Chapter 9. Resonant Interaction and Quasilinear Systems This

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 9. Resonant Interaction and Quasilinear Systems This Chapter 9. Resonant Interaction and Quasilinear Systems This chapter describes two extensions. First, we describe the resonant interaction of wave trains with distinct phases. This is multiphase nonlinear geometric optics. Second, the semilinear analysis is extended to the quasilinear case with the goal of discussing com- pressible inviscid fluid dynamics. §9.1. Introduction to resonance. Even at the level of formal asymptotic expansions, resonance poses a challenge. It was Majda and Rosales [1986] who got it right. The approach presented in this section is that of Joly, M´etivier, and Rauch in the Duke Math. J, 1994. The essence of the phenomenon is illustrated by the following simple example. Example 1. Consider the oscillatory semilinear initial value problem ix/ǫ (∂t + ∂x)u1 =0 u1 t=0 = a1(x) e ∂tu2 = u1u3 u2 t=0 =0 (9.1) ix/ǫ (∂t − ∂x)u3 =0 u3 t=0 = a3(x) e ∞ with initial amplitudes aj ∈ C0 (R). The exact solution is given by t i(x−t)/ǫ i(x+t)/ǫ u1(t,x) = a1(x − t) e , u3(t,x) = a3(x + t) e , u2 = u1(t,x) u3(t,x) dt. Z0 The key observation is that the phases, (x ± t)/ǫ that appear in the integrand for u2 add to 2ix/ǫ which is independent of t. The formula for u2 is, t i2x/ǫ u2 = e a1(x − t) a3(x + t) dt. (9.2) Z0 The oscillatory wave trains, u1 and u3 with phases φ1 := (x − t)/ǫ, φ2 := (x + t)/ǫ, respectively, interact to generate a third wave u2 with phase φ3 := 2x/ǫ. The phases satisfy the resonance relation φ1 + φ2 = φ3 . The amplitude of the new wave is of the same order, ǫ0, as the waves from which it is formed. 1 The linear operator 1 0 0 10 0 L(∂t,∂x) := 0 1 0 ∂t + 00 0 ∂x, 0 0 1 0 0 −1 in the background has principal symbol, τ + ξ 0 0 L(iτ, iξ) := i 0 τ 0 . 0 0 τ − ξ The characteristic variety of L has equation 0 = det L(τ,ξ) = τ(τ + ξ)(τ − ξ). The three phases satisfy the eikonal equation φt(φt + φx)(φt − φx)=0 . For the solutions with ∇t,xφ 6= 0, this is equivalent to exactly one of the equations φt =0, φt + φx =0, or φt − φx =0, at all points (assuming the domain of definition is connected). Variants of this example illustrate two properties of resonance. Example 2. iψ(x) Suppose that the initial condition for u3 is changed to u3 t=0 = a3(x)e with dψ(x)/dx nowhere equal to 1. Then the integral defining u is an oscillatory integral 2 in time with phase (x − t + ψ(x + t))/ǫ. The time derivative of the phase is O(1/ǫ) so the method of nonstationary phase shows that u2 = O(ǫ). The resonant interaction is destroyed. ′ Exercise. More generally, if {x : ψ (x)=1} has measure zero, then u2 = o(1) as ǫ → 0. Again the offspring wave is smaller than the parents. For those who know about Young measures, it is interesting to note that the Young mea- sures of the intitial data are independent of the function ψ so long as ψ′ 6= 0. Thus data with the same Young measures yield solutions with different Young measures. Introduce the symmetric form φj = 0 for resonance relations. If ψk satisfy nk ψk = 0, then the phases φk := nkψk satisfyP the symmetric form. The symmetric form isP often easier to manipulate. Example. We find all triples of resonant linear eikonal phases with pairwise independent differentials for L = ∂t + diag(λ1, λ2, λ3)∂x with λj distinct real numbers. Seek such φj satisfying the resonance relation φj = 0. The independent differentials together with the eikonal relation force (up to permutation),P 3 φj(t,x) = αj(x − λj t), (α1,α2,α3) ∈ R \ 0. 