Problem Solving and Recreational Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

Problem Solving and Recreational Mathematics Problem Solving and Recreational Mathematics Paul Yiu Department of Mathematics Florida Atlantic University Summer 2016 April 4, 2016 Contents 1 Arithmetic Problems 101 1.1 Reconstruction of division problems . ........101 1.1.1 AMM E1 . ....................101 1.1.2 AMM E10 ....................103 1.1.3 AMM E1111 . ................104 1.1.4 AMM E971 ....................105 1.1.5 AMM E198 ....................106 2 Digit problems 107 2.1 When can you cancel illegitimately and yet get the cor- rect answer? . ....................107 2.2 Repdigits . ....................109 2.3 Sums of squares of digits ................112 3 Representation of a number in different bases 115 3.1 Base b-representation of a number ............115 3.1.1 A number from its base b-representation . ....116 3.2 The Josephus problem . ................119 4 Representation of a number in different bases 121 4.1 Balanced division by an odd number . ........121 4.2 Balanced base b representation of a number . ....121 4.3 Arithmetic in balanced base 3 representations . ....123 4.3.1 A matrix card trick ................124 5 Cheney’s card trick 127 5.1 Three basic principles . ................127 5.1.1 The pigeonhole principle . ............127 5.1.2 Arithmetic modulo 13 ..............127 iv CONTENTS 5.1.3 Permutations of three objects . ..........128 5.2 Examples . ......................129 5.3 A variation: Cheney card trick with spectator choosing secret card . ......................131 6 The nim game 133 6.1 Thenimsum.......................133 6.2 Thenimgame......................134 7 Fibonacci and Lucas numbers 137 7.1 The Fibonacci sequence . ..............137 7.2 Some relations of Fibonacci numbers ..........140 7.3 Zeckendorff representations . ..............141 7.4 The Lucas numbers . ..................142 7.5 How can we know if a given integer is a Fibonacci number? . ......................143 7.6 Periodicity of Fibonacci sequence mod m .......144 8 Counting with Fibonacci numbers 145 8.1 Squares and dominos ..................145 8.2 Fat subsets of [n] .....................146 8.3 An arrangement of pennies . ..............147 8.4 Counting circular permutations . ..........149 9 Floor and Ceiling 201 9.1 Clock problems . ..................201 9.2 Some equations involving x ..............202 9.3 Number of trialing zeros in n! ..............203 9.4 Characterizations of the ceiling and floor functions . 204 10 Combinatorial games 207 10.1 Subtraction games . ..................207 10.2 The Sprague-Grundy sequence . ..........209 11 Permutations 213 11.1 The universal sequence of permutations . ......213 11.2 The position of a permutation in the universal sequence 214 11.3 The disjoint cycle decomposition of a permutation . 216 11.4 Lexicographical ordering of permutations . ......217 11.5 Dudeney’s puzzle . ..................221 CONTENTS v 11.6 Problems on permutations ................224 12 Perfect card shuffles 227 12.1 In-shuffles . ....................229 12.2 Out-shuffles . ....................231 12.3 Perfect shuffling a card to a specified position . ....232 13 Interpolation problems 233 13.1 What is f(n +1)if f(k)=2k for k =0, 1, 2 ...,n? . 233 1 13.2 What is f(n +1)if f(k)= k+1 for k =0, 1, 2 ...,n? . 