Macroparasites of the Eurasian Otter: Distribution, Life-Cycles and Population Dynamics

Total Page:16

File Type:pdf, Size:1020Kb

Macroparasites of the Eurasian Otter: Distribution, Life-Cycles and Population Dynamics Macroparasites of the Eurasian Otter: distribution, life-cycles and population dynamics A thesis submitted to Cardiff University for the degree of Doctor of Philosophy by Ellie Sherrard-Smith, BSc. (Hons) ACKNOWLEDGEMENTS APPENDIX 1: Specimen layout for Thesis Summary and Declaration/Statements page to be included in a Thesis DECLARATION This work has not been submitted in substance for any other degree or award at this or any other university or place of learning, nor is being submitted concurrently in candidature for any degree or other award. Signed …… ……………………… (candidate) Date ……10 July 2013…… STATEMENT 1 This thesis is being submitted in partial fulfillment of the requirements for the degree of PhD. Signed ……………… ……… (candidate) Date …10 July 2013……… STATEMENT 2 This thesis is the result of my own independent work/investigation, except where otherwise stated. Other sources are acknowledged by explicit references. The views expressed are my own. Signed ………………… ………… (candidate) Date ……10 July 2013…… STATEMENT 3 I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations. Signed ……………… (candidate) Date …10 July 2013……… STATEMENT 4: PREVIOUSLY APPROVED BAR ON ACCESS I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loans after expiry of a bar on access previously approved by the Academic Standards & Quality Committee. Signed ………………… …… (candidate) Date …10 July 2013…… ACKNOWLEDGEMENTS ACKNOWLEDGEMENTS Contributions to data A large proportion of the samples for this PhD were collected at post mortem by members of the Cardiff University Otter Project. Thanks to all those who contributed through performing post mortems and archiving samples and records. Thank you especially to Dr Liz Chadwick for allowing me to use the samples for this thesis. I was fortunate to have some good students during my PhD time. Aaron Nahil worked on the ticks collected from otters and contributed to identifying approximately half of those used in this PhD (chapter 3). Matt Wyman processed some of the gall bladders (200 out of 586) for his dissertation and these data (presence/absence, intensity and fibre score) were included in this PhD. Thank you to Chris Williams and Amy Reading from the Environment Agency for providing metacercariae samples and all prevalence data on fish cysts for the life cycle chapter (chapter 7). Thank you to Dr Andrew Conlan (Cambridge University) for advising and teaching me about modelling (Chapter 8). My Supervisors I can not thank Liz and Jo enough for the constant support, advice, guidance and friendship they have provided over the past few years. It has been a pleasure to work with and alongside both. Even when away on maternity Liz has made herself available to read through drafts or chat through ideas. Jo has pushed me to work harder and understand better all aspects of research whilst maintaining a passion for the subject. Both are outstanding supervisors. Thank you both! My friends and family The Cardiff University Research into Infection Parasitology and Ecology Society (CRIPES) was instrumental in my development over the time I have spent at Cardiff. I was incredibly fortunate to work alongside Sarah Perkins whose enthusiasm and support has been sensational and who was particularly brilliant during the write up of chapter 6. Thank you to Perky for cycling to France with me for samples – a fun and windy trip!! Also Jo Lello was an excellent friend to turn to for support and advice especially whilst writing up chapter 8. Thank you to Pablo – legend. I cannot put into words how fun and supportive Eleanor Kean, Suz Williams, Emma (Roidy) Gillingham, Jess Stevenson and Fran Hockley have been during my time at Cardiff. You are all sensational. Thank you to the revolution (Drs Eleanor Kean, TC and J Randall). Tom Crowther was epic whenever we had breaks and at times a true friend. His and Steve’s (Thomas) distractions will have prepared me to work in any climate from now on! James Vafidis has made the final year