2 The α are determined up to scalar mulitplication by the resonance relation which is equiv- alent to the pair of equations, αj = 0, and, αj λj = 0 . Xj Xj Exercise. Show that if f,g,h ∈ C∞(R) each has nonvanishing derivative at the origin, and at least one of them has nonvanishing second derivate, then the three phases f(t), g(t − x), and h(t + x) cannot be resonant on a neighborhood of the origin. Discussion. This shows that linear phases are the only possibilities for resonant triples with pairwise independent differentials. The example and exercises show that the phenomenon of resonance is both rare and sen- sitive when viewed from the perspective of perturbing the phases. §9.2. The three wave interaction PDE. Consider the system (∂t + ∂x)u1 = c1 u3 u2 , ∂tu2 = c2 u1u3 , (9.3) (∂t − ∂x)u3 = c3 u1 u2 . with real cj ∈ R \ 0. This equation and its relatives maximizes the intermode interaction. 2 The absence of a term in u1 in the first equation has a consequence that harmonics are not generated in the first mode. Harmonic generation is absent in the other equations too. Multiplying the first equation by a1 u1, the second by a2 u2, and the third by a3 u3, shows that if a1, a2, and a3 are real numbers so that ajcj = 0 then for solutions one has the differential conservation laws P ∂ ∂ a u2 + a u2 + a u2 + a u2 − a u2 = 2 a c u u u = 0 . ∂t 1 1 2 2 3 3 ∂x 1 1 3 3 j j 1 2 3 Xj Integrating dx yields the integral conservation laws, d 2 2 2 a1 u + a2 u + a3 u dx = 0 . dt Z 1 2 3 This is a two dimensional space of conservation laws parameterized by the a. We are interested in complex solutions. For complex solutions, conservation laws involving 2 2 2 |uj| are more interesting than those involving uj as they yield L bounds. The complex analogue of (9.3) with such conservation laws is, ∗ (∂t + ∂x)u1 = c1 u2 u3 ∂tu2 = c2 u1u3 (9.4) ∗ (∂t − ∂x)u3 = c3 u1 u2 . 3 with cj ∈ R \ 0. th ∗ Mutiplying the j equation by ajuj and taking the real part shows that if aj ∈ R satisfy aj cj = 0, then solutions satisfy P 2 2 2 ∗ ∗ ∂t aj|uj| + ∂x a1 |u1| − a3 |u3| = 2 aj cj Re u1 u2 u3 = 0 . Xj Xj If the cj do not all have the same sign, then there are conservation laws of this type with 2 all the aj > 0. This yields an L bound on the solution. On the other hand, if the cj are all positive then initial data with uj(0,x) real and positive yield real solutions such that for all j, uj is nondecreasing along j characteristics. For sufficiently positive data there is finite time blow up. Proposition. Suppose that cj ≥ c > 0 and the real valued initial data satisfy ∀j, ∀|x| ≤ R, uj(0,x) ≥ A > 0. ∞ i. If u(t,x) ∈ C ([0,t∗[×R) is a solution, then uj(t,x) ≥ y(t) for t∗ >t ≥ 0 and |x| ≤ R−t, where y = A/(1 − cAt) is the solution of y′ = cy2, y(0) = A. −1 ii. If T∗ := (cA) is the blow up time for y, and R > T∗, then u blows up on or before time T∗ in the sense that one must have t∗ ≤ T∗. Proof. The second assertion follows from the first. Since the speed of propagation is no larger than 1, the values of u in |x| ≤ R − t are unaffected by the values of the Cauchy data for |x| > R. Therefore, it suffices to prove that uj ≥ y(t) when the data satisfy uj (0,x) ≥ A for all x. Define m(t) := min uj(t,x) . x∈R ,j Since the uj are nondecreasing