235 13.3 Why is ex not a rational function? ............237 14 Transferrable numbers 239 14.1 Right-transferrable numbers . ............239 14.2 Left-transferrable integers ................241 15 The equilateral lattice L (n) 245 15.1 Counting triangles ....................245 15.2 Counting parallelograms . ................248 15.3 Counting regular hexagons . ............249 16 Counting triangles 253 16.1 Integer triangles of sidelengths ≤ n ...........253 16.2 Integer scalene triangles with sidelengths ≤ n .....254 16.3 Number of integer triangles with perimeter n ......255 16.3.1 The partition number p3(n) ............255 17 Pythagorean triangles 301 17.1 Primitive Pythagorean triples . ............301 17.1.1 Rational angles . ................302 17.1.2 Some basic properties of primitive Pythagorean triples . ....................302 17.2 A Pythagorean triangle with an inscribed square ....304 17.3 When are x2 − px ± q both factorable? . ........305 17.4 Dissection of a square into Pythagorean triangles ....305 18 The area of a triangle 307 18.1 Heron’s formula for the area of a triangle ........307 18.2 Heron triangles . ....................309 18.2.1 The perimeter of a Heron triangle is even ....309 vi CONTENTS 18.2.2 The area of a Heron triangle is divisible by 6 . 309 18.2.3 Heron triangles with sides < 100 .........310 18.3 Heron triangle as lattice triangle . ..........311 18.4 Indecomposable Heron triangles . ..........312 18.5 Heron triangles with area equal to perimeter ......314 18.6 Heron triangles with integer inradii . ..........315 18.7 Heron triangles with square areas . ..........316 19 The golden ratio 317 19.1 Division of a segment in the golden ratio . ......317 19.2 The regular pentagon ..................319 19.3 Construction of 36◦, 54◦, and 72◦ angles . ......320 19.4 The most non-isosceles triangle . ..........324 20 The Arbelos 325 20.1 Archimedes’ twin circle theorem . ..........325 20.2 Incircle of the arbelos ..................326 20.2.1 Construction of incircle of arbelos . ......327 20.3 Archimedean circles in the arbelos . ..........328 21 Menelaus and Ceva theorems 331 21.1 Menelaus’ theorem . ..................331 21.2 Ceva’s theorem ......................333 22 Routh and Ceva theorems 339 22.1 Barycentric coordinates . ..............339 22.2 Cevian and traces . ..................340 22.3 Area and barycentric coordinates . ..........342 23 Perimeter - area bisectors of a triangle 347 23.1 Construction of perimeter-area bisectors in angle A . 348 23.2 Isosceles triangles . ..................349 23.3 Scalene triangles . ..................350 23.4 Triangles with exactly two perimeter-area bisectors . 352 23.5 Integer triangles . ..................353 23.5.1 Triangles with Da < 0 ..............353 23.5.2 Triangles with Da =0 ..............354 23.5.3 Triangles with Da > 0 ..............354 24 Very Small Integer Triangles 357 CONTENTS vii 25 The games of Euclid and Wythoff 401 25.1 The game of Euclid . ................401 25.2 Wythoff’s game . ....................403 25.3 Beatty’s Theorem ....................405 26 Number sequences 407 26.1 The Farey sequence . ................407 26.2 The number spiral ....................410 26.3 The prime number spirals ................412 26.4 The prime number spiral beginning with 17 . ....413 26.5 The prime number spiral beginning with 41 . ....414 26.6 Two enumerations of the rational numbers in (0,1) . 416 27 Inequalities 417 27.1 The inequality AGH2 ..................417 27.2 Proofs of the A-G inequality . ............420 27.3 The AGH mean inequality . ............422 27.4 Cauchy-Schwarz inequality . ............424 27.5 Convexity . ....................427 27.6 The power mean inequality . ............429 27.7 Bernoulli inequality . ................430 27.8 Holland’s Inequality . ................430 27.9 Miscellaneous inequalities ................432 27.10 A useful variant of AG2 .................433 28 Calculus problems 435 28.1 Philo’s line . ....................435 28.1.1 Triangle with minimum perimeter ........436 28.2 Maxima and minima without calculus . ........440 29 449 29.1 Quartic polynomials and the golden ratio ........449 30 Infinite Series 453 30.1 Power series . ....................453 30.2 The Bernoulli numbers and the tangent function ....455 30.3 The Euler numbers and the secant function . ....457 30.4 Summation of finite series ................458 viii CONTENTS 31 The art of integration 461 31.1 Indefinite integrals . ..................461 31.2 An iterated integral and a generalization . ......463 31.2.1 Crux Math. 3913 . ..............463 31.2.2 A generalization . ..............464 32 Rearrangements of the alternating harmonic series 467 32.1 Riemann’s theorem on conditionally convergent series . 