Resonant Interactions of Surface and Internal Waves with Seabed Topography by Louis-Alexandre Couston a Dissertation Submitted I

Total Page:16

File Type:pdf, Size:1020Kb

Resonant Interactions of Surface and Internal Waves with Seabed Topography by Louis-Alexandre Couston a Dissertation Submitted I Resonant Interactions of Surface and Internal Waves with Seabed Topography By Louis-Alexandre Couston A dissertation submitted in partial satisfaction of the requirements for the degree of Doctorate of Philosophy in Engineering - Mechanical Engineering in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor Mohammad-Reza Alam, Chair Professor Ronald W. Yeung Professor Philip S. Marcus Professor Per-Olof Persson Spring 2016 Abstract Resonant Interactions of Surface and Internal Waves with Seabed Topography by Louis-Alexandre Couston Doctor of Philosophy in Engineering - Mechanical Engineering University of California, Berkeley Professor Mohammad-Reza Alam, Chair This dissertation provides a fundamental understanding of water-wave transformations over seabed corrugations in the homogeneous as well as in the stratified ocean. Contrary to a flat or mildly sloped seabed, over which water waves can travel long distances undisturbed, a seabed with small periodic variations can strongly affect the propagation of water waves due to resonant wave-seabed interactions{a phenomenon with many potential applications. Here, we investigate theoretically and with direct simulations several new types of wave transformations within the context of inviscid fluid theory, which are different than the classical wave Bragg reflection. Specifically, we show that surface waves traveling over seabed corrugations can become trapped and amplified, or deflected at a large angle (∼ 90◦) relative to the incident direction of propagation. Wave trapping is obtained between two sets of parallel corrugations, and we demonstrate that the amplification mechanism is akin to the Fabry-Perot resonance of light waves in optics. Wave deflection requires three-dimensional and bi-chromatic corrugations and is obtained when the surface and corrugation wavenumber vectors satisfy a newly found class I2 Bragg resonance condition. Internal waves propagating over seabed topography in a stratified fluid can exhibit similar wave trapping and deflection behaviors, but more surprising and intricate internal wave dynamics can also be obtained. Unlike surface waves, internal waves interacting with monochromatic seabed corrugations can simultaneously generate many new waves with different wavenumbers and directions of propagation{a phenomenon which we call chain resonance. Here, we demonstrate that the chain resonance leads to significant energy transfer from long internal waves to short internal waves for almost all angles of the incident waves relative to the orientation of the oblique seabed corrugations. Since short internal waves are prone to breaking, the resonance mechanism, therefore, may have important consequences on the spatial variability of ocean mixing and energy dissipation. Potential applications of the theory of resonant wave-seabed interactions for wave energy extraction and coastal protection are also discussed. 1 A` mes parents, mes fr`eres et ma soeur. Aux penseurs et r^eveursattir´espar les sciences, la d´ecouverte et l'Univers. \La science cherche le mouvement perp´etuel.Elle l'a trouv´e; c'est elle-m^eme.[...] La colossale machine Science ne se repose jamais ; elle n'est jamais satisfaite ; elle est insatiable du mieux, que l'absolu ignore. " Victor Hugo, William Shakespeare (L'Art et la science), 1864 i Acknowledgments It has been an honor and privilege to study at the University of California, Berkeley, alongside professors, researchers, and friends with such impressive and diverse backgrounds, interests, and aspirations. My own research, and the joy I had conducting it, mostly hinges on one person, Professor Mohammad-Reza Alam, who was my research advisor for the past four years and whom I would like to most sincerely thank. Reza is a crafty, sharp, and pragmatic researcher. Adding up the number of hours we spent talking about research, life, and how to write papers, proposals, and news articles would be disconcerting{as it was very many. Reza was relentless in asking for smarter thinking and better delivery, which was frustrating at times, but his persistence paid off as I now feel confident to go out on my own and embrace new, thrilling scientific challenges. I hope that Reza's pragmatism and understanding of what it takes to become a happy and successful researcher in a highly paced, competitive field will be transmitted to all new students of our Theoretical and Applied Fluid Dynamics Lab. My scientific journey at Berkeley was also enriched thanks to a number of professors in the Departments of Mechanical Engineering and Mathematics. I would like to begin by ex- pressing my sincere gratitude to Professor Ronald W. Yeung, who accepted my application to join the Ocean Engineering