on j-characteritics, it follows that m(t) is nondecreasing. And, m(0) ≥ A > 0. In addition one has the lower bound obtained by integration along j characteristics, t 2 uj(t,x) ≥ m(0) + c m(t) dt. Z0 Taking the infinum on x yields t t m(t) ≥ m(0) + c m(t)2 d ≥ A + c m(t)2 dt. Z0 Z0 The function y is characterized as the solution of t y(t) = A + c y(t)2 dt. Z0 4 For ǫ > 0 small, let yǫ be the solution of (yǫ)′ = c(yǫ)2 with yǫ(0) = A − ǫ so t yǫ(t) = A − ǫ + c yǫ(t)2 dt. Z0 ǫ It follows that m(t) > y (t) for all 0 ≤ t<t∗. For, if this were not so there would be a ǫ smallest t ∈]0,t[∗ where m(t) = y (t). Then t t yǫ(t) = m(t) ≥ A + c m(t)2 dt > A − ǫ + c (yǫ(t))2 dt = yǫ(t) . Z0 Z0 This contradiction establishes m>yǫ. Passing to the limit ǫ → 0 proves m ≥ y which is the desired conclusion. Only the signs of the cj play a roll in the qualitative behavior of the equation (9.4). Proposition. There is exactly one positive diagonal linear transformation u := (d1 v1 , d2 v2 , d3 v3) , dj > 0 , which transform the the system to the analogous system with interaction coefficients c1, c2, c3 replaced by c c c 1 , 2 , 3 . |c1| |c2| |c3| Proof. The change of variables yields an anlogous system for v with the interaction coefficients replaced by d2 d3 d3 d1 d1 d2 c1 , c2 , c3 . n d1 d2 d3 o Need dj so that d2 d3 c1 d3 d1 c2 d1 d2 c3 c1 = , c2 = , c3 = .
Recommended publications
  • Resonant Interactions Among Surface Water Waves
    Annu. Rev. Fluid Mech. 1993. 25: 55-97 Copyright © /993 by Annual Reviews Inc. All rights reserved RESONANT INTERACTIONS AMONG SURFACE WATER WAVES J. L. Hammack Departments of Geosciences and Mathematics, The Pennsylvania State University, University Park, Pennsylvania 16802 Henderson D. M. Department of Mathematics, The Pennsylvania State University, University Park, Pennsylvania 16802 KEY WORDS: nonlinear dynamics, gravity-capillary waves, dispersive waves INTRODUCTION Thirty years have passed since Phillips (1960) pioneered a view of weak, nonlinear interactions among gravity waves on the surface of deep water. His view emphasized the special role of "resonant" interactions, so-called because they have the mathematical form of a resonantly forced, linear by Pennsylvania State University on 07/02/12. For personal use only. oscillator. Unlike weak nonresonant interactions, wcak resonant inter­ actions can cause significant energy transfer among wavetrains and pro­ 1 Annu. Rev. Fluid Mech. 1993.25:55-97. Downloaded from www.annualreviews.org foundly affect wavefie1d evolution. Early skepticism of Phillips' view was dispelled unequivocally by experiments presented in the companion papers of Longuet-Higgins & Smith (1966) and McGoldrick et al (1966). This experimental confirmationof RIT (resonant interaction theory) and RIT's general applicability to a variety of phenomena (Benney 1962) made it one of the principle catalysts for the rapid expansion in the understanding of nonlinear wave phenomena that has occurred during the last thirty years. See the discussion comments in Section 4, pages 163-200, of Ocean Wa ve Sp ectra I Proceedings of a Conference (1963) held in Easton, Maryland, May 1-4, 1961. 55 0066-4189/93/0115-0055$02.00 56 HAMMACK & HENDERSON Ten years have passed since Phillips (198 1a) presented a retrospective of resonant interaction theory which noted its maturity and suggested that it might be approaching its limits of usefulness.