467 32.2 Rearrangements of the alternating harmonic series . 468 Chapter 1 Arithmetic Problems 1.1 Reconstruction of division problems 1.1.1 AMM E1 This is Problem E1 of the AMERICAN MATHEMATICAL MONTHLY: x 7 xxx xxx) xxxxxxxx xxxx xxx xxx xxxx xxx xxxx xxxx Clearly, the last second digit of the quotient is 0. Let the divisor be the 3-digit number d. Consider the 3-digit number in the seventh line, which is a multiple of d. Its difference from the 4-digit number in the sixth line is a 2-digit number. This must be 9xx. This cannot be the same as the 3-digit number in the fifth line, since the difference between the 3-digit numbers in the fourth and fifth lines is a 3-digit number. Therefore, in the quotient, the digit after 7 is a larger one, which must be smaller than the first and the last digits, since these give 4-digit multiples of d. It follows that the quotient is 97809. 102 Arithmetic Problems Since 8d is a 3-digit number 9xx, the 4-digit number in the third and bottom lines is 9d =10xx or 11xx. From this 8d must be 99x, and therefore 992 = 8 × 124. 97809 124)12128316 1116 968 868 1003 992 1116 1116 1.1 Reconstruction of division problems 103 1.1.2 AMM E10 This is Problem E10 of the MONTHLY, by Fitch Cheney. In this case, not even one single digit is given. xxxxxx xxx) xxxxxxxx xxx xxxx xxx xxxx xxx xxxx xxxx 104 Arithmetic Problems 1.1.3 AMM E1111 This is said to be the most popular MONTHLY problem. It appeared in the April issue of 1954. Our good friend and eminent numerologist, Professor Euclide Paracelso Bombasto Umbugio, has been busily engaged test- ing on his desk calculator the 81 · 109 possible solutions to the problem of reconstructing the following exact long division in which the digits indiscriminately were each replaced by x save in the quotient where they were almost entirely omitted. xx8xx xxx)xxxxxxxx xxx xxxx xxx xxxx xxxx Deflate the Professor! That is, reduce the possibilities to (18 · 109)0. Martin Gardner’s remark: Because any number raised to the power of zero is one, the reader’s task is to discover the unique reconstruction of the problem.
Recommended publications
  • Generalizations of Euler Numbers and Polynomials 1
    GENERALIZATIONS OF EULER NUMBERS AND POLYNOMIALS QIU-MING LUO AND FENG QI Abstract. In this paper, the concepts of Euler numbers and Euler polyno- mials are generalized, and some basic properties are investigated. 1. Introduction It is well-known that the Euler numbers and polynomials can be defined by the following definitions. Definition 1.1 ([1]). The Euler numbers Ek are defined by the following expansion t ∞ 2e X Ek = tk, |t| ≤ π. (1.1) e2t + 1 k! k=0 In [4, p. 5], the Euler numbers is defined by t/2 ∞ n 2n 2e t X (−1) En t = sech = , |t| ≤ π. (1.2) et + 1 2 (2n)! 2 n=0 Definition 1.2 ([1, 4]). The Euler polynomials Ek(x) for x ∈ R are defined by xt ∞ 2e X Ek(x) = tk, |t| ≤ π. (1.3) et + 1 k! k=0 It can also be shown that the polynomials Ei(t), i ∈ N, are uniquely determined by the following two properties 0 Ei(t) = iEi−1(t),E0(t) = 1; (1.4) i Ei(t + 1) + Ei(t) = 2t . (1.5) 2000 Mathematics Subject Classification. 11B68. Key words and phrases. Euler numbers, Euler polynomials, generalization. The authors were supported in part by NNSF (#10001016) of China, SF for the Prominent Youth of Henan Province, SF of Henan Innovation Talents at Universities, NSF of Henan Province (#004051800), Doctor Fund of Jiaozuo Institute of Technology, China. This paper was typeset using AMS-LATEX. 1 2 Q.-M. LUO AND F. QI Euler polynomials are related to the Bernoulli numbers. For information about Bernoulli numbers and polynomials, please refer to [1, 2, 3, 4].