program at Berkeley, which he oversees. I still vividly remem- ber my excitement before, during, and after our first phone call in February 2011, as well as during my first interactions with him in my hydrodynamics classes. Several professors made themselves available after class to discuss and help me with my research projects. Professors Per-Olof Persson, John Strain, and Jon Wilkening in Mathematics always had their doors open and have been inspiring forces in applied mathematics. In Mechanical Engineering, I found the teaching styles of Professors Tarek I. Zohdi and Philip S. Marcus most interesting, in addition to being very effective; one thing I'll remember for sure is that in numerics, nothing is magic. I would also like to thank Maysamreza Chamanzar and Professor Mir Abbas Jalali who co-authored two papers included in this dissertation. They shared their enthusiasm and expertise about my research, but also about their interests in photonics and planetary sciences. Finally, I wish to thank the professors on my prelims, quals, and disser- tation committees{Ronald W. Yeung, Philip S. Marcus, Omer¨ Sava¸s,Per-Olof Persson, and M.-Reza Alam; thank you for taking the time to assist me, at every step along the way, in completing my PhD degree requirements. It is my intent to stay close to my Bay Area friends, who made this experience delightful and adventurous. Special thanks go to my lab mates Yong Liang and Qiuchen Guo who co- authored two of my papers, as well as to Ahmad Zareei, Joel Tchoufag and Farid Karimpour; to my CMML friends Yichen Jiang, Daniel Grieb, Daewoong Son and Farshad Madhi; and to Anna Lieb and Fran¸coisSoubiran. They have all been very helpful throughout my graduate studies. I will greatly miss my housemates Raja Sutherland, Loni Gray, TJ Sutherland, Jaclyn Leaver, and Evan Pease; what an amazing American family. Fortunately, I will keep joyful memories of shared moments with them, as well as of my friends Soazig Kaam, Christopher Lalau-Keraly, Benjamin Fildier, Karina Cucchi, Sam Kanner, Emma Dobbins, Siva Rama Satyam Bandaru, Katya Cherukumilli, Gabrielle Boisrame, Gopal Penny, and ii Clare Loughran. I am lucky and proud to count all of these amazing people as very dear friends in this world. It is heartbreaking to leave California, where I have had such a wonderful time. Fortu- nately, I owe the highlights of these past five years to being with Caroline Delaire, who I will continue my adventures with. There are no words to describe how important Caroline is to both my personal and professional life{she is driven in her own work, in her relations with other people, and in her fight for equality{and because of her, I rest assured that there is some good in this world, and that the good is strong enough that it will bring happiness to those without it. It is one of my life goals to give her the strength to keep going, for she will change the world for the better. Last but not least, I would like to thank my parents, Alexandra and Vincent Couston; my brothers, Geoffrey and Hubert; my sister Mathilde; and all of my extended family members for their everlasting love and support during this experience far from home. I have always and will continue to crave the moments we get to spend together; they provide me with a warm and comforting feeling that transcends the necessities of life, the difficult times, and my own deepest expectations. Resonant Interactions of Surface and Internal Waves with Seabed Topography c 2016 by Louis-Alexandre Couston iii iv Contents List of Figures vii List of Tables xv 1 Introduction 1 1.1 Introductory remarks . .1 1.2 Theory of water-wave propagation . .2 1.3 Linear wave theory in intermediate water depth . .5 1.4 Resonant wave{seabed interactions . 10 1.5 Dissertation outline . 11 2 Fabry-Perot resonance of water waves 13 2.1 Introduction . 13 2.2 Bragg mirrors for water waves . 14 2.3 Fabry-Perot resonance . 17 2.4 Conclusions . 21 3 Shore protection by oblique seabed bars 25 3.1 Introduction . 25 3.2 Problem formulation . 27 3.3 Class I Bragg deflection for shore protection . 31 3.4 Class I2 Bragg deflection for shore protection . 34 3.4.1 Closed-form solution far from the patch's plane of symmetry . 34 3.4.2 Effect of the patch's plane of symmetry . 37 3.5 Direct simulation . 42 3.5.1 Cross-validation . 42 3.5.2 Effect of detuning and protection efficiency . 43 3.5.3 Perpendicular deflection . 48 3.6 Conclusions . 50 4 Oblique chain resonance of internal waves 55 4.1 Introduction . 55 4.2 Problem formulation . 58 4.2.1 Governing equation and the dispersion relation . 58 4.2.2 Chain resonance conditions . 60 4.3 Three-dimensional multiple-scale analysis . 63 4.3.1 Derivation of the envelope equations . 63 4.3.2 Solution method at the steady state . 67 4.4 Results and discussion . 69 4.4.1 Oblique chain resonance with three perfect resonances . 70 4.4.2 Chain resonance at all corrugation angles . 72 4.4.3 Spatial dynamics of chain resonance . 74 v Contents 4.4.4 Energy flux re-distribution .