brilliant. Everyone in the 5th, 6th and 7th floors during my time in BIOSI 2 were splendid. My football team Cardiff for the ideal distraction and letting me off when the PhD distracted me… My friends outside uni were always brilliant, a shoulder and company whenever I needed help. Especially Hanna banana who came along on snail collecting trips! My family were equally brilliant and I love you all! Thank you especially to Twiglet who has taken the brunt of the tougher times toward the end! ACKNOWLEDGEMENTS TABLE OF CONTENTS TABLE OF CONTENTS Summary…………………………………………………………….. vii List of Tables ………………………………………………………... viii List of Figures……………………………………………………….. xi Chapter 1. A General Introduction 1 1.1 Parasites: A global issue…………………………………… 1 1.2 Parasite Distributions………………………………………. 1 1.3 Abiotic and Biotic Associations …………………………… 3 1.4 Thesis aims…………………………………………………. 3 1.5 References……..…………………………………………… 5 Chapter 2 8 Literature Review: How do abiotic and biotic factors determine the host-parasite distribution patterns observed in trematode populations of mammalian hosts? 2.1 Abstract……………………………………………………. 8 2.2 The importance of parasites……………………………… 8 2.3 Abiotic interactions……………………………………….. 9 2.3.1 Meteorological conditions……………………………….. 9 2.3.2 Season and annual patterns………………………………. 15 2.3.3 Land use and habitat ecology…………………………….. 15 2.3.4 Anthropogenic impacts…………………………………... 16 2.4 Biotic interactions.………………………………………... 18 2.4.1 Diet………………………………………………………. 18 2.4.2 Host sex and age…………………………………………. 18 2.4.3 Parasite competition and co-infection……………………. 23 2.4.4 Trematodes as generalists………………………………... 25 2.5 Combined impacts of abiotic and biotic factors………… 25 2.6 Conclusions and future directions……………………….. 26 2.7 References..………………………………………………… 27 Chapter 3 38 Abiotic and biotic factors associated with tick population dynamics on a mammalian host: Ixodes hexagonus infesting otters, Lutra lutra 3.1 Abstract……………………………………………………. 38 3.2 Introduction……………………………………………….. 39 3.3 Materials and Methods…………………………………… 40 iii TABLE OF CONTENTS 3.3.1 The host………………………………………………….. 40 3.3.2 Parasite identification……………………………………. 41 3.3.3 Data preparation………………………………………….. 42 3.3.4 Data analysis……………………………………………... 43 3.4 Results……………………………………………………... 45 3.4.1 Tick species………………………………………………. 45 3.4.2 Abiotic factors……………………………………………. 45 3.4.3 Biotic factors……………………………………………... 48 3.5 Discussion………………………………………………….. 48 3.6 Acknowledgements………………………………………... 53 3.7 References..………………………………………………… 53 Chapter 4 58 Climate variables are associated with the presence of biliary trematodes in otters 4.1 Abstract……………………………………………………. 58 4.2 Introduction……………………………………………….. 58 4.3 Materials and Methods…………………………………… 61 4.3.1 Sample preparation………………………………………. 61 4.3.2 Species identification…………………………………….. 61 4.3.3 Gall bladder damage………...…………………………… 62 4.3.4 Spatial and temporal trends………………………………. 62 4.3.5 Abiotic Associations……….………………………….… 63 4.4 Results……………………………………………………... 65 4.4.1 Spatial and temporal geographic trends…………………. 65 4.4.2 Biotic Associations………………………………..……... 66 4.4.3 Abiotic Associations…………………………………….. 68 4.5 Discussion…………………………………………………. 69 4.6 Acknowledgements……………………………………….. 75 4.7 References………..………………………………………… 75 Chapter 5 83 Distribution and molecular phylogeny of biliary trematodes (Opisthorchiida) infecting fish-eating mammals (Lutra lutra and Mustela vison) across Europe 5.1 Abstract……………………………………………………. 83 5.2 Introduction……………………………………………….. 84 5.3 Materials and Methods…………………………………… 87 5.3.1 Sample collection………………………………………… 87 5.3.2 DNA analysis…………………………………………….. 88 5.4 Results……………………………………………………... 89 iv TABLE OF CONTENTS 5.5 Discussion………………………………………………….. 94 5.6 Acknowledgements………………………………………... 96 5.7 References……..…………………………………………… 96 Appendix 5.1………………………………………………….. 102 Chapter 6 108 Spatial and seasonal factors are key determinants in the aggregation of helminth populations in their definitive hosts: Pseudamphistomum truncatum in otters Lutra lutra 6.1 Abstract……………………………………………………. 108 6.2 Introduction……………………………………………….. 