    [Show full text]
  • On Fixed Points of Iterations Between the Order of Appearance and the Euler Totient Function
    mathematics Article On Fixed Points of Iterations Between the Order of Appearance and the Euler Totient Function ŠtˇepánHubálovský 1,* and Eva Trojovská 2 1 Department of Applied Cybernetics, Faculty of Science, University of Hradec Králové, 50003 Hradec Králové, Czech Republic 2 Department of Mathematics, Faculty of Science, University of Hradec Králové, 50003 Hradec Králové, Czech Republic; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +420-49-333-2704 Received: 3 October 2020; Accepted: 14 October 2020; Published: 16 October 2020 Abstract: Let Fn be the nth Fibonacci number. The order of appearance z(n) of a natural number n is defined as the smallest positive integer k such that Fk ≡ 0 (mod n). In this paper, we shall find all positive solutions of the Diophantine equation z(j(n)) = n, where j is the Euler totient function. Keywords: Fibonacci numbers; order of appearance; Euler totient function; fixed points; Diophantine equations MSC: 11B39; 11DXX 1. Introduction Let (Fn)n≥0 be the sequence of Fibonacci numbers which is defined by 2nd order recurrence Fn+2 = Fn+1 + Fn, with initial conditions Fi = i, for i 2 f0, 1g. These numbers (together with the sequence of prime numbers) form a very important sequence in mathematics (mainly because its unexpectedly and often appearance in many branches of mathematics as well as in another disciplines). We refer the reader to [1–3] and their very extensive bibliography. We recall that an arithmetic function is any function f : Z>0 ! C (i.e., a complex-valued function which is defined for all positive integer).
    [Show full text]
  • An Identity for Generalized Bernoulli Polynomials
    1 2 Journal of Integer Sequences, Vol. 23 (2020), 3 Article 20.11.2 47 6 23 11 An Identity for Generalized Bernoulli Polynomials Redha Chellal1 and Farid Bencherif LA3C, Faculty of Mathematics USTHB Algiers Algeria [email protected] [email protected] [email protected] Mohamed Mehbali Centre for Research Informed Teaching London South Bank University London United Kingdom [email protected] Abstract Recognizing the great importance of Bernoulli numbers and Bernoulli polynomials in various branches of mathematics, the present paper develops two results dealing with these objects. The first one proposes an identity for the generalized Bernoulli poly- nomials, which leads to further generalizations for several relations involving classical Bernoulli numbers and Bernoulli polynomials. In particular, it generalizes a recent identity suggested by Gessel. The second result allows the deduction of similar identi- ties for Fibonacci, Lucas, and Chebyshev polynomials, as well as for generalized Euler polynomials, Genocchi polynomials, and generalized numbers of Stirling. 1Corresponding author. 1 1 Introduction Let N and C denote, respectively, the set of positive integers and the set of complex numbers. (α) In his book, Roman [41, p. 93] defined generalized Bernoulli polynomials Bn (x) as follows: for all n ∈ N and α ∈ C, we have ∞ tn t α B(α)(x) = etx. (1) n n! et − 1 Xn=0 The Bernoulli numbers Bn, classical Bernoulli polynomials Bn(x), and generalized Bernoulli (α) numbers Bn are, respectively, defined by (1) (α) (α) Bn = Bn(0), Bn(x)= Bn (x), and Bn = Bn (0). (2) The Bernoulli numbers and the Bernoulli polynomials play a fundamental role in various branches of mathematics, such as combinatorics, number theory, mathematical analysis, and topology.
    [Show full text]
  • Balanced Ternary Arithmetic on the Abacus
    Balanced Ternary Arithmetic on the Abacus What is balanced ternary? It is a ternary number system where the digits of a number are powers of three rather than powers of ten, but instead of adding multiples of one or two times various powers of three to make up the desired number, in balanced ternary some powers of three are added and others are subtracted. Each power of three comprisising the number is represented by either a +, a -, or 0, to show that the power of three is either added, subtracted, or not present in the number. There are no multiples of a power of three greater than +1 or -1, which greatly simplifies multiplication and division. Another advantage of balanced ternary is that all integers can be represented, both positive and negative, without the need for a separate symbol to indicate plus or minus. The most significant ternary digit (trit) of any positive balanced ternary number is + and the most significant trit of any negative number is -. Here is a list of a few numbers in decimal, ternary, and balanced ternary: Decimal Ternary Balanced ternary ------------------------------------------------- -6 - 20 - + 0 (-9+3) -5 - 12 - + + (-9+3+1) -4 - 11 - - ( -3-1) -3 - 10 - 0 etc. -2 - 2 - + -1 - 1 - 0 0 0 1 1 + 2 2 + - 3 10 + 0 4 11 + + 5 12 + - - 6 20 + - 0 Notice that the negative of a balanced ternary number is formed simply by inverting all the + and - signs in the number. Thomas Fowler in England, about 1840, built a balanced ternary calculating machine capable of multiplying and dividing balanced ternary numbers.