Recommended publications
  • Slow Persistent Mixing in the Abyss
    Reference: van Haren, H., 2020. Slow persistent mixing in the abyss. Ocean Dyn., 70, 339- 352. Slow persistent mixing in the abyss by Hans van Haren* Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, P.O. Box 59, 1790 AB Den Burg, the Netherlands. *e-mail: [email protected] Abstract Knowledge about deep-ocean turbulent mixing and flow circulation above abyssal hilly plains is important to quantify processes for the modelling of resuspension and dispersal of sediments in areas where turbulence sources are expected to be relatively weak. Turbulence may disperse sediments from artificial deep-sea mining activities over large distances. To quantify turbulent mixing above the deep-ocean floor around 4000 m depth, high-resolution moored temperature sensor observations have been obtained from the near-equatorial southeast Pacific (7°S, 88°W). Models demonstrate low activity of equatorial flow dynamics, internal tides and surface near-inertial motions in the area. The present observations demonstrate a Conservative Temperature difference of about 0.012°C between 7 and 406 meter above the bottom (hereafter, mab, for short), which is a quarter of the adiabatic lapse rate. The very weakly stratified waters with buoyancy periods between about six hours and one day allow for slowly varying mixing. The calculated turbulence dissipation rate values are half to one order of magnitude larger than those from open-ocean turbulent exchange well away from bottom topography and surface boundaries. In the deep, turbulent overturns extend up to 100 m tall, in the ocean-interior, and also reach the lowest sensor. The overturns are governed by internal-wave-shear and -convection.
    [Show full text]
  • Ocean Acoustic Tomography Has Heat Content, Velocity, and Vorticity in the North Pacific Thermohaline Circulation and Climate
    B. Dushaw, G. Bold, C.-S. Chiu, J. Colosi, B. Cornuelle, Y. Desaubies, M. Dzieciuch, A. Forbes, F. Gaillard, Brian Dushaw, Bruce Howe A. Gavrilov, J. Gould, B. Howe, M. Lawrence, J. Lynch, D. Menemenlis, J. Mercer, P. Mikhalevsky, W. Munk, Applied Physics Laboratory and School of Oceanography I. Nakano, F. Schott, U. Send, R. Spindel, T. Terre, P. Worcester, C. Wunsch, Observing the Ocean in the 2000’s: College of Ocean and Fisheries Sciences A Strategy for the Role of Acoustic Tomography in Ocean Climate Observation. In: Observing the Ocean Ocean Acoustic Tomography: 1970–21st Century University of Washington Ocean Acoustic Tomography: 1970–21st Century http://staff.washington.edu/dushaw in the 21st Century, C.J. Koblinsky and N.R. Smith (eds), Bureau of Meteorology, Melbourne, Australia, 2001. ABSTRACT PROCESS EXPERIMENTS Deep Convection—Greenland and Labrador Seas ATOC—Acoustic Thermometry of Ocean Climate Oceanic convection connects the surface ocean to the deep ocean with important consequences for the global Since it was first proposed in the late 1970’s (Munk and Wunsch 1979, 1982), ocean acoustic tomography has Heat Content, Velocity, and Vorticity in the North Pacific thermohaline circulation and climate. Deep convection occurs in only a few locations in the world, and is difficult The goal of the ATOC project is to measure the ocean temperature on basin scales and to understand the evolved into a remote sensing technique employed in a wide variety of physical settings. In the context of to observe. Acoustic arrays provide both the spatial coverage and temporal resolution necessary to observe variability. The acoustic measurements inherently average out mesoscale and internal wave noise that long-term oceanic climate change, acoustic tomography provides integrals through the mesoscale and other The 1987 reciprocal acoustic tomography experiment (RTE87) obtained unique measurements of gyre-scale deep-water formation.