109 6.3 Materials and Methods…………………………………… 111 6.3.1 Sample collection………………………………………… 111 6.3.2 Aggregation parameters………………………………….. 112 6.3.2.1 The corrected moment estimate k……………….. 113 6.3.2.2 Taylor’s Power Law……………………………... 113 6.3.2.3 The Index of Discrepancy (D)…………………… 114 6.3.2.4 Boulinier’s ‘J’……………………………………. 115 6.3.3 Parasite fecundity………………………………………… 116 6.4 Results……………………………………………………... 117 6.4.1 Parasite abundance………………………………………. 117 6.4.2 Parasite aggregation……………………………………… 117 6.4.3 Parasite fecundity………………………………………… 122 6.5 Discussion………………………………………………….. 123 6.6 Acknowledgements………………………………………... 127 6.7 References..………………………………………………… 127 Chapter 7 132 New intermediate hosts identified for two trematodes established in otter (Lutra lutra) populations in the UK 7.1 Abstract……………………………………………………. 132 7.2 Introduction……………………………………………….. 133 7.3 Materials and Methods…………………………………… 134 7.3.1 The first intermediate host……………………………….. 134 7.3.2 The second intermediate hosts…………………………… 136 7.3.3 Molecular identification of larvae………………………... 137 7.3.4 Alternative definitive host………………………………... 138 7.4 Results……………………………………………………... 138 7.4.1 The first intermediate hosts: gastropods…………………. 138 7.4.2 The second intermediate hosts: cyprinid fish…………….
Recommended publications
  • Digenetic Trematodes of Marine Teleost Fishes from Biscayne Bay, Florida Robin M
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Parasitology, Harold W. Manter Laboratory of Laboratory of Parasitology 6-26-1969 Digenetic Trematodes of Marine Teleost Fishes from Biscayne Bay, Florida Robin M. Overstreet University of Miami, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Overstreet, Robin M., "Digenetic Trematodes of Marine Teleost Fishes from Biscayne Bay, Florida" (1969). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 867. https://digitalcommons.unl.edu/parasitologyfacpubs/867 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. TULANE STUDIES IN ZOOLOGY AND BOTANY Volume 15, Number 4 June 26, 1969 DIGENETIC TREMATODES OF MARINE TELEOST FISHES FROM BISCAYNE BAY, FLORIDA1 ROBIN M. OVERSTREET2 Institute of Marine Sciences, University of Miami, Miami, Florida CONTENTS ABSTRACT 120 ACKNOWLEDGMENTS ---------------------------------------------------------------------------------------------------- 120 INTRODUCTION --------------------------------------------------------------------------------------------------------------
    [Show full text]
  • A Global Assessment of Parasite Diversity in Galaxiid Fishes
    diversity Article A Global Assessment of Parasite Diversity in Galaxiid Fishes Rachel A. Paterson 1,*, Gustavo P. Viozzi 2, Carlos A. Rauque 2, Verónica R. Flores 2 and Robert Poulin 3 1 The Norwegian Institute for Nature Research, P.O. Box 5685, Torgarden, 7485 Trondheim, Norway 2 Laboratorio de Parasitología, INIBIOMA, CONICET—Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche 8400, Argentina; [email protected] (G.P.V.); [email protected] (C.A.R.); veronicaroxanafl[email protected] (V.R.F.) 3 Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +47-481-37-867 Abstract: Free-living species often receive greater conservation attention than the parasites they support, with parasite conservation often being hindered by a lack of parasite biodiversity knowl- edge. This study aimed to determine the current state of knowledge regarding parasites of the Southern Hemisphere freshwater fish family Galaxiidae, in order to identify knowledge gaps to focus future research attention. Specifically, we assessed how galaxiid–parasite knowledge differs among geographic regions in relation to research effort (i.e., number of studies or fish individuals examined, extent of tissue examination, taxonomic resolution), in addition to ecological traits known to influ- ence parasite richness. To date, ~50% of galaxiid species have been examined for parasites, though the majority of studies have focused on single parasite taxa rather than assessing the full diversity of macro- and microparasites. The highest number of parasites were observed from Argentinean galaxiids, and studies in all geographic regions were biased towards the highly abundant and most widely distributed galaxiid species, Galaxias maculatus.
