Human Progestin Adipoq Receptors, Identification of Paqr3 As a New Possible Adiponectin Receptor

Total Page:16

File Type:pdf, Size:1020Kb

Human Progestin Adipoq Receptors, Identification of Paqr3 As a New Possible Adiponectin Receptor HUMAN PROGESTIN ADIPOQ RECEPTORS, IDENTIFICATION OF PAQR3 AS A NEW POSSIBLE ADIPONECTIN RECEPTOR By IBON GARITAONANDIA A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2008 1 © 2008 Ibon Garitaonandia 2 To my loving family 3 ACKNOWLEDGMENTS This project was funded by the University of Florida and the NIH Grant R21 DK074812- 01. I would also like to thank the Department of Chemistry for the financial support. I am grateful to my research advisor Dr. Tom Lyons and my doctoral dissertation committee, Dr. Gail Fanucci, Dr. Nicole Horenstein, Dr. William Dolbier and Dr. David Silverman, for their continuous support and guidance throughout all these years. I thank former and current members of the Lyons’ group, Jessica, Brian, Lisa, Nancy, Lidia, for their friendship and guidance throughout these years. Special thanks go to Jessica, whose unconditional friendship, help and useful discussions over the years made the laboratory such a positive place for work. Finally I thank my parents, Pedro and Maria, my sister Alaitz and my grandmother Herminia for being my number one support system. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF TABLES...........................................................................................................................7 LIST OF FIGURES .........................................................................................................................8 ABSTRACT...................................................................................................................................12 CHAPTER 1 INTRODUCTION ..................................................................................................................14 Type 2 Diabetes ......................................................................................................................14 Adiponectin.............................................................................................................................14 Adiponectin Receptors............................................................................................................19 PAQR Receptors.....................................................................................................................23 Human Class I PAQRs ....................................................................................................23 Human Class II PAQRs...................................................................................................24 Human Class III PAQRs .................................................................................................25 Ceramidase Activity ........................................................................................................25 2 EXPRESSION AND CHARACTERIZATION OF THE HUMAN CLASS I PAQR PROTEINS IN ESCHERICHIA COLI ...................................................................................38 Introduction.............................................................................................................................38 Materials and Methods ...........................................................................................................38 Cloning of Human PAQRs..............................................................................................38 Growth Conditions ..........................................................................................................39 Detection of Expression ..................................................................................................40 Coomassie staining...................................................................................................40 His-tag in-gel staining ..............................................................................................40 Western blot .............................................................................................................40 Purification ......................................................................................................................41 Ceramidase Assay ...........................................................................................................42 Results and Discussion ...........................................................................................................43 Expression of PAQRs in Escherichia coli.......................................................................43 Ceramidase Assay ...........................................................................................................44 3 EXPRESSION AND CHARACTERIZATION OF THE HUMAN CLASS I PAQR PROTEINS IN SACCHAROMYCES CEREVISAE ................................................................51 Introduction.............................................................................................................................51 Materials and Methods ...........................................................................................................52 5 Yeast Strains and Media..................................................................................................52 Cloning of Human PAQR ...............................................................................................52 Growth Conditions ..........................................................................................................52 Membrane Protein Isolation ............................................................................................53 Western Blot....................................................................................................................53 β-galactosidase Reporter Assays .....................................................................................54 GFP Fluorescence............................................................................................................55 Adiponectin Binding .......................................................................................................55 Results and Discussion ...........................................................................................................56 Repression of FET3 by PAQRs.......................................................................................56 Thaumatin as a Ligand for Izh2p.....................................................................................57 Human Adiponectin