    [Show full text]
  • Internal Tides in the Solomon Sea in Contrasted ENSO Conditions
    Ocean Sci., 16, 615–635, 2020 https://doi.org/10.5194/os-16-615-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Internal tides in the Solomon Sea in contrasted ENSO conditions Michel Tchilibou1, Lionel Gourdeau1, Florent Lyard1, Rosemary Morrow1, Ariane Koch Larrouy1, Damien Allain1, and Bughsin Djath2 1Laboratoire d’Etude en Géophysique et Océanographie Spatiales (LEGOS), Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France 2Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, Geesthacht, Germany Correspondence: Michel Tchilibou ([email protected]), Lionel Gourdeau ([email protected]), Florent Lyard (fl[email protected]), Rosemary Morrow ([email protected]), Ariane Koch Larrouy ([email protected]), Damien Allain ([email protected]), and Bughsin Djath ([email protected]) Received: 1 August 2019 – Discussion started: 26 September 2019 Revised: 31 March 2020 – Accepted: 2 April 2020 – Published: 15 May 2020 Abstract. Intense equatorward western boundary currents the tidal effects over a longer time. However, when averaged transit the Solomon Sea, where active mesoscale structures over the Solomon Sea, the tidal effect on water mass transfor- exist with energetic internal tides. In this marginal sea, the mation is an order of magnitude less than that observed at the mixing induced by these features can play a role in the ob- entrance and exits of the Solomon Sea. These localized sites served water mass transformation. The objective of this paper appear crucial for diapycnal mixing, since most of the baro- is to document the M2 internal tides in the Solomon Sea and clinic tidal energy is generated and dissipated locally here, their impacts on the circulation and water masses, based on and the different currents entering/exiting the Solomon Sea two regional simulations with and without tides.
    [Show full text]
  • Resonant Interactions Among Surface Water Waves
    Annu. Rev. Fluid Mech. 1993. 25: 55-97 Copyright © /993 by Annual Reviews Inc. All rights reserved RESONANT INTERACTIONS AMONG SURFACE WATER WAVES J. L. Hammack Departments of Geosciences and Mathematics, The Pennsylvania State University, University Park, Pennsylvania 16802 Henderson D. M. Department of Mathematics, The Pennsylvania State University, University Park, Pennsylvania 16802 KEY WORDS: nonlinear dynamics, gravity-capillary waves, dispersive waves INTRODUCTION Thirty years have passed since Phillips (1960) pioneered a view of weak, nonlinear interactions among gravity waves on the surface of deep water. His view emphasized the special role of "resonant" interactions, so-called because they have the mathematical form of a resonantly forced, linear by Pennsylvania State University on 07/02/12. For personal use only. oscillator. Unlike weak nonresonant interactions, wcak resonant inter­ actions can cause significant energy transfer among wavetrains and pro­ 1 Annu. Rev. Fluid Mech. 1993.25:55-97. Downloaded from www.annualreviews.org foundly affect wavefie1d evolution. Early skepticism of Phillips' view was dispelled unequivocally by experiments presented in the companion papers of Longuet-Higgins & Smith (1966) and McGoldrick et al (1966). This experimental confirmationof RIT (resonant interaction theory) and RIT's general applicability to a variety of phenomena (Benney 1962) made it one of the principle catalysts for the rapid expansion in the understanding of nonlinear wave phenomena that has occurred during the last thirty years. See the discussion comments in Section 4, pages 163-200, of Ocean Wa ve Sp ectra I Proceedings of a Conference (1963) held in Easton, Maryland, May 1-4, 1961. 55 0066-4189/93/0115-0055$02.00 56 HAMMACK & HENDERSON Ten years have passed since Phillips (198 1a) presented a retrospective of resonant interaction theory which noted its maturity and suggested that it might be approaching its limits of usefulness.
