Fuel Vapour System for SI Engine Using Bubble Creation Method

Total Page:16

File Type:pdf, Size:1020Kb

Fuel Vapour System for SI Engine Using Bubble Creation Method DOI 10.4010/2016.646 ISSN 2321 3361 © 2016 IJESC Research Article Volume 6 Issue No. 3 Fuel Vapour System for SI Engine Using Bubble Creation Method Balaprakash1, Ganesan.V2 UG Scholar1, Assistant Professor2 Department of Automobile Engineering Christ the King Engineering College, Karamadai, Coimbatore, Tamil Nadu, India [email protected], [email protected] Abstract: The aim of this paper is to obtain vapour from petrol and use this vapour to ignite the Engine. Here we have used bubble creation method for obtain the vapour from petrol. The fuel vapour produced is much better than the fuel mist. The performance and emission test were conducted between the normal carburetor and fuel vapour system. The emission test was conducted and the following results were obtained as CO 0.03% and HC 42 PPM. The performance test was conducted and the following results were obtained as the mileage was significantly increased than the normal carburetor values. Keywords: Fuel vapour, carburetor, control valves, vapouriser chamber I. INTRODUCTION: airflow and therefore, indirectly, the fuel flow. In In this system, the fuel is made as vapour by using automobile engines, fuel injection systems are used in most vapourised chamber. The vapourised chamber has the models, controlled by a central unit that adjusts the duration amount of fuel inside, which the hose is dipped into it to of time during which the injectors remain open to deliver suck the atmospheric air into the chamber, due to vaccum fuel into the air stream. As everyone knows, analogous creation inside the chamber. The vapourised chamber has a systems have been adopted on some high range motorcycle float chamber to keep up in constant fuel level. When the engines. atmospheric air flow into the fuel, the air gets vapourised and sent to the engine through an outlet hose in the chamber by means of vapourised fuel using vapourised chamber. II. COMPONENTS: Construction of this fuel vapour system is simple in which it requires less economy than other vapourising methods. The main components of this system are, 1) Carburetor 2) Vapouriser chamber 3) Control valves and throttle valve 4) Float chamber A. Carburetor: Otto cycle engines used to power both two and four stroke motorcycles are fed with fuel (normal gasoline, special gasoline’s for some competition needs or, in some uncommon cases, methyl and/or ethyl alcohol), which is sufficiently volatile and has ignition properties which allow it to be premixed with the combustion air before the combustion is initiated by the spark plug. On the other Figure 1: Carburetor Working hand, in Diesel cycle engines, the fuel is less volatile and has ignition properties which require that it be mixed with In most cases, however, carburetors are widely air only inside the combustion chamber, where the pressure used, where the fuel is introduced according to the vacuum and temperature conditions are such to induce natural generated on various systems of fuel jets. ignition. For this reason, the power delivery of diesel The carburetor is the basic functions: engines may be adjusted by fuel delivery alone, without the 1. To control the power delivered by the engine, need to control the airflow. In Otto cycle engines, when the adjusting the airflow inducted according to driver fuel is pre-mixed with the air, it is necessary to control the demand. International Journal of Engineering Science and Computing, March 2016 2770 http://ijesc.org/ 2. To meter the fuel flow into the inducted air stream, while keeping the air/fuel ratio in the optimum range over the engine's entire working range. 3. To homogenize the air and fuel mixture in order to make the ignition and combustion proceed properly. B. Vapourising chamber Figure 4: 3 Way Valve A ball valve is a form of quarter-turn valve which uses a hollow, perforated and pivoting ball (called a "floating ball") to control flow through it. It is open when the ball's hole is in line with the flow and closed when it is pivoted 90-degrees by the valve handle. The handle lies flat in alignment with the flow when open, and is perpendicular to it when closed, making for easy visual confirmation of the valve's status. Ball valves are durable, performing well after many cycles, and reliable, closing securely even after long periods of disuse. These qualities make them an excellent choice for shutoff applications, where they are Figure 2: Vapourising Chamber often preferred to gates and globe valves, but they lack their fine control in throttling applications. The vaporising chamber made up of hard plastic. It consist’s of two poly vinyl chloride (pvc) pipes provided at The ball valve's ease of