Receptors........................................................................................58 Inhibitors and Activators of Human Adiponectin Receptors ..........................................59 PAQR3 and PAQR4 ........................................................................................................60 Involvement of PKA and AMPK ....................................................................................62 Ceramidase Activity ........................................................................................................63 Fluorescence Studies .......................................................................................................63 Adiponectin Binding .......................................................................................................66 4 EXPRESSION AND CHARACTERIZATION OF THE HUMAN CLASS I PAQR PROTEINS IN SF9 INSECT CELLS ....................................................................................94 Introduction.............................................................................................................................94 Materials and Methods ...........................................................................................................95 Cloning of Human Class I PAQR Proteins .....................................................................95 Growth of Sf9 Insect Cells...............................................................................................95 Transfection of Sf9 Insect Cells.......................................................................................96 Cell Extract Preparation and Western Blot .....................................................................96 Adiponectin Binding .......................................................................................................96 Results and Discussion ...........................................................................................................97 Expression of PAQRs in Sf9 cells ...................................................................................97 Adiponectin binding ........................................................................................................97 5 CONCLUSIONS ..................................................................................................................100 APPENDIX A YEAST STRAINS................................................................................................................103 B MEDIA COMPOSITION.....................................................................................................104 C PRIMERS USED FOR CLONING......................................................................................105 LIST OF REFERENCES.............................................................................................................109 BIOGRAPHICAL SKETCH .......................................................................................................118
Recommended publications
  • Peripheral Nervous System……………………………………………….9
    PhD School in Integrative Biomedical Research Department of Pharmacological and Biomolecular Sciences Curriculum: Neuroscience Molecular basis for the development of innovative therapies for peripheral neuropathies treatment: role and cross-regulation of the GABAergic system and neuroactive steroids SDD BIO/09 - Physiology Luca Franco Castelnovo Badge number R10402 PhD Tutor: Prof. Valerio Magnaghi PhD School Coordinator: Prof. Chiarella Sforza Academic year 2015/2016 INDEX Abstract…………………………………………………………………...page 1 Abbreviations list…………………………………………………………….....5 Introduction………………………………………………………………….....8 Peripheral nervous system……………………………………………….9 General concepts……………...……….……………………………........……..9 Sensory system and nociceptive fibers.………………..………….…………..12 Schwann cells and myelination……….……..………………...………………15 Peripheral neuropathies…….…………………………………………...26 General concepts……………………………………………………...……….26 Neuropathic pain……………………………………...……………………….27 Nerve regeneration…………………………………………………………….28 The GABAergic system………….……………………………………...32 GABA……………….…………………………………………………..……..32 GABA-A receptors…………………………………………………………….33 GABA-B receptors…………………………………………………………….42 GABAergic system in the peripheral nervous system…………………………47 Protein kinase C – type ε……………………….………………………..51 General concepts…………………………………………………….…………51 Cross-talk with allopregnanolone and GABA-A………………………………54 Neuroactive steroids…………......………………………………………57 General concepts…………………………………….…………………………57 Mechanism of action…………………………….……………………………..59 Progesterone derivatives………………………………….……………………60
    [Show full text]
  • Nicotinic Signalling and Neurosteroid Modulation in Principal Neurons of the Hippocampal Formation and Prefrontal Cortex
    Nicotinic Signalling and Neurosteroid Modulation in Principal Neurons of the Hippocampal Formation and Prefrontal Cortex by Beryl Yik Ting Chung A Thesis presented to The University of Guelph In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Sciences and Neuroscience Guelph, Ontario, Canada © Beryl Yik Ting Chung, April, 2018 ABSTRACT NICOTINIC SIGNALLING AND NEUROSTEROID MODULATION IN PRINCIPAL NEURONS OF THE HIPPOCAMPAL FORMATION AND PREFRONTAL CORTEX Beryl Yik Ting Chung Advisor: University of Guelph, 2018 Dr. Craig D.C. Bailey Nicotinic signalling plays an important role in coordinating the response of neuronal networks in many brain regions. During pre- and postnatal circuit formation, neurotransmission mediated by nicotinic acetylcholine receptors (nAChRs) influences neuronal survival and regulates neuronal excitability, synaptic transmission, and synaptic plasticity. Nicotinic signalling is also necessary for the proper function of the hippocampal formation (HF) and prefrontal cortex (PFC), which are anatomically and functionally connected and facilitate higher-order cognitive functions. The decline or dysfunction in nicotinic signalling and nAChR function has been observed in various neurological disorders, and the disruption or alteration of nicotinic signalling in the HF and/or PFC can impair learning and memory. While the location and functional role of the α4β2* nAChR isoform has been well characterized in the medial portion of the PFC, this is not well-established in the HF. What is the role of α4β2* nAChRs in excitatory principal neurons of the HF during early development? Growing evidence suggests that the progesterone metabolite allopregnanolone (ALLO) plays a role in mediating the proper function of the HF and the PFC, and that it may also inhibit nAChR function.