    [Show full text]
  • Resonant Interactions of Surface and Internal Waves with Seabed Topography by Louis-Alexandre Couston a Dissertation Submitted I
    Resonant Interactions of Surface and Internal Waves with Seabed Topography By Louis-Alexandre Couston A dissertation submitted in partial satisfaction of the requirements for the degree of Doctorate of Philosophy in Engineering - Mechanical Engineering in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor Mohammad-Reza Alam, Chair Professor Ronald W. Yeung Professor Philip S. Marcus Professor Per-Olof Persson Spring 2016 Abstract Resonant Interactions of Surface and Internal Waves with Seabed Topography by Louis-Alexandre Couston Doctor of Philosophy in Engineering - Mechanical Engineering University of California, Berkeley Professor Mohammad-Reza Alam, Chair This dissertation provides a fundamental understanding of water-wave transformations over seabed corrugations in the homogeneous as well as in the stratified ocean. Contrary to a flat or mildly sloped seabed, over which water waves can travel long distances undisturbed, a seabed with small periodic variations can strongly affect the propagation of water waves due to resonant wave-seabed interactions{a phenomenon with many potential applications. Here, we investigate theoretically and with direct simulations several new types of wave transformations within the context of inviscid fluid theory, which are different than the classical wave Bragg reflection. Specifically, we show that surface waves traveling over seabed corrugations can become trapped and amplified, or deflected at a large angle (∼ 90◦) relative to the incident direction of propagation. Wave trapping is obtained between two sets of parallel corrugations, and we demonstrate that the amplification mechanism is akin to the Fabry-Perot resonance of light waves in optics. Wave deflection requires three-dimensional and bi-chromatic corrugations and is obtained when the surface and corrugation wavenumber vectors satisfy a newly found class I2 Bragg resonance condition.
    [Show full text]
  • Five-Wave Resonances in Deep Water Gravity Waves: Integrability, Numerical Simulations and Experiments
    Technological University Dublin ARROW@TU Dublin Articles School of Mathematics 2021 Five-Wave Resonances in Deep Water Gravity Waves: Integrability, Numerical Simulations and Experiments Dan Lucas Keele University Marc Perlin Texas A&M University Dian-Yong Liu Dalian Maritime University See next page for additional authors Follow this and additional works at: https://arrow.tudublin.ie/scschmatart Part of the Mathematics Commons Recommended Citation Lucas, D. et al. (2021) Five-WaveResonances in Deep Water Gravity Waves: Integrability, Numerical Simulations and Experiments. Fluids2021,6, 205. DOI:10.3390/fluids6060205 This Article is brought to you for free and open access by the School of Mathematics at ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License Authors Dan Lucas, Marc Perlin, Dian-Yong Liu, Shane Walsh, Rossen Ivanov, and Miguel D. Bustamante This article is available at ARROW@TU Dublin: https://arrow.tudublin.ie/scschmatart/308 fluids Article Five-Wave Resonances in Deep Water Gravity Waves: Integrability, Numerical Simulations and Experiments Dan Lucas 1 , Marc Perlin 2,†, Dian-Yong Liu 3,‡, Shane Walsh 4, Rossen Ivanov 5 and Miguel D. Bustamante 4,* 1 School of Computing and Mathematics, Keele University, Staffordshire ST5 5BG, UK; [email protected] 2 Department of Ocean Engineering,
    [Show full text]
  • Quantum Chaos in Rydberg Atoms In.Strong Fields by Hong Jiao
    Experimental and Theoretical Aspects of Quantum Chaos in Rydberg Atoms in.Strong Fields by Hong Jiao B.S., University of California, Berkeley (1987) M.S., California Institute of Technology (1989) Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 1996 @ Massachusetts Institute of Technology 1996. All rights reserved. Signature of Author. Department of Physics U- ge December 4, 1995 Certified by.. Daniel Kleppner Lester Wolfe Professor of Physics Thesis Supervisor Accepted by. ;AssAGiUS. rrS INSTITU It George F. Koster OF TECHNOLOGY Professor of Physics FEB 1411996 Chairman, Departmental Committee on Graduate Students LIBRARIES 8 Experimental and Theoretical Aspects of Quantum Chaos in Rydberg Atoms in Strong Fields by Hong Jiao Submitted to the Department of Physics on December 4, 1995, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract We describe experimental and theoretical studies of the connection between quantum and classical dynamics centered on the Rydberg atom in strong fields, a disorderly system. Primary emphasis is on systems with three degrees of freedom and also the continuum behavior of systems with two degrees of freedom. Topics include theoret- ical studies of classical chaotic ionization, experimental observation of bifurcations of classical periodic orbits in Rydberg atoms in parallel electric and magnetic fields, analysis of classical ionization and semiclassical recurrence spectra of the diamagnetic Rydberg atom in the positive energy region, and a statistical analysis of quantum manifestation of electric field induced chaos in Rydberg atoms in crossed electric and magnetic fields.