    [Show full text]
  • Triangular Numbers /, 3,6, 10, 15, ", Tn,'" »*"
    TRIANGULAR NUMBERS V.E. HOGGATT, JR., and IVIARJORIE BICKWELL San Jose State University, San Jose, California 9111112 1. INTRODUCTION To Fibonacci is attributed the arithmetic triangle of odd numbers, in which the nth row has n entries, the cen- ter element is n* for even /?, and the row sum is n3. (See Stanley Bezuszka [11].) FIBONACCI'S TRIANGLE SUMS / 1 =:1 3 3 5 8 = 2s 7 9 11 27 = 33 13 15 17 19 64 = 4$ 21 23 25 27 29 125 = 5s We wish to derive some results here concerning the triangular numbers /, 3,6, 10, 15, ", Tn,'" »*". If one o b - serves how they are defined geometrically, 1 3 6 10 • - one easily sees that (1.1) Tn - 1+2+3 + .- +n = n(n±M and (1.2) • Tn+1 = Tn+(n+1) . By noticing that two adjacent arrays form a square, such as 3 + 6 = 9 '.'.?. we are led to 2 (1.3) n = Tn + Tn„7 , which can be verified using (1.1). This also provides an identity for triangular numbers in terms of subscripts which are also triangular numbers, T =T + T (1-4) n Tn Tn-1 • Since every odd number is the difference of two consecutive squares, it is informative to rewrite Fibonacci's tri- angle of odd numbers: 221 222 TRIANGULAR NUMBERS [OCT. FIBONACCI'S TRIANGLE SUMS f^-O2) Tf-T* (2* -I2) (32-22) Ti-Tf (42-32) (52-42) (62-52) Ti-Tl•2 (72-62) (82-72) (9*-82) (Kp-92) Tl-Tl Upon comparing with the first array, it would appear that the difference of the squares of two consecutive tri- angular numbers is a perfect cube.
    [Show full text]
  • Labeled Factorization of Integers
    Labeled Factorization of Integers Augustine O. Munagi John Knopfmacher Centre for Applicable Analysis and Number Theory School of Mathematics, University of the Witwatersrand Wits 2050, Johannesburg, South Africa [email protected] Submitted: Jan 5, 2009; Accepted: Apr 16, 2009; Published: Apr 22, 2009 Mathematics Subject Classification: 11Y05, 05A05, 11B73, 11B13 Abstract The labeled factorizations of a positive integer n are obtained as a completion of the set of ordered factorizations of n. This follows a new technique for generating ordered factorizations found by extending a method for unordered factorizations that relies on partitioning the multiset of prime factors of n. Our results include explicit enumeration formulas and some combinatorial identities. It is proved that labeled factorizations of n are equinumerous with the systems of complementing subsets of {0, 1,...,n − 1}. We also give a new combinatorial interpretation of a class of generalized Stirling numbers. 1 Ordered and labeled factorization An ordered factorization of a positive integer n is a representation of n as an ordered product of integers, each factor greater than 1. The set of ordered factorizations of n will be denoted by F (n), and |F (n)| = f(n). For example, F (6) = {6, 2.3, 3.2}. So f(6) = 3. Every integer n> 1 has a canonical factorization into prime numbers p1,p2,..., namely m1 m2 mr n = p1 p2 ...pr , p1 <p2 < ··· <pr, mi > 0, 1 ≤ i ≤ r. (1) The enumeration function f(n) does not depend on the size of n but on the exponents mi. In particular we define Ω(n)= m1 + m2 + ··· + mr, Ω(1) = 0.