operation, repair, and the top of the vapourising chamber. versatility lend it to extensive industrial use, supporting pressures up to 1000 bar and temperatures up to 752 °F One of the pipe is dipped half of the fuel level (500 °C), depending on design and materials used. Sizes typically range from 0.2 to 48 inches (0.5 cm to 121 cm). Another pipe is placed without contact of the fuel Valve bodies are made of metal, plastic, or metal with a The process of vapourising chamber is to create ceramic; floating balls are often chrome plated for fuel vapour by using atmospheric air with the help of durability. One disadvantage of a ball valve is that they trap engine suction. At the time bubbles are created in the water in the center cavity while in the closed position. In vapourising chamber. the event of a freeze, the sides can crack due to expansion of ice forming. Some means of insulation or heat tape in C. Control valves. this situation will usually prevent damage. Another option for cold climates is the "freeze tolerant ball valve". This style of ball valve incorporates a freeze plug in the side so in the event of a freeze up, the freeze plug ruptures, (acts as a sacrificial disk), thus making for an easy repair. Now instead of replacing the whole valve, just screw in a new freeze plug. This is commonly called freeze plug technology. A ball valve should not be confused with a "ball-check valve", a type of check valve that uses a solid ball to prevent undesired backflow. Figure 3: 2 Way Valve International Journal of Engineering Science and Computing, March 2016 2771 http://ijesc.org/ D. Throttle valve automatically meters the fuel supply to the engine. However, this arrangement is found in many automatic liquid systems, for example the cistern of a toilet could be said to be a type of float chamber. E. Float chamber Figure 5: Throttle valve A throttle is the mechanism by which fluid flow is managed by constriction or obstruction. An engine's power can be increased or decreased by the restriction of inlet gases (i.e., by the use of a throttle), but usually decreased. The term throttle has come to refer, informally and incorrectly, to any mechanism by which the power or speed of an engine is regulated. What is often termed a throttle (in an aviation context) is more correctly called a thrust lever, particularly for jet engine powered aircraft. For a steam engine, the steam valve that sets the engine speed/power is often known as a regulator. In a gasoline internal combustion engine, the throttle is a valve that directly regulates the amount of air entering the engine, indirectly controlling the charge (fuel + air) burned on each cycle due to the fuel-injector or carburetor maintaining a relatively Figure 6: Float Chamber constant fuel/air ratio. In a motor vehicle the control used by the driver to regulate power is sometimes called the A float chamber works by allowing liquid within throttle pedal, as it controls the throttle opening, although the chamber to lift a float which is linked to a valve which "accelerator pedal" is more accurate, since not all vehicles regulates the liquid intake. When the level is low, the float have throttles. A diesel engine does not have a throttle; its drops and opens the valve, allowing in liquid until the float power level is controlled by regulating the fuel flow into rises sufficiently to close off the valve again. This is the engine, thus "throttle" and "gas pedal" are both identical in principle to the ballcock valve. inaccurate terms when applied to a diesel engine. III. METHODOLOGY: The throttle is typically a butterfly valve. In a fuel- injected engine, the throttle valve is placed on the entrance of the intake manifold, or housed in the throttle body. In a carbureted engine, it is found in the carburetor. When a throttle is wide open, the intake manifold is usually at ambient atmospheric pressure. When the throttle is partially closed, a manifold vacuum develops as the intake drops below ambient pressure. Usually, the throttle valve is controlled with a throttle pedal or lever via a direct mechanical linkage. In vehicles with electronic throttle control, the manual throttle control sends a signal to the Engine Control Unit (ECU), which then directly controls Figure 7: Block Diagram of Fuel Vapour System the position of the throttle valve. This means that the WORKING operator does not have direct control over the throttle valve; During suction stroke the piston in the cylinder the ECU can finely control the valve in order to reduce moves from top dead centre to bottom dead centre. During emissions or maximize performance. this stroke the fuel vapour from the vapourising chamber A float chamber is a device for automatically regulating the sucked inside the cylinder through valves, and a vacuum is supply of a liquid to a system.