    [Show full text]
  • Five-Wave Resonances in Deep Water Gravity Waves: Integrability, Numerical Simulations and Experiments
    Technological University Dublin ARROW@TU Dublin Articles School of Mathematics 2021 Five-Wave Resonances in Deep Water Gravity Waves: Integrability, Numerical Simulations and Experiments Dan Lucas Keele University Marc Perlin Texas A&M University Dian-Yong Liu Dalian Maritime University See next page for additional authors Follow this and additional works at: https://arrow.tudublin.ie/scschmatart Part of the Mathematics Commons Recommended Citation Lucas, D. et al. (2021) Five-WaveResonances in Deep Water Gravity Waves: Integrability, Numerical Simulations and Experiments. Fluids2021,6, 205. DOI:10.3390/fluids6060205 This Article is brought to you for free and open access by the School of Mathematics at ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License Authors Dan Lucas, Marc Perlin, Dian-Yong Liu, Shane Walsh, Rossen Ivanov, and Miguel D. Bustamante This article is available at ARROW@TU Dublin: https://arrow.tudublin.ie/scschmatart/308 fluids Article Five-Wave Resonances in Deep Water Gravity Waves: Integrability, Numerical Simulations and Experiments Dan Lucas 1 , Marc Perlin 2,†, Dian-Yong Liu 3,‡, Shane Walsh 4, Rossen Ivanov 5 and Miguel D. Bustamante 4,* 1 School of Computing and Mathematics, Keele University, Staffordshire ST5 5BG, UK; [email protected] 2 Department of Ocean Engineering,
    [Show full text]
  • Quantum Chaos in Rydberg Atoms In.Strong Fields by Hong Jiao
    Experimental and Theoretical Aspects of Quantum Chaos in Rydberg Atoms in.Strong Fields by Hong Jiao B.S., University of California, Berkeley (1987) M.S., California Institute of Technology (1989) Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 1996 @ Massachusetts Institute of Technology 1996. All rights reserved. Signature of Author. Department of Physics U- ge December 4, 1995 Certified by.. Daniel Kleppner Lester Wolfe Professor of Physics Thesis Supervisor Accepted by. ;AssAGiUS. rrS INSTITU It George F. Koster OF TECHNOLOGY Professor of Physics FEB 1411996 Chairman, Departmental Committee on Graduate Students LIBRARIES 8 Experimental and Theoretical Aspects of Quantum Chaos in Rydberg Atoms in Strong Fields by Hong Jiao Submitted to the Department of Physics on December 4, 1995, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract We describe experimental and theoretical studies of the connection between quantum and classical dynamics centered on the Rydberg atom in strong fields, a disorderly system. Primary emphasis is on systems with three degrees of freedom and also the continuum behavior of systems with two degrees of freedom. Topics include theoret- ical studies of classical chaotic ionization, experimental observation of bifurcations of classical periodic orbits in Rydberg atoms in parallel electric and magnetic fields, analysis of classical ionization and semiclassical recurrence spectra of the diamagnetic Rydberg atom in the positive energy region, and a statistical analysis of quantum manifestation of electric field induced chaos in Rydberg atoms in crossed electric and magnetic fields.
    [Show full text]
  • The Impact of Fortnightly Stratification Variability on the Generation Of
    Journal of Marine Science and Engineering Article The Impact of Fortnightly Stratification Variability on the Generation of Baroclinic Tides in the Luzon Strait Zheen Zhang 1,*, Xueen Chen 1 and Thomas Pohlmann 2 1 College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China; [email protected] 2 Centre for Earth System Research and Sustainability, Institute of Oceanography, University of Hamburg, 20146 Hamburg, Germany; [email protected] * Correspondence: [email protected] Abstract: The impact of fortnightly stratification variability induced by tide–topography interaction on the generation of baroclinic tides in the Luzon Strait is numerically investigated using the MIT general circulation model. The simulation shows that advection of buoyancy by baroclinic flows results in daily oscillations and a fortnightly variability in the stratification at the main generation site of internal tides. As the stratification for the whole Luzon Strait is periodically redistributed by these flows, the energy analysis indicates that the fortnightly stratification variability can significantly affect the energy transfer between barotropic and baroclinic tides. Due to this effect on stratification variability by the baroclinic flows, the phases of baroclinic potential energy variability do not match the phase of barotropic forcing in the fortnight time scale. This phenomenon leads to the fact that the maximum baroclinic tides may not be generated during the maximum barotropic forcing. Therefore, a significant impact of stratification variability on the generation of baroclinic tides is demonstrated Citation: Zhang, Z.; Chen, X.; by our modeling study, which suggests a lead–lag relation between barotropic tidal forcing and Pohlmann, T. The Impact of maximum baroclinic response in the Luzon Strait within the fortnightly tidal cycle.
