commercial purposes is authorised without prior perinission from the copyright holder, providing that full acknowledgement is given. Reproduction for resale or other commercial purposes is prohibited without the prior written permission of the copyright holder. The views of the authors expressed in this work do not necessarily reflect those of the Ramsar Convention Bureau or of the Ministry of the Environment of India. Note: the designation of geographical entities in this book, and the presentation of material, do not imply the expression of any opinion whatsoever on the part of the Ranasar Convention Bureau concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Citation: Halls, A.J. (ed.), 1997. Wetlands, Biodiversity and the Ramsar Convention: The Role of the Convention on Wetlands in the Conservation and Wise Use of Biodiversity.
    [Show full text]
  • MUD CREATURE STUDY Overview: the Mudflats Support a Tremendous Amount of Life
    MUD CREATURE STUDY Overview: The mudflats support a tremendous amount of life. In this activity, students will search for and study the creatures that live in bay mud. Content Standards Correlations: Science p. 307 Grades: K-6 TIME FRAME fOR TEACHING THIS ACTIVITY Key Concepts: Mud creatures live in high abundance in the Recommended Time: 30 minutes mudflats, providing food for Mud Creature Banner (7 minutes) migratory ducks and shorebirds • use the Mud Creature Banner to introduce students to mudflat and the endangered California habitat clapper rail. When the tide is out, Mudflat Food Pyramid (3 minutes) the mudflats are revealed and birds land on the mudflats to feed. • discuss the mudflat food pyramid, using poster Mud Creature Study (20 minutes) Objectives: • sieve mud in sieve set, using slough water Students will be able to: • distribute small samples of mud to petri dishes • name and describe two to three • look for mud creatures using hand lenses mud creatures • describe the mudflat food • use the microscopes for a closer view of mud creatures pyramid • if data sheets and pencils are provided, students can draw what • explain the importance of the they find mudflat habitat for migratory birds and endangered species Materials: How THIS ACTIVITY RELATES TO THE REFUGE'S RESOURCES Provided by the Refuge: What are the Refuge's resources? • 1 set mud creature ID cards • significant wildlife habitat • 1 mud creature flannel banner • endangered species • 1 mudflat food pyramid poster • 1 mud creature ID book • rhigratory birds • 1 four-layered sieve set What makes it necessary to manage the resources? • 1 dish of mud and trowel • Pollution, such as oil, paint, and household cleaners, when • 1 bucket of slough water dumped down storm drains enters the slough and mudflats and • 1 pitcher of slough water travels through the food chain, harming animals.
    [Show full text]
  • Erosion and Accretion on a Mudflat: the Importance of Very 10.1002/2016JC012316 Shallow-Water Effects
    PUBLICATIONS Journal of Geophysical Research: Oceans RESEARCH ARTICLE Erosion and Accretion on a Mudflat: The Importance of Very 10.1002/2016JC012316 Shallow-Water Effects Key Points: Benwei Shi1,2 , James R. Cooper3 , Paula D. Pratolongo4 , Shu Gao5 , T. J. Bouma6 , Very shallow water accounted for Gaocong Li1 , Chunyan Li2 , S.L. Yang5 , and YaPing Wang1,5 only 11% of the duration of the entire tidal cycle, but accounted for 1Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, China, 2Department 35% of bed-level changes 3 Erosion and accretion during very of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, USA, Department of Geography and 4 shallow water stages cannot be Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK, CONICET – Instituto Argentino de neglected when modeling Oceanografıa, CC 804, Bahıa Blanca, Argentina, 5State Key Laboratory of Estuarine and Coastal Research, East China morphodynamic processes Normal University, Shanghai, China, 6NIOZ Royal Netherlands Institute for Sea Research, Department of Estuarine and This study can improve our understanding of morphological Delta Systems, and Utrecht University, Yerseke, The Netherlands changes of intertidal mudflats within an entire tidal cycle Abstract Understanding erosion and accretion dynamics during an entire tidal cycle is important for Correspondence to: assessing their impacts on the habitats of biological communities and the long-term morphological Y. P. Wang, evolution of intertidal mudflats. However, previous studies often omitted erosion and accretion during very [email protected] shallow-water stages (VSWS, water depths < 0.20 m). It is during these VSWS that bottom friction becomes relatively strong and thus erosion and accretion dynamics are likely to differ from those during deeper Citation: flows.