    [Show full text]
  • Diversity of Echinostomes (Digenea: Echinostomatidae) in Their Snail Hosts at High Latitudes
    Parasite 28, 59 (2021) Ó C. Pantoja et al., published by EDP Sciences, 2021 https://doi.org/10.1051/parasite/2021054 urn:lsid:zoobank.org:pub:9816A6C3-D479-4E1D-9880-2A7E1DBD2097 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Diversity of echinostomes (Digenea: Echinostomatidae) in their snail hosts at high latitudes Camila Pantoja1,2, Anna Faltýnková1,* , Katie O’Dwyer3, Damien Jouet4, Karl Skírnisson5, and Olena Kudlai1,2 1 Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic 2 Institute of Ecology, Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania 3 Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, H91 T8NW, Galway, Ireland 4 BioSpecT EA7506, Faculty of Pharmacy, University of Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France 5 Laboratory of Parasitology, Institute for Experimental Pathology, Keldur, University of Iceland, IS-112 Reykjavík, Iceland Received 26 April 2021, Accepted 24 June 2021, Published online 28 July 2021 Abstract – The biodiversity of freshwater ecosystems globally still leaves much to be discovered, not least in the trematode parasite fauna they support. Echinostome trematode parasites have complex, multiple-host life-cycles, often involving migratory bird definitive hosts, thus leading to widespread distributions. Here, we examined the echinostome diversity in freshwater ecosystems at high latitude locations in Iceland, Finland, Ireland and Alaska (USA). We report 14 echinostome species identified morphologically and molecularly from analyses of nad1 and 28S rDNA sequence data. We found echinostomes parasitising snails of 11 species from the families Lymnaeidae, Planorbidae, Physidae and Valvatidae.
    [Show full text]
  • Original Papers Species Richness and Diversity of the Parasites of Two Predatory Fish Species – Perch (Perca Fluviatilis Linna
    Annals of Parasitology 2015, 61(2), 85–92 Copyright© 2015 Polish Parasitological Society Original papers Species richness and diversity of the parasites of two predatory fish species – perch (Perca fluviatilis Linnaeus, 1758) and zander ( Sander lucioperca Linnaeus, 1758) from the Pomeranian Bay Iwona Bielat, Monika Legierko, Ewa Sobecka Division of Hydrobiology, Ichthyology and Biotechnology of Breeding, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, Kazimierza Królewicza 4, 71-550 Szczecin, Poland Corresponding author: Ewa Sobecka; e-mail: [email protected] ABSTRACT. Pomeranian Bay as an ecotone is a transition zone between two different biocenoses, which is characterized by an increase in biodiversity and species density. Therefore, Pomeranian Bay is a destination of finding and reproductive migrations of fish from the rivers entered the area. The aim of the study was to compare parasitic fauna of two predatory fish species from the Pomeranian Bay, collected from the same fishing grounds at the same period. A total of 126 fish studied (53 perches and 73 zanders) were collected in the summer 2013. Parasitological examinations included: skin, fins, gills, vitreous humour and lens of the eye, mouth cavity, body cavity and internal organs. Apart from the prevalence and intensity of infection (mean, range) the parasite communities of both fish species were compared. European perch and zander were infected with parasites from five different taxonomic units. The most numerous parasites were Diplostomum spp. in European perch and Bucephalus polymorphus in zander. The prevalence of infection of European perch ranged from 5.7% ( Diphyllobothrium latum ) to 22.3% ( Diplostomum spp.) and for zander from 1.4% ( Ancyrocephalus paradoxus , Hysterothylacium aduncum ) to 12.3% ( Bucephalus polymorphus ).