    [Show full text]
  • Formation of the Cassini Division -I. Shaping the Rings by Mimas Inward Migration Kévin Baillié, Benoît Noyelles, Valery Lainey, Sébastien Charnoz, Gabriel Tobie
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Formation of the Cassini Division -I. Shaping the rings by Mimas inward migration Kévin Baillié, Benoît Noyelles, Valery Lainey, Sébastien Charnoz, Gabriel Tobie To cite this version: Kévin Baillié, Benoît Noyelles, Valery Lainey, Sébastien Charnoz, Gabriel Tobie. Formation of the Cassini Division -I. Shaping the rings by Mimas inward migration. Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P - Oxford Open Option A, 2019, 486, pp.2933 - 2946. 10.1093/mnras/stz548. hal-02361684 HAL Id: hal-02361684 https://hal.archives-ouvertes.fr/hal-02361684 Submitted on 13 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MNRAS 486, 2933–2946 (2019) doi:10.1093/mnras/stz548 Advance Access publication 2019 February 25 Formation of the Cassini Division – I. Shaping the rings by Mimas inward migration Kevin´ Baillie,´ 1‹ Benoˆıt Noyelles,2,3 Valery´ Lainey,1,4 Sebastien´ Charnoz5 and Downloaded from https://academic.oup.com/mnras/article-abstract/486/2/2933/5364573 by Observatoire De Paris - Bibliotheque user on 16 May 2019 Gabriel Tobie6 1IMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universites,´ UPMC Univ Paris 06, Univ.
    [Show full text]
  • Arxiv:1901.04129V1 [Quant-Ph] 14 Jan 2019
    Phononic bandgap nano-acoustic cavity with ultralong phonon lifetime Gregory S. MacCabe,1, 2, ∗ Hengjiang Ren,1, 2, ∗ Jie Luo,1, 2 Justin D. Cohen,1, 2 Hengyun Zhou,1, 2, y Alp Sipahigil,1, 2 Mohammad Mirhosseini,1, 2 and Oskar Painter1, 2 1Kavli Nanoscience Institute, California Institute of Technology, Pasadena, California 91125, USA 2Institute for Quantum Information and Matter and Thomas J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA (Dated: January 15, 2019) We present measurements at millikelvin temperatures of the microwave-frequency acoustic prop- erties of a crystalline silicon nanobeam cavity incorporating a phononic bandgap clamping structure for acoustic confinement. Utilizing pulsed laser light to excite a co-localized optical mode of the nanobeam cavity, we measure the dynamics of cavity acoustic modes with single-phonon sensitivity. Energy ringdown measurements for the fundamental 5 GHz acoustic mode of the cavity shows an exponential increase in phonon lifetime versus number of periods in the phononic bandgap shield, increasing up to τph;0 ≈ 1:5 seconds. This ultralong lifetime, corresponding to an effective phonon propagation length of several kilometers, is found to be consistent with damping from non-resonant two-level system defects on the surface of the silicon device. Potential applications of these ultra- coherent nanoscale mechanical resonators range from tests of various collapse models of quantum mechanics to miniature quantum memory elements in hybrid superconducting quantum circuits. In optics, geometric structuring at the nanoscale has To date, far less attention has been paid to the impact become a powerful method for modifying the electromag- of geometry and phononic bandgaps on acoustic mate- netic properties of a bulk material, leading to metamate- rial absorption [20, 21].
    [Show full text]
  • The Coherent Interaction Between Matter and Radiation
    EPJ manuscript No. (will be inserted by the editor) The coherent interaction between matter and radiation A tutorial on the Jaynes-Cummings model Matteo Binaa Dipartimento di Scienza e Alta Tecnologia, Universit`adegli Studi dell’Insubria, Via Valleggio 11, I-22100 Como, Italy. Abstract. The Jaynes-Cummings (JC) model is a milestone in the the- ory of coherent interaction between a two-level system and a single bosonic field mode. This tutorial aims to give a complete description of the model, analyzing the Hamiltonian of the system, its eigenvalues and eigestates, in order to characterize the dynamics of system and sub- systems. The Rabi oscillations, together with the collapse and revival effects, are distinguishing features of the JC model and are important for applications in Quantum Information theory. The framework of cav- ity quantum electrodynamics (cQED) is chosen and two fundamental experiments on the coherent interaction between Rydberg atoms and a single cavity field mode are described. 1 Introduction The JC model was originally proposed in 1963 by Edwin Jaynes and Fred Cummings [1] in order to study the relationship between the quantum theory of radiation and the semi-classical theory in describing the phenomenon of spontaneous emission. In the semi-classical theory of atom-field interaction, the field is treated as a definite function of time rather than as an operator, whereas the atom is quantized. The semi-classical theory can explain many phenomena that are observed in modern optics, for example the existence of Rabi cycles in atomic excitation probabilities for radiation fields with sharply defined energy (narrow bandwidth).