    [Show full text]
  • Progesterone Receptor Membrane Component 1 Promotes Survival of Human Breast Cancer Cells and the Growth of Xenograft Tumors
    Cancer Biology & Therapy ISSN: 1538-4047 (Print) 1555-8576 (Online) Journal homepage: http://www.tandfonline.com/loi/kcbt20 Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors Nicole C. Clark, Anne M. Friel, Cindy A. Pru, Ling Zhang, Toshi Shioda, Bo R. Rueda, John J. Peluso & James K. Pru To cite this article: Nicole C. Clark, Anne M. Friel, Cindy A. Pru, Ling Zhang, Toshi Shioda, Bo R. Rueda, John J. Peluso & James K. Pru (2016) Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors, Cancer Biology & Therapy, 17:3, 262-271, DOI: 10.1080/15384047.2016.1139240 To link to this article: http://dx.doi.org/10.1080/15384047.2016.1139240 Accepted author version posted online: 19 Jan 2016. Published online: 19 Jan 2016. Submit your article to this journal Article views: 49 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=kcbt20 Download by: [University of Connecticut] Date: 26 May 2016, At: 11:28 CANCER BIOLOGY & THERAPY 2016, VOL. 17, NO. 3, 262–271 http://dx.doi.org/10.1080/15384047.2016.1139240 RESEARCH PAPER Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors Nicole C. Clarka,*, Anne M. Frielb,*, Cindy A. Prua, Ling Zhangb, Toshi Shiodac, Bo R. Ruedab, John J. Pelusod, and James K. Prua aDepartment of Animal Sciences,
    [Show full text]
  • PRODUCT SPECIFICATION Anti-PAQR9 Product
    Anti-PAQR9 Product Datasheet Polyclonal Antibody PRODUCT SPECIFICATION Product Name Anti-PAQR9 Product Number HPA052798 Gene Description progestin and adipoQ receptor family member IX Clonality Polyclonal Isotype IgG Host Rabbit Antigen Sequence Recombinant Protein Epitope Signature Tag (PrEST) antigen sequence: IMLESWLFDLRGENPTLFVHF Purification Method Affinity purified using the PrEST antigen as affinity ligand Verified Species Human Reactivity Recommended IHC (Immunohistochemistry) Applications - Antibody dilution: 1:20 - 1:50 - Retrieval method: HIER pH6 Characterization Data Available at atlasantibodies.com/products/HPA052798 Buffer 40% glycerol and PBS (pH 7.2). 0.02% sodium azide is added as preservative. Concentration Lot dependent Storage Store at +4°C for short term storage. Long time storage is recommended at -20°C. Notes Gently mix before use. Optimal concentrations and conditions for each application should be determined by the user. For protocols, additional product information, such as images and references, see atlasantibodies.com. Product of Sweden. For research use only. Not intended for pharmaceutical development, diagnostic, therapeutic or any in vivo use. No products from Atlas Antibodies may be resold, modified for resale or used to manufacture commercial products without prior written approval from Atlas Antibodies AB. Warranty: The products supplied by Atlas Antibodies are warranted to meet stated product specifications and to conform to label descriptions when used and stored properly. Unless otherwise stated, this warranty is limited to one year from date of sales for products used, handled and stored according to Atlas Antibodies AB's instructions. Atlas Antibodies AB's sole liability is limited to replacement of the product or refund of the purchase price.