Recommended publications
  • Honda Gx 390 Tech Manual
    GX240 GX270 GX340 GX390 UT2/RT2 Technical Manual ©2010 American Honda Motor Co., Inc. PTR54179 All Rights Reserved GX240 • GX270 • GX340 • GX390 (UT2/RT2) Technical Manual Preface This manual covers engine selection, engine installation design and engine installation testing, so the combination of a Honda engine and your equipment will make the best possible product. Please feel free to contact your Honda Engine Distributor at any time for additional technical information or to discuss your engine application needs. All information contained in this manual is based on the latest product information available at the time of printing. We reserve the right to make changes at anytime without notice. No part of this publication may be reproduced, or transmitted, in any form or by any means, electronic, mechanical photocopying, recording or otherwise, without the prior written permission of the publisher. This includes text, figures and tables. Contents Design Features .......................................................... 2 Starting Performance ...........................................16 Emission Regulations ................................................. 2 Installation Considerations ........................................17 Recommended Power Range ..................................... 3 Maintenance Points Accessibility ........................17 Maximum Operation ............................................... 3 Dimensional Drawings ...............................................19 Continuous Operation ...........................................
    [Show full text]
  • MGA Supercharger System Installation Instructions for 1955 to 1962 MGA
    MGA Supercharger System Installation Instructions For 1955 to 1962 MGA PART # 150-040 440 Rutherford St. P.O. Box 847 Goleta, CA 93117 1-800-667-7872 • FAX 805-692-2525 • www.mossmotors.com Please read and understand these valve between the barbed fitting and the instructions completely before you brake booster (closer to the booster) with begin the installation. the check valve arrow pointing toward the supercharger manifold. A few notes before you begin: Hose clamps: Re-use hose clamps, or Engine condition - Your car should have purchase new ones where necessary. Use a fresh tune up, including new spark plug new hose clamps on all fuel connections. wires, points, and a new distributor cap and rotor. Spark plugs are included in the If you have installed vacuum boosted supercharger system. brakes - you MUST install a check valve (Moss Part # 150-071) in the vacuum How superchargers work — line. This will prevent pressurized air from Superchargers compress the air/fuel mix- reaching the brake booster system and ture, filling cylinders with a greater charge damaging it. To install, remove the larger than when normally aspirated. Normally of the 3 plugs in the back of the super- aspirated engines produce vacuum, read charger manifold and install a barbed in inches of mercury, superchargers and fitting using teflon tape on the threads. turbochargers produce boost, read in posi- Using 3/8 in vacuum line, install the check tive pounds per square inch. 150-040 -1- Revised 1/11 Installation Instructions Boost capacity is determined by supercharger rod, jet, and slide have been altered to run prop- RPM which is, of course, affected by pulley size erly and safely on a wide range of supercharged, (the smaller the supercharger pulley, the faster unmodified engines.
    [Show full text]
  • Evaporative Emission Control Technologies for Gasoline Powered Vehicles
    Evaporative Emission Control Technologies for Gasoline Powered Vehicles December 2010 Manufacturers of Emission Controls Association 2020 N. 14th St. * Suite 220 * Arlington, VA 22201 www.meca.org www.dieselretrofit.org TABLE OF CONTENTS Executive Summary ........................................................................................................................ 1 1.0 Introduction ............................................................................................................................... 3 2.0 Current Evaporative Emissions Regulations in the U.S. .......................................................... 5 2.1 ARB’s Proposed LEV III Evaporative Emissions Requirements ................................. 7 2.2 Test Methods for Measuring Evaporative Emissions ................................................... 9 3.0 Technologies to Control Evaporative Emissions .................................................................... 10 3.1 Permeation Controls.................................................................................................... 11 3.2 Carbon Canisters ......................................................................................................... 12 3.3 Activated Carbon ........................................................................................................ 14 3.4 Air Intake Systems (AIS) ............................................................................................ 16 3.5 On-Board Refueling Vapor Recovery .......................................................................