    [Show full text]
  • Revisiting the Generation of Internal Waves by Resonant Interaction with Surface Waves
    AUGUST 2016 O L B E R S A N D E D E N 2335 Revisiting the Generation of Internal Waves by Resonant Interaction with Surface Waves DIRK OLBERS Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany CARSTEN EDEN Institut fur€ Meereskunde, Universitat€ Hamburg, Hamburg, Germany (Manuscript received 1 April 2015, in final form 29 December 2015) ABSTRACT Two surface waves can interact to produce an internal gravity wave by nonlinear resonant coupling. The process has been called spontaneous creation (SC) because it operates without internal waves being initially present. Previous studies have shown that the generated internal waves have high frequency close to the local Brunt–Väisälä frequency and wavelengths that are much larger than those of the participating surface waves, and that the spectral transfer rate of energy to the internal wave field is small compared to other generation processes. The aim of the present analysis is to provide a global map of the energy transfer into the internal 2 wave field by surface–internal wave interaction, which is found to be about 10 3 TW in total, based on a realistic wind-sea spectrum (depending on wind speed), mixed layer depths, and stratification below the mixed layer taken from a state-of-the-art numerical ocean model. Unlike previous calculations of the spectral transfer rate based on a vertical mode decomposition, the authors use an analytical framework that directly derives the energy flux of generated internal waves radiating downward from the mixed layer base. Since the radiated waves are of high frequency, they are trapped and dissipated in the upper ocean.
    [Show full text]
  • Nondegenerate Bright Solitons in Coupled Nonlinear Schrödinger Systems: Recent Developments on Optical Vector Solitons
    Article Nondegenerate bright solitons in coupled nonlinear Schrödinger systems: Recent developments on optical vector solitons S Stalin 1,† , R Ramakrishnan 1,† and M Lakshmanan 1,†* 1 Department of Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli - 620024, Tamil Nadu, India * Correspondence: [email protected]; [email protected] † These authors contributed equally to this work. Abstract: Nonlinear dynamics of an optical pulse or a beam continue to be one of the active areas of research in the field of optical solitons. Especially, in multi-mode fibers or fiber arrays and photorefractive materials, the vector solitons display rich nonlinear phenomena. Due to their fascinating and intriguing novel properties, the theory of optical vector solitons has been developed considerably both from theoretical and experimental points of view leading to soliton based promising potential applications. Mathematically, the dynamics of vector solitons can be understood from the framework of coupled nonlinear Schrödinger (CNLS) family of equations. In the recent past, many types of vector solitons have been identified both in the integrable and non-integrable CNLS framework. In this article, we review some of the recent progress in understanding the dynamics of the so called nondegenerate vector bright solitons in nonlinear optics, where the fundamental soliton can have more than one propagation constant. We address this theme by considering the integrable two coupled nonlinear Schrödinger family of equations, namely Manakov system, mixed 2-CNLS system (or focusing-defocusing CNLS system), coherently coupled nonlinear Schrödinger (CCNLS) system, generalized coupled nonlinear Schrödinger (GCNLS) system and two-component long-wave short-wave resonance interaction (LSRI) system.