    [Show full text]
  • On the Fraction of Internal Tide Energy Dissipated Near Topography
    On the Fraction of Internal Tide Energy Dissipated Near Topography Louis C. St. Laurent Department of Oceanography, Florida State University, Tallahassee, Florida Jonathan D. Nash College of Oceanic and Atmospheric Science, Oregon State University, Corvallis, Oregon Abstract. Internal tides have been implicated as a major source of me- chanical energy for mixing in the ocean interior. Indeed, microstructure and tracer measurements have indicated that enhanced turbulence levels occur near topography where internal tides are generated. However, the details of the energy budget and the mechanisms by which energy is transferred from the internal tide to turbulence have been uncertain. It now seems that the energy levels associated with locally enhanced mixing near topography may constitute only a small fraction of the available internal tide energy flux. In this study, the generation, radiation, and energy dissipation of deep ocean internal tides are examined. Properties of the internal tide at the Mid-Atlantic Ridge and Hawaiian Ridge are considered. It is found that most internal tide energy is generated as low modes. The Richardson number of the generated internal tide typically exceeds unity for these motions, so direct shear instability of the generated waves is not the dominant energy transfer mechanism. It also seems that wave-wave interactions are ineffective at transferring energy from the large wavelengths that dominate the energy flux. Instead, it seems that much of the generated energy radiates away from the generation site in low mode waves. These low modes must dissipate somewhere in the ocean, though this likely occurs over O(1000 km) distances as the waves propagate.
    [Show full text]
  • Formation of the Cassini Division -I. Shaping the Rings by Mimas Inward Migration Kévin Baillié, Benoît Noyelles, Valery Lainey, Sébastien Charnoz, Gabriel Tobie
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Formation of the Cassini Division -I. Shaping the rings by Mimas inward migration Kévin Baillié, Benoît Noyelles, Valery Lainey, Sébastien Charnoz, Gabriel Tobie To cite this version: Kévin Baillié, Benoît Noyelles, Valery Lainey, Sébastien Charnoz, Gabriel Tobie. Formation of the Cassini Division -I. Shaping the rings by Mimas inward migration. Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P - Oxford Open Option A, 2019, 486, pp.2933 - 2946. 10.1093/mnras/stz548. hal-02361684 HAL Id: hal-02361684 https://hal.archives-ouvertes.fr/hal-02361684 Submitted on 13 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MNRAS 486, 2933–2946 (2019) doi:10.1093/mnras/stz548 Advance Access publication 2019 February 25 Formation of the Cassini Division – I. Shaping the rings by Mimas inward migration Kevin´ Baillie,´ 1‹ Benoˆıt Noyelles,2,3 Valery´ Lainey,1,4 Sebastien´ Charnoz5 and Downloaded from https://academic.oup.com/mnras/article-abstract/486/2/2933/5364573 by Observatoire De Paris - Bibliotheque user on 16 May 2019 Gabriel Tobie6 1IMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universites,´ UPMC Univ Paris 06, Univ.
    [Show full text]
  • Internal Tide Nonstationarity and Wave–Mesoscale Interactions in the Tasman Sea
    OCTOBER 2020 S A V A G E E T A L . 2931 Internal Tide Nonstationarity and Wave–Mesoscale Interactions in the Tasman Sea ANNA C. SAVAGE AND AMY F. WATERHOUSE Marine Physical Laboratory, Scripps Institution of Oceanography, La Jolla, California SAMUEL M. KELLY Large Lakes Observatory and Physics and Astronomy Department, University of Minnesota–Duluth, Duluth, Minnesota (Manuscript received 19 November 2019, in final form 13 July 2020) ABSTRACT Internal tides, generated by barotropic tides flowing over rough topography, are a primary source of energy into the internal wave field. As internal tides propagate away from generation sites, they can dephase from the equilibrium tide, becoming nonstationary. Here, we examine how low-frequency quasigeostrophic background flows scatter and dephase internal tides in the Tasman Sea. We demonstrate that a semi-idealized internal tide model [the Coupled-Mode Shallow Water model (CSW)] must include two background flow effects to replicate the in situ internal tide energy fluxes observed during the Tasmanian Internal Tide Beam Experiment (TBeam). The first effect is internal tide advection by the background flow, which strongly de- pends on the spatial scale of the background flow and is largest at the smaller scales resolved in the back- ground flow model (i.e., 50–400 km). Internal tide advection is also shown to scatter internal tides from 2 vertical mode-1 to mode-2 at a rate of about 1 mW m 2. The second effect is internal tide refraction due to background flow perturbations to the mode-1 eigenspeed. This effect primarily dephases the internal tide, 2 attenuating stationary energy at a rate of up to 5 mW m 2.