    [Show full text]
  • GENERAL INSTRUCTIONS for ALL THROTTLE PLATE KITS Installation Instructions
    GENERAL INSTRUCTIONS FOR ALL THROTTLE PLATE KITS Installation Instructions WARNING! These instructions must be read and fully understood before installation. If this manual is not fully understood, installation should not be attempted. GENERAL: These are basic general instructions to remove and install the throttle plates in any two or four barrel Holley carburetors. Since a four barrel carburetor was used in this instruction sheet, the same basic removal and installation steps apply to two barrels also. IMPORTANT NOTE: Before starting the actual work, go through a “dry” run with the throttle body and the instruction sheet. This will help you familiarize yourself and gain confidence with all the procedures. TOOLS AND MATERIAL REQUIRED FOR INSTALLATION Phillips screwdriver Standard screwdriver Vise Soft wood blocks Duct tape Fine/medium file Loctite Grade 290 “Duck Billed” tip vise grips Carburetor stand (or suitable holding fixture) Access to compressed air REMOVAL OF THROTTLE BODY: 1. Place carburetor on its side to remove the throttle body screws. On vacuum secondary four barrels, it will be necessary to remove the “C” clip which holds the vacuum diaphragm stem onto the secondary throttle shaft. See Figure 1. 2. Place all screws, clips, and links to the side for later installation. FIGURE 1 FIGURE 2 Page 1 FIGURE 3 Front Side of Primary Throttle Bores shown FIGURE 4 REMOVAL OF OLD THROTTLE PLATES 1. Place the throttle body on a carburetor stand. See Figure 2. RECOMMENDATION: When servicing a carburetor off the vehicle it is recommended to place it in a suitable holding fixture. This helps prevent damage to the machined surfaces of the throttle body.
    [Show full text]
  • Carbureted Fuel Pressure Regulators TB
    Aeromotive, Inc. Technical Bulletin #201 From: Aeromotive Technical Department Date: 12/8/14 Re: Carbureted Fuel Pressure Regulators, Vacuum and Boost Reference: Aeromotive Carbureted Bypass Regulators: Why and how to use vacuum and boost reference. All Aeromotive, Carburetor Bypass are designed to allow the regulated fuel pressure to be vacuum or boost referenced on a 1:1 ratio with PSI. The purpose of the boost reference feature is to ensure fuel pressure at the inlet of the needle-and-seat rises with boost, offsetting any air pressure opposing fuel flow at the outlet of the needle and seat, in the float bowl itself. For “blow through” carbureted engines, where air is pushed or “blown” through the carburetor from a turbo or centrifugal supercharger, the carburetor and float bowls are pressurized, along with the intake. Pressure enters the float bowls via the vent tubes. As boost pressure builds in the intake, it also builds in the bowls, offsetting the pressure working to push fuel in through the needle and seat. Rising boost can act to slow or even stop fuel from entering the bowl, allowing it to run empty. By connecting the boost reference port on the regulator to the hat or carburetor box, the regulator will raise fuel pressure 1:1 with boost pressure, offsetting the rising air pressure and ensuring fuel continues to fill the bowl and feed the engine. The boost reference line on a blow through engine should reference positive pressure only (that is boost), not vacuum, and be connected to the carburetor box or hat rather than the intake manifold.
    [Show full text]
  • Engineering Study of the Rotary-Vee Engine Concept
    NASA Technical Memorandum 101995 SAE Paper No. 89-0332 Engineering Study of the Rotary-Vee Engine Concept Edward A. Willis National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio Timothy A. Bartrand Sverdrup Technology, Inc. NASA Lewis Research Center Group ~~ Cleveland, OhTo - and John E. Beard National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio Presented at the 1989 Annual Congress and Exposition sponsored by the Society of Automotive Engineers Detroit, Michigan, February 27-March 3, 1989 [NASA-Tbl- 103995) EIiGINEERING STUDY OF TfiE N89 -260C7 ROTARY-VEE ENGINE CONCEPT ;NASA, Lewis Research Center) 38 p CSCL 21E Unclas G~/07 0222716 ENGINEERING STUDY ON THE ROTARY-VEE ENGINE CONCEPT E.A. Willis National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135 T.A. Bartrand Sverdrup Technology, Inc. NASA Lewis Research Center Group Cleveland, Ohio 44135 and J.E. Beard* National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44 135 ABSTRACT This paper provides a review of the applicable thermodynamic cycle and performance considerations when the rotary-vee mechanism is used as an internal combustion (I. C.) heat engine. Included is a simplified kinematic analysis and studies of the effects of design pa- rameters on the critical pressures, torques and parasitic losses. A discussion of the principal findings is presented. SUMMARY The rotary-vee is an unusual two-stroke internal combustion (1. C.) engine which incorpo- rates many small cylinders in a pair of rotating cylinder blocks. Several development projects have been launched since about 1970 to capture the perceived benefits of this arrangement.