    [Show full text]
  • A Subspace Theorem for Manifolds
    A subspace theorem for manifolds Emmanuel Breuillard and Nicolas de Saxcé February 5, 2021 Abstract We prove a theorem that generalizes Schmidt’s Subspace Theorem in the context of metric diophantine approximation. To do so we reformulate the Subspace theorem in the framework of homogeneous dynamics by introducing and studying a slope formalism and the corresponding notion of semistability for diagonal flows. Introduction In 1972, Wolfgang Schmidt formulated his celebrated subspace theorem [32, Lemma 7], a far reaching generalization of results of Thue [37], Siegel [35], and Roth [28] on rational approximations to algebraic numbers. Around the same time, in his work on arithmeticity of lattices in Lie groups, Gregory Margulis [26] used the geometry of numbers to establish the recurrence of unipotent flows on the space of lattices GLd(R)=GLd(Z). More than two decades later, a quantita- tive refinement of this fact, the so-called quantitative non-divergence estimate, was used by Kleinbock and Margulis [18] in their solution to the Sprindzuk conjecture regarding the extremality of non-degenerate manifolds in metric dio- phantine approximation. As it turns out, these two remarkable results – the subspace theorem and the Sprindzuk conjecture – are closely related and can be understood together as statements about diagonal orbits in the space of lat- tices. In this paper we prove a theorem that generalizes both results at the same time. We also provide several applications. This marriage is possible thanks to a better understanding of the geometry lying behind the subspace theorem, in particular the notion of Harder-Narasimhan filtration for one-parameter di- agonal actions, which leads both to a dynamical reformulation of the original subspace theorem and to a further geometric understanding of the family of exceptional subspaces arising in Schmidt’s theorem.
    [Show full text]
  • Mersenne and Fermat Numbers 2, 3, 5, 7, 13, 17, 19, 31
    MERSENNE AND FERMAT NUMBERS RAPHAEL M. ROBINSON 1. Mersenne numbers. The Mersenne numbers are of the form 2n — 1. As a result of the computation described below, it can now be stated that the first seventeen primes of this form correspond to the following values of ra: 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281. The first seventeen even perfect numbers are therefore obtained by substituting these values of ra in the expression 2n_1(2n —1). The first twelve of the Mersenne primes have been known since 1914; the twelfth, 2127—1, was indeed found by Lucas as early as 1876, and for the next seventy-five years was the largest known prime. More details on the history of the Mersenne numbers may be found in Archibald [l]; see also Kraitchik [4]. The next five Mersenne primes were found in 1952; they are at present the five largest known primes of any form. They were announced in Lehmer [7] and discussed by Uhler [13]. It is clear that 2" —1 can be factored algebraically if ra is composite; hence 2n —1 cannot be prime unless w is prime. Fermat's theorem yields a factor of 2n —1 only when ra + 1 is prime, and hence does not determine any additional cases in which 2"-1 is known to be com- posite. On the other hand, it follows from Euler's criterion that if ra = 0, 3 (mod 4) and 2ra + l is prime, then 2ra + l is a factor of 2n— 1.
    [Show full text]
  • Primes and Primality Testing
    Primes and Primality Testing A Technological/Historical Perspective Jennifer Ellis Department of Mathematics and Computer Science What is a prime number? A number p greater than one is prime if and only if the only divisors of p are 1 and p. Examples: 2, 3, 5, and 7 A few larger examples: 71887 524287 65537 2127 1 Primality Testing: Origins Eratosthenes: Developed “sieve” method 276-194 B.C. Nicknamed Beta – “second place” in many different academic disciplines Also made contributions to www-history.mcs.st- geometry, approximation of andrews.ac.uk/PictDisplay/Eratosthenes.html the Earth’s circumference Sieve of Eratosthenes 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Sieve of Eratosthenes We only need to “sieve” the multiples of numbers less than 10. Why? (10)(10)=100 (p)(q)<=100 Consider pq where p>10. Then for pq <=100, q must be less than 10. By sieving all the multiples of numbers less than 10 (here, multiples of q), we have removed all composite numbers less than 100.