    [Show full text]
  • Fast and Slow Resonant Triads in the Two Layer Rotating Shallow Water Equations
    This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1 Fast and slow resonant triads in the two layer rotating shallow water equations Alex Owen1y, Roger Grimshaw1 and Beth Wingate 1 1College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter EX4 4QF, UK (Received xx; revised xx; accepted xx) In this paper we examine triad resonances in a rotating shallow water system when there are two free interfaces. This allows for an examination in a relatively simple model of the interplay between baroclinic and barotropic dynamics in a context where there is also a geostrophic mode. In contrast to the much-studied one-layer rotating shallow water system, we find that as well as the usual slow geostrophic mode, there are now two fast waves, a barotropic mode and a baroclinic mode. This feature permits triad resonances to occur between three fast waves, with a mixture of barotropic and baroclinic modes, an aspect which cannot occur in the one-layer system. There are now also two branches of the slow geostrophic mode with a repeated branch of the dispersion relation. The consequences are explored in a derivation of the full set of triad interaction equations, using a multi-scale asymptotic expansion based on a small amplitude parameter. The derived nonlinear interaction coefficients are confirmed using energy and enstrophy conservation. These triad interaction equations are explored with an emphasis on the parameter regime with small Rossby and Froude numbers. Key words: Authors should not enter keywords on the manuscript, as these must be chosen by the author during the online submission process and will then be added during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfm- keywords.pdf for the full list) 1.
    [Show full text]
  • Aee4ff06fef65922d6baa72f6a04f
    International Journal of Environmental Research and Public Health Article Environmental Light and Its Relationship with Electromagnetic Resonances of Biomolecular Interactions, as Predicted by the Resonant Recognition Model Irena Cosic 1,2,*, Drasko Cosic 2 and Katarina Lazar 2 1 College of Science, Engineering and Health, RMIT University, La Trobe Street, Melbourne, Victoria 3000, Australia 2 AMALNA Consulting, 46 Second St., Black Rock, Victoria 3193, Australia; [email protected] (D.C.); [email protected] (K.L.) * Correspondence: [email protected]; Tel.: +61-418-127-190 Academic Editor: Paul B. Tchounwou Received: 23 May 2016; Accepted: 27 June 2016; Published: 29 June 2016 Abstract: The meaning and influence of light to biomolecular interactions, and consequently to health, has been analyzed using the Resonant Recognition Model (RRM). The RRM proposes that biological processes/interactions are based on electromagnetic resonances between interacting biomolecules at specific electromagnetic frequencies within the infra-red, visible and ultra-violet frequency ranges, where each interaction can be identified by the certain frequency critical for resonant activation of specific biological activities of proteins and DNA. We found that: (1) the various biological interactions could be grouped according to their resonant frequency into super families of these functions, enabling simpler analyses of these interactions and consequently analyses of influence of electromagnetic frequencies to health; (2) the RRM spectrum of all analyzed biological functions/interactions is the same as the spectrum of the sun light on the Earth, which is in accordance with fact that life is sustained by the sun light; (3) the water is transparent to RRM frequencies, enabling proteins and DNA to interact without loss of energy; (4) the spectrum of some artificial sources of light, as opposed to the sun light, do not cover the whole RRM spectrum, causing concerns for disturbance to some biological functions and consequently we speculate that it can influence health.
    [Show full text]
  • The Three-Wave Resonant Interaction Equations: Spectral and Numerical Methods Antonio Degasperis, Matteo Conforti, Fabio Baronio, Stefan Wabnitz, Sara Lombardo
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication The Three-Wave Resonant Interaction Equations: Spectral and Numerical Methods Antonio Degasperis, Matteo Conforti, Fabio Baronio, Stefan Wabnitz, Sara Lombardo To cite this version: Antonio Degasperis, Matteo Conforti, Fabio Baronio, Stefan Wabnitz, Sara Lombardo. The Three- Wave Resonant Interaction Equations: Spectral and Numerical Methods. Letters in Mathematical Physics, Springer Verlag, 2011, 96 (1-3), pp.367-403. 10.1007/s11005-010-0430-4. hal-02395151 HAL Id: hal-02395151 https://hal.archives-ouvertes.fr/hal-02395151 Submitted on 5 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The three wave resonant interaction equations: spectral and numerical methods Antonio Degasperis2, Matteo Conforti1, Fabio Baronio1, Stefan Wabnitz1, Sara Lombardo3 1CNISM and Dipartimento di Ingegneria dell’Informazione, Universit`adi Brescia, Italy E-mail: [email protected] , [email protected]
    [Show full text]