    [Show full text]
  • 21Rg Series.Pdf
    It is of vital importance, before attempting to operate your engine, to read the general 'SAFETY INSTRUCTIONS AND WARNINGS' section on pages 2-5 of this booklet and to strictly adhere to the advice contained therein. Also, please study the entire contents of this instruction manual, so as to familiarize yourself with the controls and other features of the engine. Keep these instructions in a safe place so that you may readily refer to them whenever necessary. It is suggested that any instructions supplied with the vehicle, radio control equipment, etc., are accessible for checking at the same time. CONTENTS SAFETY INSTRUCTIONS AND WARNINGS ABOUT YOUR O.S. ENGINE 2-5 IF THE ENGINE FAILS TO START 18 INTRODUCTION, BASIC ENGINE PARTS 6 FINAL ADJUSTMENT 18-19 INSTALLATION OF THE ENNGINE 7-8 CARBURETOR CLEANLINESS 20 INSTALLATION OF THE CARBURETOR 8 BEFORE STARTING THE ENGINE 21 AIR CLEANER TYPE201 9-12 CARE AND MAINTENANCE 21-22 NOTES CONCERNING THE RECOIL STARTER 12 GUARANTEE 22 GLOWPLUG 13 O.S. GENUINE PARTS & ACCESSORIES 23 TOOLS, ACCESSORIES, etc. 13-14 ENGINE EXPLODED VIEW & ENGINE PARTS LIST 24-27 CARBURETOR CONTROLS, PRESSURIZED FUEL SYSTEM 15 CARBURETOR EXPLODED VIEW & PARTS LIST 28-29 STARTING THE ENGINE & RUNNING-IN('Breaking-in) 15-18 THREE VIEW DRAWING 30 1 SAFETY INSTRUCTIONS AND WARNINGS ABOUT YOUR O.S. ENGINE Remember that your engine is not a "toy", but a highly efficient internal- combustion machine whose power is capable of harming you, or others, if it is misused. As owner, you, alone, are responsible for the safe operation of your engine, so act with discretion and care at all times.
    [Show full text]
  • 1986 Caterpillar Hhdd-Mhdd A-013-0043
    (Page 1 of 2) State of California AIR RESOURCES BOARD EXECUTIVE ORDER A-13-43 Relating to Certification of New Motor Vehicle Heavy-Duty Engines CATERPILLAR TRACTOR COMPANY Pursuant to the authority vested in the Air Resources Board by Sections 43100, 43102, and 43103 of the Health and Safety Code; and Pursuant to the authority vested in the undersigned by Sections 39515 and 39516 of the Health and Safety Code and Executive Order G-45-3; IT IS ORDERED AND RESOLVED: That the following Caterpillar Tractor Company 1986 model-year heavy-duty diesel engines have shown compliance with the optional transient test procedure and standards and are certified for use in motor vehicles with a manufacturer's gross vehicle weight rating greater than 8500 pounds : Displacement Exhaust Emission Control Systems Engine Family Cubic Inches (Liters) Special Features) GCTC636EPA6 636 ( 10.4) Engine Modifications Code B Diesel Injection - Direct) (Turbocharger) GCTO6 3SFPA6 538 ( 10.5) Engine Modifications (Aftercooler) (Diesel Injection - Prechamber) (Turbocharger) GCT0893FPA6 893 ( 14.6) Engine Modifications Codes H & J (Aftercooler) (Diesel Injection - Direct) (Turbocharger) GCTO893FPB7 893 (14.6) Engine Modifications Codes D & E (Aftercooler) (Diesel Injection - Direct) Turbocharger) Engine models and codes are listed on attachments. The following are the certification emission values for these engine families: CATERPILLAR TRACTOR COMPANY EXECUTIVE ORDER A-13-43 (Page 2 of 2) Carbon Hydrocarbons Monoxide Nitrogen Oxides Engine Family gm/bhp-hr gm/bhp-hr gm/bhp-hr GCTO636EPA6 0.73 1.8 4.2 Code B GCTO638F PA6 0.47 1.7 4.6 GCTO893F PA6 0.40 2.4 5.1 Codes H & J GCTO893FPB7 0.28 2.4 5.1 Codes D & E BE IT FURTHER RESOLVED: That the Executive Officer has been provided all material required to demonstrate certification compliance with the Board's emission control system warranty regulations including the aftercooler in the turbocharger system (Title 13, California Administrative Code, Section 2036).