    [Show full text]
  • Conservation and Diversification of Small RNA Pathways Within Flatworms Santiago Fontenla1, Gabriel Rinaldi2, Pablo Smircich1,3 and Jose F
    Fontenla et al. BMC Evolutionary Biology (2017) 17:215 DOI 10.1186/s12862-017-1061-5 RESEARCH ARTICLE Open Access Conservation and diversification of small RNA pathways within flatworms Santiago Fontenla1, Gabriel Rinaldi2, Pablo Smircich1,3 and Jose F. Tort1* Abstract Background: Small non-coding RNAs, including miRNAs, and gene silencing mediated by RNA interference have been described in free-living and parasitic lineages of flatworms, but only few key factors of the small RNA pathways have been exhaustively investigated in a limited number of species. The availability of flatworm draft genomes and predicted proteomes allowed us to perform an extended survey of the genes involved in small non-coding RNA pathways in this phylum. Results: Overall, findings show that the small non-coding RNA pathways are conserved in all the analyzed flatworm linages; however notable peculiarities were identified. While Piwi genes are amplified in free-living worms they are completely absent in all parasitic species. Remarkably all flatworms share a specific Argonaute family (FL-Ago) that has been independently amplified in different lineages. Other key factors such as Dicer are also duplicated, with Dicer-2 showing structural differences between trematodes, cestodes and free-living flatworms. Similarly, a very divergent GW182 Argonaute interacting protein was identified in all flatworm linages. Contrasting to this, genes involved in the amplification of the RNAi interfering signal were detected only in the ancestral free living species Macrostomum lignano. We here described all the putative small RNA pathways present in both free living and parasitic flatworm lineages. Conclusion: These findings highlight innovations specifically evolved in platyhelminths presumably associated with novel mechanisms of gene expression regulation mediated by small RNA pathways that differ to what has been classically described in model organisms.
    [Show full text]
  • Molecular Characterization of Liver Fluke Intermediate Host Lymnaeids
    Veterinary Parasitology: Regional Studies and Reports 17 (2019) 100318 Contents lists available at ScienceDirect Veterinary Parasitology: Regional Studies and Reports journal homepage: www.elsevier.com/locate/vprsr Original Article Molecular characterization of liver fluke intermediate host lymnaeids (Gastropoda: Pulmonata) snails from selected regions of Okavango Delta of T Botswana, KwaZulu-Natal and Mpumalanga provinces of South Africa ⁎ Mokgadi P. Malatji , Jennifer Lamb, Samson Mukaratirwa School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa ARTICLE INFO ABSTRACT Keywords: Lymnaeidae snail species are known to be intermediate hosts of human and livestock helminths parasites, Lymnaeidae especially Fasciola species. Identification of these species and their geographical distribution is important to ITS-2 better understand the epidemiology of the disease. Significant diversity has been observed in the shell mor- Okavango delta (OKD) phology of snails from the Lymnaeidae family and the systematics within this family is still unclear, especially KwaZulu-Natal (KZN) province when the anatomical traits among various species have been found to be homogeneous. Although there are Mpumalanga province records of lymnaeid species of southern Africa based on shell morphology and controversial anatomical traits, there is paucity of information on the molecular identification and phylogenetic relationships of the different taxa. Therefore, this study aimed at identifying populations of Lymnaeidae snails from selected sites of the Okavango Delta (OKD) in Botswana, and sites located in the KwaZulu-Natal (KZN) and Mpumalanga (MP) provinces of South Africa using molecular techniques. Lymnaeidae snails were collected from 8 locations from the Okavango delta in Botswana, 9 from KZN and one from MP provinces and were identified based on phy- logenetic analysis of the internal transcribed spacer (ITS-2).