    [Show full text]
  • Input for Carnival of Math: Number 115, October 2014
    Input for Carnival of Math: Number 115, October 2014 I visited Singapore in 1996 and the people were very kind to me. So I though this might be a little payback for their kindness. Good Luck. David Brooks The “Mathematical Association of America” (http://maanumberaday.blogspot.com/2009/11/115.html ) notes that: 115 = 5 x 23. 115 = 23 x (2 + 3). 115 has a unique representation as a sum of three squares: 3 2 + 5 2 + 9 2 = 115. 115 is the smallest three-digit integer, abc , such that ( abc )/( a*b*c) is prime : 115/5 = 23. STS-115 was a space shuttle mission to the International Space Station flown by the space shuttle Atlantis on Sept. 9, 2006. The “Online Encyclopedia of Integer Sequences” (http://www.oeis.org) notes that 115 is a tridecagonal (or 13-gonal) number. Also, 115 is the number of rooted trees with 8 vertices (or nodes). If you do a search for 115 on the OEIS website you will find out that there are 7,041 integer sequences that contain the number 115. The website “Positive Integers” (http://www.positiveintegers.org/115) notes that 115 is a palindromic and repdigit number when written in base 22 (5522). The website “Number Gossip” (http://www.numbergossip.com) notes that: 115 is the smallest three-digit integer, abc, such that (abc)/(a*b*c) is prime. It also notes that 115 is a composite, deficient, lucky, odd odious and square-free number. The website “Numbers Aplenty” (http://www.numbersaplenty.com/115) notes that: It has 4 divisors, whose sum is σ = 144.
    [Show full text]
  • Arxiv:Math/0201082V1
    2000]11A25, 13J05 THE RING OF ARITHMETICAL FUNCTIONS WITH UNITARY CONVOLUTION: DIVISORIAL AND TOPOLOGICAL PROPERTIES. JAN SNELLMAN Abstract. We study (A, +, ⊕), the ring of arithmetical functions with unitary convolution, giving an isomorphism between (A, +, ⊕) and a generalized power series ring on infinitely many variables, similar to the isomorphism of Cashwell- Everett[4] between the ring (A, +, ·) of arithmetical functions with Dirichlet convolution and the power series ring C[[x1,x2,x3,... ]] on countably many variables. We topologize it with respect to a natural norm, and shove that all ideals are quasi-finite. Some elementary results on factorization into atoms are obtained. We prove the existence of an abundance of non-associate regular non-units. 1. Introduction The ring of arithmetical functions with Dirichlet convolution, which we’ll denote by (A, +, ·), is the set of all functions N+ → C, where N+ denotes the positive integers. It is given the structure of a commutative C-algebra by component-wise addition and multiplication by scalars, and by the Dirichlet convolution f · g(k)= f(r)g(k/r). (1) Xr|k Then, the multiplicative unit is the function e1 with e1(1) = 1 and e1(k) = 0 for k> 1, and the additive unit is the zero function 0. Cashwell-Everett [4] showed that (A, +, ·) is a UFD using the isomorphism (A, +, ·) ≃ C[[x1, x2, x3,... ]], (2) where each xi corresponds to the function which is 1 on the i’th prime number, and 0 otherwise. Schwab and Silberberg [9] topologised (A, +, ·) by means of the norm 1 arXiv:math/0201082v1 [math.AC] 10 Jan 2002 |f| = (3) min { k f(k) 6=0 } They noted that this norm is an ultra-metric, and that ((A, +, ·), |·|) is a valued ring, i.e.
    [Show full text]
  • A NEW LARGEST SMITH NUMBER Patrick Costello Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY 40475 (Submitted September 2000)
    A NEW LARGEST SMITH NUMBER Patrick Costello Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY 40475 (Submitted September 2000) 1. INTRODUCTION In 1982, Albert Wilansky, a mathematics professor at Lehigh University wrote a short article in the Two-Year College Mathematics Journal [6]. In that article he identified a new subset of the composite numbers. He defined a Smith number to be a composite number where the sum of the digits in its prime factorization is equal to the digit sum of the number. The set was named in honor of Wi!anskyJs brother-in-law, Dr. Harold Smith, whose telephone number 493-7775 when written as a single number 4,937,775 possessed this interesting characteristic. Adding the digits in the number and the digits of its prime factors 3, 5, 5 and 65,837 resulted in identical sums of42. Wilansky provided two other examples of numbers with this characteristic: 9,985 and 6,036. Since that time, many things have been discovered about Smith numbers including the fact that there are infinitely many Smith numbers [4]. The largest Smith numbers were produced by Samuel Yates. Using a large repunit and large palindromic prime, Yates was able to produce Smith numbers having ten million digits and thirteen million digits. Using the same large repunit and a new large palindromic prime, the author is able to find a Smith number with over thirty-two million digits. 2. NOTATIONS AND BASIC FACTS For any positive integer w, we let S(ri) denote the sum of the digits of n.
    [Show full text]