    [Show full text]
  • AC 23.909-1- Installation of Turbochargers in Small Airplanes
    0 Advisory U.S. Department ( of Transportation Federal Aviation Circular Administration Subject: INSTALLATION OF TURBOCHARGERS Date: 2/3/86 AC No: 23. 909- 1 IN SMALL AIRPLANES WITH Initiated by: ACE- 100 Change: RECIPROCATING ENG INES 1. PURPOSE. This advisory circular (AC) provides information and gu idance concerning an acceptable means, but not the only means , of showing comp I iance with Part 23 of the Federal Aviation Regulations (FAR) , applicable to approval procedures and installation of turbochargers in smal I a irplanes. Accordingly, this material is neither mandatory nor regulatory in nature and does not constitute a regulation . 2. RELATED FAR SECTIONS . Section 23 .909 and applicable sections of Part 33 of the FAR (Part 3 of the Civ i I Air Regulations (CAR) does not have a corresponding requirement). 3. BACKGROUND . ( a. Exhaust gas- driven turbochargers are avai I able for use with reciprocat ing engines to: (1) Increase takeoff and maximum continuous power avai I able at sea leve l and a ltitude (turbosupercharged - boosted) . (2) Maintain maximum continuous or cruise powers above sea level altitude (turbonormal ized) . (3) Provtde a source of a ir to pressurize the cabin . NOTE : The word turbocharger wi I I be used throughout this AC to include both turbosupercharged boosted and tur bonormal ized engines . b. Section 23 .909 contains requirements for approval of turbochargers on smal I airp lanes. Th is regulation refers to des ign standards required in Part 33 of the FAR. Part 3 of the CAR does not speciflcal ly cover the approva l requirements for the insta l lation of a turbocharged engine in an airplane .
    [Show full text]
  • Service Manual
    CH18-CH25, CH620-CH730, CH740, CH750 Service Manual IMPORTANT: Read all safety precautions and instructions carefully before operating equipment. Refer to operating instruction of equipment that this engine powers. Ensure engine is stopped and level before performing any maintenance or service. 2 Safety 3 Maintenance 5 Specifi cations 14 Tools and Aids 17 Troubleshooting 21 Air Cleaner/Intake 22 Fuel System 28 Governor System 30 Lubrication System 32 Electrical System 48 Starter System 57 Clutch 59 Disassembly/Inspection and Service 72 Reassembly 24 690 06 Rev. C KohlerEngines.com 1 Safety SAFETY PRECAUTIONS WARNING: A hazard that could result in death, serious injury, or substantial property damage. CAUTION: A hazard that could result in minor personal injury or property damage. NOTE: is used to notify people of important installation, operation, or maintenance information. WARNING WARNING CAUTION Explosive Fuel can cause Accidental Starts can Electrical Shock can fi res and severe burns. cause severe injury or cause injury. Do not fi ll fuel tank while death. Do not touch wires while engine is hot or running. Disconnect and ground engine is running. Gasoline is extremely fl ammable spark plug lead(s) before and its vapors can explode if servicing. CAUTION ignited. Store gasoline only in approved containers, in well Before working on engine or Damaging Crankshaft ventilated, unoccupied buildings, equipment, disable engine as and Flywheel can cause away from sparks or fl ames. follows: 1) Disconnect spark plug personal injury. Spilled fuel could ignite if it comes lead(s). 2) Disconnect negative (–) in contact with hot parts or sparks battery cable from battery.