    [Show full text]
  • Bolinas Lagoon Ecosystem Restoration Feasibility Project
    Bolinas Lagoon Ecosystem Restoration Feasibility Project Marin County Open Space District With Funding from the California State Coastal Conservancy & the U.S. Army Corps of Engineers July 2006 Bolinas Lagoon Ecosystem Restoration Feasibility Project Final Public Reports Table of Contents Volume I I Executive Summary II Projecting the Future of Bolinas Lagoon ¢¡¤£ ¥ £ ¦¨§©£ ¥ ¥ £ ¤£ ¢ Volume II III Recent (1850-2005) and late Holocene (400-1850) Sedimentation Rates at Bolinas Lagoon ¤!#"%$&" '(!)*+#, - ./1032#4 5(276 2#8 IV Conceptual Littoral Sediment Budget 9¢:¤; < ; =¨>©; < < ; ? @ABCAA D¤E; ? F GA V Project Reformulation Advisory Committee Summary of Draft Public Report S S TT H¢I¢J%KMLN7OPORQ VI Peer Review and Public Comments on Previous Drafts Reports with Responses U¢V¤W X W Y¨Z©W X X W [ \]^_]] `¤aW [ b c] de¢f a. Peer Reviews of Administrative Draft Report and Responses b. Public Comment Letters on Public Draft Report c. Response to Public Comment Letters Report Availability The report is available in multiple formats: • The report may be read and downloaded from www.marinopenspace.org • CDs are available on request by writing to William Carmen, Project Manager Bolinas Lagoon Ecosystem Restoration Feasibility Study MCOSD 3501 Civic Center Drive Suite 415 San Rafael, CA 94903 Or email: [email protected] • Hard copies of the report are on loan at the following locations: Marin County Library Branches: Bolinas, Stinson Beach, Civic Center, Fairfax, Inverness, Marin City, Novato, Pt. Reyes Station & San Geronimo Valley.
    [Show full text]
  • Habitat Comparison Walk Grades
    HHHaaabbbiii tttaaat CCt ooompmpmpaaarrriii sssooon WWn aaalllk (K-2)(K-2)k Overview: In this activity, students will hike through and compare five different refuge habitats, looking for plants and animals in each habitat, and working on a Habitat Hunt Sheet. Content Standards Correlations: Science, p. 293 Grades: K-2 TTTiii mmme FFe rrramamame fofoe r CCr ooondndnduuuccctttinining TTg hihihis AAs CCCtttiii vvviii tytyty Key Concepts: A habitat Recommended Time: 30 minutes provides a home for a plant or Introduction (5 minutes) animal, with suitable food, • discuss the five habitats from the Eucalyptus Grove Overlook water, shelter, and space. • hand out binoculars, clipboards, pencils, and Habitat Hunt (if There are five habitats along provided) the trail: the upland, salt marsh, slough, mudflats, and Habitat Walk (22 minutes) salt pond. Each habitat • hike the trail from the Eucalyptus Grove Overlook to the Hunter’s supports plants and animals Cabin, walking through the upland, the salt marsh, over the slough that are adapted to living in it. and mudflats, and ending at the salt pond Objectives: • stop at the numbered stops on the map and lead discussions Students will be able to: about the habitats and the plants and animals in each habitat • identify and compare the Discussion (3 minutes) five habitats on the refuge • answer any questions about the Habitat Hunt, using the answer • identify one plant or animal sheet in each habitat • collect the equipment and Habitat Hunt Sheets Materials: Provided by the Refuge: HHHooow Thihihis AAs
    [Show full text]
  • Elkhorn Slough Tidal Wetland Project Elkhorn Slough National Estuarine Research Reserve Elkhorn Slough Foundation