    [Show full text]
  • 1 Curriculum Vitae Stephen S. Curran, Ph.D. Department of Coastal
    Curriculum vitae Stephen S. Curran, Ph.D. Department of Coastal Sciences The University of Southern Mississippi Gulf Coast Research Laboratory 703 East Beach Drive Phone: (228) 238-0208 Ocean Springs, MS 39564 Email: [email protected] Research and Teaching Interests: I am an organismal biologist interested in the biodiversity of metazoan parasitic animals. I study their taxonomy using traditional microscopic and histological techniques and their genetic interrelationships and systematics using ribosomal DNA sequences. I also investigate the effects of extrinsic factors on aquatic environments by using parasite prevalence and abundance as a proxy for total biodiversity in aquatic communities and for assessing food web dynamics. I am also interested in the epidemiology of viral diseases of crustaceans. University Teaching Experience: •Instructor for Parasites of Marine Animals Summer class, University of Southern Mississippi, Gulf Coast Research Laboratory (2011-present). •Co-Instructor (with Richard Heard) for Marine Invertebrate Zoology, University of Southern Mississippi, Gulf Coast Research Laboratory (2007). •Intern Mentor, Gulf Coast Research Laboratory. I’ve instructed 16 interns during (2003, 2007- present). •Graduate Teaching Assistant for Animal Parasitology, Department of Ecology and Evolutionary Biology, University of Connecticut (Spring 1995). •Graduate Teaching Assistant for Introductory Biology for Majors, Department of Ecology and Evolutionary Biology, University of Connecticut (Fall 1994). Positions: •Assistant Research
    [Show full text]
  • Otter News No. 124, July 2021
    www.otter.org IOSF Otter News No. 124, July 2021 www.loveotters.org Otter News No. 124, July 2021 Join our IOSF mailing list and receive our newsletters - Click on this link: http://tinyurl.com/p3lrsmx Please share our news Good News for Otters in Argentina Giant otters are classified as “extinct” in Argentina but there have been some positive signs of their return in recent months. The Ibera wetlands lie in the Corrientes region and are one of the world’s largest freshwater ecosystems. Rewilding Argentina is attempting to return the country’s rich biodiversity to the area with species such as jaguars, macaws and marsh deer. They have also been working to bring back giant otters and there have been some small successes and three cubs have recently been born as offspring of two otters that were reintroduced there. And there is more good news for the largest otter species. In May there was the first sighting of “wild” giant otters in Argentina for 40 years! Furthermore, there have been other success stories for otters across the south American nation. Tierra del Fuego, Argentina’s southern-most province, has banned all open-net salmon farming. This ban will help protect the areas fragile marine ecosystems, which is home to half of Argentina’s kelp forests which support species such as the southern river otter. This also makes Argentina the first nation in the world to ban such farming practices. With so many problems for otter species it is encouraging to see some steps forward in their protection in Argentina.
    [Show full text]
  • Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus Idus
    REVIEWS IN FISHERIES SCIENCE & AQUACULTURE https://doi.org/10.1080/23308249.2020.1822280 REVIEW Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus idus Mehis Rohtlaa,b, Lorenzo Vilizzic, Vladimır Kovacd, David Almeidae, Bernice Brewsterf, J. Robert Brittong, Łukasz Głowackic, Michael J. Godardh,i, Ruth Kirkf, Sarah Nienhuisj, Karin H. Olssonh,k, Jan Simonsenl, Michał E. Skora m, Saulius Stakenas_ n, Ali Serhan Tarkanc,o, Nildeniz Topo, Hugo Verreyckenp, Grzegorz ZieRbac, and Gordon H. Coppc,h,q aEstonian Marine Institute, University of Tartu, Tartu, Estonia; bInstitute of Marine Research, Austevoll Research Station, Storebø, Norway; cDepartment of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łod z, Poland; dDepartment of Ecology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; eDepartment of Basic Medical Sciences, USP-CEU University, Madrid, Spain; fMolecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames, Surrey, UK; gDepartment of Life and Environmental Sciences, Bournemouth University, Dorset, UK; hCentre for Environment, Fisheries & Aquaculture Science, Lowestoft, Suffolk, UK; iAECOM, Kitchener, Ontario, Canada; jOntario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada; kDepartment of Zoology, Tel Aviv University and Inter-University Institute for Marine Sciences in Eilat, Tel Aviv,
    [Show full text]
  • Effect of Temperature on the Infectivity of Metacercariae of Zygocotyle Lunata (Digenea: Paramphistomidae)
    J. Parasitol., 87(1), 2001, p. 10±13 q American Society of Parasitologists 2001 EFFECT OF TEMPERATURE ON THE INFECTIVITY OF METACERCARIAE OF ZYGOCOTYLE LUNATA (DIGENEA: PARAMPHISTOMIDAE) David L. Ferrell*, Nicholas J. Negovetich, and Eric J. Wetzel² Department of Biology, Wabash College, P.O. Box 352, Crawfordsville, Indiana 47933 ABSTRACT: As a test of the energy limitation hypothesis (ELH), we predicted that temperature would have a signi®cant in¯uence on the infectivity of metacercariae of the digenetic trematode Zygocotyle lunata. Snails infected with Z. lunata were collected from ponds near Crawfordsville, Indiana, isolated at room temperature, and examined for the release of cercariae. Newly encysted metacercariae were collected and incubated 1±30 days at 1 of 5 temperatures (0, 3, 25, 31, 37 C). Twenty-®ve cysts were fed to each of 5 or 10 mice per treatment group (temperature). At 17 days postinfection, mice were killed and worms were recovered; data were collected on levels of infection in each group and the total body area of each worm. No worms were found in mice fed cysts that had been held at0Cor37C(after 30 days). There were no differences in prevalence, infectivity, or mean intensity among the 3, 25, and 31 C treatments. Infectivity of metacercariae incubated at 37 C for 1 day was signi®cantly greater than in all other treatments, while infectivity of metacercariae in the 37 C/15-day treatment was signi®cantly lower than in all others. Mean body area of worms at 37 C/15 days was signi®cantly greater than at other temperatures, suggesting density-dependent increases in growth.