    [Show full text]
  • Download the Carb Tuning Guide
    S&S® CYCLE, INC. WWW.SSCYCLE.COM 6- Overflow Tube Fitting 7- Fuel Inlet 3 8- Bowl Vent Hole 9- Bowl Plug 13 2 8 10 1 11 4 5 12 14 1- Idle Speed Screw 6 10- Accelerator Pump Pushrod 2- Idle Mixture Screw 7 11- Intermediate Jet SUPER E & G CARBURETOR 3- Accelerator Pump Adjustment Screw 12- Main Jet 4- Enrichment Device 13- Main Jet Air Bleed TUNING GUIDE 5- Serial Number 9 14- Auxiliary Bowl Vent Plug QUICK TUNING STEPS 1- Verify carburetor is set to stock settings: 6- Ride motorcycle in various rpm ranges, and then try to 9- Since 2004 S&S shorty carbs have been fitted with an Approximate Jetting a- Idle mixture screw, 11/4 turns from lightly seated. maintain a consistent 40- to 50-mph. If the engine has adjustable main jet air bleed (#13). Changing this jet For S&S® Super E & G Carburetors b- Idle speed screw, ½ turn clockwise from a flat spot, or is popping/sneezing in the air cleaner, it to a larger size will delay the signal to the main jet, engagement point. can indicate a lean condition. If you notice stumbling or therefore aiding with high speed tuning as described Displacement 883cc 74 to 96 to 111 to c- Accelerator adjustment screw, two turns sputtering, it can indicate a rich condition. in step 8. This also aides with tuning an engine that is 88ci 107 ci 124 ci counter-clockwise from seated. 7- Low rpm operation is controlled by the intermediate fitted with an exhaust system that is not intended for Intermediate .265 – .0295 .031 .031 2- Start bike, bring to operating temperature.
    [Show full text]
  • Briggs 104M02-0216-H5 Parts Manual
    PartsParts ManualManual Mfg. No: 104M02-0216-H5 Copyright © Briggs and Stratton. All Rights reserved 18-Sep-2019 Table Of Contents Model Components Page Air Cleaner Group. 4 Blower Housing Group. 6 Carburetor Group. 8 Controls Group. 10 Crankcase Cover/Sump and Lubrication Group. 12 Crankshaft Group. 14 Cylinder Group. 16 Cylinder Head Group. 18 Exhaust Group. 20 Flywheel, Ignition, and Starter Group. 22 Fuel Supply Group. 24 Not For \nReproduction Copyright © Briggs and Stratton. All Rights reserved 3 18-Sep-2019 Air Cleaner Group Mfg. No: 104M02-0216-H5 Not For \nReproduction Copyright © Briggs and Stratton. All Rights reserved 4 18-Sep-2019 Air Cleaner Group REF NO PART NO QTY DESCRIPTION 11 596501 1 TUBE, Breather 318 793480 2 SCREW -(Mounting Bracket) 445 593260 1 FILTER, A/C Cartridge 535A 595191 1 FILTER, Air Cleaner Foam 875 594107 1 BASE, Air Cleaner 968 594106 1 COVER, Air Cleaner 971 590552 2 SCREW -(Air Cleaner Base to Carburetor/Throttle Body) Not For\nReproduction Copyright © Briggs and Stratton. All Rights reserved 5 18-Sep-2019 Blower Housing Group Mfg. No: 104M02-0216-H5 Not For \nReproduction Copyright © Briggs and Stratton. All Rights reserved 6 18-Sep-2019 Blower Housing Group REF NO PART NO QTY DESCRIPTION 857B 594111 1 TRIM, Blower Housing Cover 921 594116 1 COVER, Blower Housing 969 594115 2 SCREW -(Blower Housing Cover) 1036 ----- 1 LABEL, Emissions -(Available from a Briggs & Stratton Authorized Dealer) 1319 794467 1 LABEL, Warning -(REQUIRED When Replacing Parts With Warning Labels Affixed) 1319A 797669 1 LABEL, Warning -(REQUIRED When Replacing Parts With Warning Labels Affixed) Not For\nReproduction Copyright © Briggs and Stratton.
    [Show full text]