    Elkhorn Slough Tidal Wetland Project Elkhorn Slough National Estuarine Research Reserve Elkhorn Slough Foundation Management of Tidal Scour and Wetland Conversion in Elkhorn Slough: Partial Synthesis of Technical Reports on Large-Scale Alternatives: Hydrology, Geomorphology, Habitats and Engineering Water Quality June 2010 Note: This is a living document. Forward comments and questions to Bryan Largay: [email protected] The following individuals wrote this document: Bryan Largay, Erin McCarthy The following individuals provided review and comments: Robert Curry, Ed S. Gross, Ken Johnson, Quinn Labadie, Jessie R. Lacy, Erika McPhee Shaw, Kerstin Wasson, and Andrea Woolfolk Management of Tidal Scour and Wetland Conversion in Elkhorn Slough Hydrology, Habitats and Water Quality: Effects of Five Alternatives Overview Project scope Elkhorn Slough, one of the largest coastal estuaries in California and host to over 750 species of plants and animals, is undergoing rapid ecologic change: in 60 years the channel has deepened by 500 percent and hundreds of acres of salt marsh have died back or are deteriorating. The Elkhorn Slough Tidal Wetland Project, a collaborative effort of about 100 scientists, managers and key stakeholders, was established in 2004 to advance the understanding of the processes and potential solutions to these rapid habitat changes. Ecosystem services provided by the slough and its watershed are threatened by water quality impairment, invasive species, watershed development, freshwater diversion and other stressors, which are the subject of coordinated parallel efforts to steward the resource. The Tidal Wetland Project is a planning process focused on the tidal portion of the ecosystem. Through consensus, this process established goals of preserving and restoring priority habitats including salt marsh, tidal creeks, tidal brackish marshes and soft sediment habitats.
    [Show full text]
  • Organic Carbon Burial and Sources in Soils of Coastal Mudflat And
    Catena 187 (2020) 104414 Contents lists available at ScienceDirect Catena journal homepage: www.elsevier.com/locate/catena Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems T ⁎ Sigit D. Sasmitoa,b, , Yakov Kuzyakovc,d,e,f, Ali Arman Lubisg, Daniel Murdiyarsob,h, Lindsay B. Hutleya, Samsul Bachrii, Daniel A. Friessj, Christopher Martiusk, Nils Borchardb,l a Research Institute for the Environment and Livelihoods (RIEL), Charles Darwin University, Darwin, NT 0810, Australia b Center for International Forestry Research (CIFOR), Bogor 16115, Indonesia c Department of Soil Science of Temperate Ecosystems, Georg-August University Göttingen, Büsgenweg 2, Göttingen 37077, Germany d Department of Agricultural Soil Science, Georg-August University Göttingen, Büsgenweg 2, Göttingen 37077, Germany e Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan, Russia f Agro-Technological Institute, RUDN University, 117198 Moscow, Russia g Center for Isotopes and Radiation Application, National Nuclear Energy Agency (BATAN), Jl. Lebak Bulus Raya No. 49, Jakarta 12440, Indonesia h Department of Geophysics and Meteorology, Bogor Agricultural University, Bogor 16680, Indonesia i Faculty of Agriculture, University of Papua, Manokwari 98314, Indonesia j Department of Geography, National University of Singapore, 1 Arts Link, Singapore 117570, Singapore k Center for International Forestry Research (CIFOR) Germany gGmbH, Bonn, Germany l Plant Production, Natural Resources Institute Finland (Luke), 00790 Helsinki, Finland ARTICLE INFO ABSTRACT Keywords: Mangrove organic carbon is primarily stored in soils, which contain more than two-thirds of total mangrove Blue carbon ecosystem carbon stocks. Despite increasing recognition of the critical role of mangrove ecosystems for climate 210 Pb sediment dating change mitigation, there is limited understanding of soil organic carbon sequestration mechanisms in un- Stable isotopes mixing model disturbed low-latitude mangroves, specifically on organic carbon burial rates and sources.