    [Show full text]
  • Arxiv:1901.04129V1 [Quant-Ph] 14 Jan 2019
    Phononic bandgap nano-acoustic cavity with ultralong phonon lifetime Gregory S. MacCabe,1, 2, ∗ Hengjiang Ren,1, 2, ∗ Jie Luo,1, 2 Justin D. Cohen,1, 2 Hengyun Zhou,1, 2, y Alp Sipahigil,1, 2 Mohammad Mirhosseini,1, 2 and Oskar Painter1, 2 1Kavli Nanoscience Institute, California Institute of Technology, Pasadena, California 91125, USA 2Institute for Quantum Information and Matter and Thomas J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA (Dated: January 15, 2019) We present measurements at millikelvin temperatures of the microwave-frequency acoustic prop- erties of a crystalline silicon nanobeam cavity incorporating a phononic bandgap clamping structure for acoustic confinement. Utilizing pulsed laser light to excite a co-localized optical mode of the nanobeam cavity, we measure the dynamics of cavity acoustic modes with single-phonon sensitivity. Energy ringdown measurements for the fundamental 5 GHz acoustic mode of the cavity shows an exponential increase in phonon lifetime versus number of periods in the phononic bandgap shield, increasing up to τph;0 ≈ 1:5 seconds. This ultralong lifetime, corresponding to an effective phonon propagation length of several kilometers, is found to be consistent with damping from non-resonant two-level system defects on the surface of the silicon device. Potential applications of these ultra- coherent nanoscale mechanical resonators range from tests of various collapse models of quantum mechanics to miniature quantum memory elements in hybrid superconducting quantum circuits. In optics, geometric structuring at the nanoscale has To date, far less attention has been paid to the impact become a powerful method for modifying the electromag- of geometry and phononic bandgaps on acoustic mate- netic properties of a bulk material, leading to metamate- rial absorption [20, 21].
    [Show full text]
  • Continuous Seiche in Bays and Harbors
    Manuscript prepared for Ocean Sci. with version 2014/07/29 7.12 Copernicus papers of the LATEX class copernicus.cls. Date: 14 February 2016 Continuous seiche in bays and harbors J. Park1, J. MacMahan2, W. V. Sweet3, and K. Kotun1 1National Park Service, 950 N. Krome Ave, Homestead, FL, USA 2Naval Postgraduate School, 833 Dyer Rd., Monterey, CA 93943, USA 3NOAA, 1305 East West Hwy, Silver Spring, MD, USA Correspondence to: J. Park ([email protected]) Abstract. Seiches are often considered a transitory phenomenon wherein large amplitude water level oscillations are excited by a geophysical event, eventually dissipating some time after the event. However, continuous small–amplitude seiches have been recognized presenting a question as to the origin of continuous forcing. We examine 6 bays around the Pacific where continuous seiches 5 are evident, and based on spectral, modal and kinematic analysis suggest that tidally–forced shelf– resonances are a primary driver of continuous seiches. 1 Introduction It is long recognized that coastal water levels resonate. Resonances span the ocean as tides (Darwin, 1899) and bays as seiches (Airy, 1877; Chrystal, 1906). Bays and harbors offer refuge from the open 10 ocean by effectively decoupling wind waves and swell from an anchorage, although offshore waves are effective in driving resonant modes in the infragravity regime at periods of 30 s to 5 minutes (Okihiro and Guza, 1996; Thotagamuwage and Pattiaratchi, 2014), and at periods between 5 minutes and 2 hours bays and harbors can act as efficient amplifiers (Miles and Munk, 1961). Tides expressed on coasts are significantly altered by coastline and bathymetry, for example, 15 continental shelves modulate tidal amplitudes and dissipate tidal energy (Taylor, 1919) such that tidally–driven standing waves are a persistent feature on continental shelves (Webb, 1976; Clarke and Battisti, 1981).
    [Show full text]