    [Show full text]
  • (Digenea: Diplostomidae) from the Catfish Clarias Gariepinus (Clariidae) in Freshwater Habitats of Tanzania
    Journal of Helminthology, page 1 of 7 doi:10.1017/S0022149X15001005 q Cambridge University Press 2015 The nervous systems of Tylodelphys metacercariae (Digenea: Diplostomidae) from the catfish Clarias gariepinus (Clariidae) in freshwater habitats of Tanzania F.D. Chibwana* and G. Nkwengulila Department of Zoology and Wildlife Conservation, University of Dar es Salaam, PO Box 35064, Dar es Salaam, Tanzania (Received 29 July 2015; Accepted 27 October 2015) Abstract The nervous systems of three Tylodelphys metacercariae (T. mashonense, Tylodelphys spp. 1 and 2) co-occurring in the cranial cavity of the catfish, Clarias gariepinus, were examined by the activity of acetylthiocholine iodide (AcThI), with the aim of better understanding the arrangement of sensillae on the body surface and the nerve trunks and commissures, for taxonomic purposes. Enzyme cytochemistry demonstrated a comparable orthogonal arrangement in the three metacercariae: the central nervous system (CNS) consisting of a pair of cerebral ganglia, from which anterior and posterior neuronal pathways arise and inter- link by cross-connectives and commissures. However, the number of transverse nerves was significantly different in the three diplostomid metacercariae: Tylodelphys sp. 1 (30), Tylodelphys sp. 2 (21) and T. mashonense (15). The observed difference in the nervous system of the three metacercariae clearly separates them into three species. These findings suggest that consistent differences in the transverse nerves of digenean metacercariae could enable the differentiation
    [Show full text]
  • Binder 021, Bucephalidae [Trematoda Taxon Notebooks]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Trematoda Taxon Notebooks Parasitology, Harold W. Manter Laboratory of February 2021 Binder 021, Bucephalidae [Trematoda Taxon Notebooks] Harold W. Manter Laboratory of Parasitology Follow this and additional works at: https://digitalcommons.unl.edu/trematoda Part of the Biodiversity Commons, Parasitic Diseases Commons, and the Parasitology Commons Harold W. Manter Laboratory of Parasitology, "Binder 021, Bucephalidae [Trematoda Taxon Notebooks]" (2021). Trematoda Taxon Notebooks. 21. https://digitalcommons.unl.edu/trematoda/21 This Portfolio is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Trematoda Taxon Notebooks by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Family BUCEPHALIDAE POCHE, 1907 1. Bucephalus varicus Manter, 1940 Host. Caranx hippos (Linn.): Common jack; family Carangidae Incidence of Infection. In 1 of 1 host Location. Mainly close to pyloric junction and a few scattered speci­ mens along length of entire intestine Locality. Bayboro Harbor, Tampa Bay, (new locality record) Florida Discussion. Manter (1940) pictured variation of tentacles and displa- ---- -- cement of organs in preserved B. varicus from the Tropical American Pacific and Tortugas, Florida. We have studied live B. varicus under slight coverslip pressure and can confirm the variations observed by Manter ( 1940) . B. varicus has been reported from no less than eleven different carangid species from Okinawa, the Red Sea, Tortugas, Florida, and the Tropical American Pacific. The only other record of B. varicus from Caranx hippos is by Bravo and Sogandares (1957) from the Pacific Coast of Mexico.
    [Show full text]