    [Show full text]
  • Primary Productivity of Intertidal Mudflats in the Wadden Sea: a Remote Sensing Method
    Primary Productivity of Intertidal mudflats in the Wadden Sea: A Remote Sensing Method TIMOTHY DUBE February, 2012 SUPERVISORS: Dr. Ir. Mhd. (Suhyb). Salama Dr. Ir. C.M.M. (Chris). Mannaerts INPLACE externals: Dr. Eelke Folmer, NIOZ Prof. Dr.Jacco Kromkamp Primary Productivity of Intertidal mudflats in the Wadden Sea: A Remote Sensing Method TIMOTHY DUBE Enschede, The Netherlands, February 2012 Thesis submitted to the Faculty of Geo-Information Science and Earth Observation of the University of Twente in partial fulfilment of the requirements for the degree of Master of Science in Geo-information Science and Earth Observation. Specialization: Water Resources and Environmental Management SUPERVISORS: Dr. Ir. Mhd. (Suhyb). Salama Dr. Ir. C.M.M. (Chris). Mannaerts INPLACE externals: Dr. Eelke Folmer, NIOZ Prof. Dr.Jacco Kromkamp THESIS ASSESSMENT BOARD: Prof. Dr. Ir. W. (Wouter), Verhoef (Chair) Dr. Hans van der Woerd, (External examiner, Vrije Universiteit Amsterdam) PRIMARY PRODUCTIVITY OF INTERTIDAL MUDFLATS IN THE WADDEN SEA: A REMOTE SENSING METHOD DISCLAIMER This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the author, and do not necessarily represent those of the Faculty. PRIMARY PRODUCTIVITY OF INTERTIDAL MUDFLATS IN THE WADDEN SEA: A REMOTE SENSING METHOD Abstract The relative contribution of microphytobenthic (MPB) primary productivity to the total primary productivity of intertidal ecosystems is largely unknown. The possibility to estimate MPB primary productivity would be a significant contribution to a better understanding of the role of intertidal mudflats for ecosystem functioning.
    [Show full text]
  • Great Salt Lake Wetland Conservation Action Planning Meeting #1 Summary
    Great Salt Lake Wetland Conservation Action Planning Meeting #1 Summary Conservation Action Planning Conservation Action Planning (CAP) is a process developed by The Nature Conservancy that has been used to tackle a variety of conservation issues across the globe. CAP has also been used around Great Salt Lake several times and the March 2018 meetings sought to build on that previous work. The CAP framework focuses on five steps: 1. Identifying conservation targets (ecosystems or species) 2. Assess conservation target health based on key ecological attributes 3. Assess stress and sources that threaten target health 4. Develop conservation strategies 5. Measure success Some CAP terminology: Targets are the ecosystems or species we are trying to conserve through CAP Key Ecological Attributes are the processes or traits that are important to the long-term health of targets Indicators are the measurable characteristics of ecological attributes Health is the integrity or viability of a target or nested target Stresses are those things that negatively impact key ecological attributes, thereby impairing the health of targets Sources are the causes of stress (e.g., if altered hydroperiod is a stress, upstream water use might be a source) Strategies are courses of action with specific objectives that decrease threats or increase target viability Great Salt Lake & CAP Around Great Salt Lake (GSL), the first use of the CAP framework was an assessment of the entire lake and adjacent wetlands conducted in 2011 (link). Those meetings found that GSL was generally in good health, that is was supporting migratory birds, brine shrimp, and stromatolites. A one-day GSL wetland-specific CAP was conducted in 2015 that elaborated on the key ecological attributes and indicators of three wetland targets: impounded wetlands, fringe wetlands, and playa/mudflats (link).
    [Show full text]