    [Show full text]
  • Human Chorionic Gonadotropin Increases Serum Progesterone, Number of Corpora Lutea and Angiogenic Factors in Pregnant Sheep
    REPRODUCTIONRESEARCH Human chorionic gonadotropin increases serum progesterone, number of corpora lutea and angiogenic factors in pregnant sheep Megan P T Coleson*, Nicole S Sanchez*, Amanda K Ashley, Timothy T Ross and Ryan L Ashley Department of Animal and Range Sciences, New Mexico State University, PO Box 30003, MSC 3I, Las Cruces, New Mexico 88003, USA Correspondence should be addressed to R L Ashley; Email: [email protected] *(M P T Coleson and N S Sanchez contributed equally to this work) Abstract Early gestation is a critical period when implantation and placental vascularization are established, processes influenced by progesterone (P4). Although human chorionic gonadotropin (hCG) is not endogenously synthesized by livestock, it binds the LH receptor, stimulating P4 synthesis. We hypothesized treating pregnant ewes with hCG would increase serum P4, number of corpora lutea (CLs) and concepti, augment steroidogenic enzymes, and increase membrane P4 receptors (PAQRs) and angiogenic factors in reproductive tissues. The objective was to determine molecular alterations induced by hCG in pregnant sheep that may promote pregnancy. Ewes received either 600 IU of hCG or saline i.m. on day 4 post mating. Blood samples were collected daily from day 0 until tissue collection for serum P4 analysis. Reproductive tissues were collected on either day 13 or 25 of gestation and analyzed for PAQRs, CXCR4, proangiogenic factors and steroidogenic enzymes. Ewes receiving hCG had more CL and greater serum P4, which remained elevated. On day 25, StAR protein production decreased in CL from hCG-treated ewes while HSD3B1 was unchanged; further, expression of CXCR4 significantly increased and KDR tended to increase.
    [Show full text]
  • Proteomic and Metabolomic Analyses of Biological Systems with Liquid Chromatography Tandem Mass Spectrometry and Ion Mobility Mass Spectrometry
    Graduate Theses, Dissertations, and Problem Reports 2017 Proteomic and Metabolomic Analyses of Biological Systems with Liquid Chromatography Tandem Mass Spectrometry and Ion Mobility Mass Spectrometry Megan M. Maurer Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Maurer, Megan M., "Proteomic and Metabolomic Analyses of Biological Systems with Liquid Chromatography Tandem Mass Spectrometry and Ion Mobility Mass Spectrometry" (2017). Graduate Theses, Dissertations, and Problem Reports. 6179. https://researchrepository.wvu.edu/etd/6179 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Proteomic and Metabolomic Analyses of Biological Systems with Liquid Chromatography Tandem Mass Spectrometry and Ion Mobility Mass Spectrometry Megan M. Maurer Dissertation submitted to the Eberly College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Analytical Chemistry Stephen J. Valentine, Ph.D., Chair Suzanne Bell, Ph.D. Glen P. Jackson, Ph.D.
    [Show full text]
  • The Effects of Ovarian Hormones on Memory Bias and Progesterone Receptors in Female Rats
    The Effects of Ovarian Hormones on Memory Bias and Progesterone Receptors in Female Rats by Smita Patel A Thesis Submitted to the Department of Psychology Concordia University, Quebec In Partial Fulfillment of the Requirements for the Degree of Master of Arts (Psychology) August 2020 © Smita Patel, 2020 iii CONCORDIA UNIVERSITY School of Graduate Studies This is to certify that the thesis prepared By: Smita Patel Entitled: Effects of Ovarian Hormones on Memory Bias and Progesterone Receptors in Female Rats and submitted in partial fulfillment of the requirements for the degree of Master of Arts (Psychology) complies with the regulations of the University and meets the accepted standards with respect to originality and quality. Signed by the final examining committee: _____________________________________ Chair Andreas Arvanitogiannis _____________________________________ Examiner Andrew Chapman _____________________________________ Examiner Peter John Darlington _____________________________________ Thesis Supervisor Wayne Brake Approved by ____________________________________________________ Andreas Arvanitogiannis Pascale Sicotte Date ___________________________ iii ABSTRACT The Effects of Ovarian Hormones on Memory Bias and Progesterone Receptors in Female Rats Smita Patel, MA Concordia University, 2020 Ovarian hormones can bias female rats to use one memory system over another when navigating a novel or familiar environment, resulting in a memory bias. High levels of estrogen (E) promotes places memory while low level of E promotes response memory. However, little is known about the effects of progesterone (P) on memory bias. Experiment 1 determined whether P affects memory bias. Ovariectomized (OVX) female rats were trained in a plus- shaped maze, which assesses memory system bias, and received one of three hormonal treatments: Low 17β estradiol (E2), high E2 or high E2 + P.
    [Show full text]
  • The Identification of Transcriptional Signatures of Steroid Response in Human Neurons and Microrna Networks As a Contributor to Reproductive Steroid Pathology
    THE IDENTIFICATION OF TRANSCRIPTIONAL SIGNATURES OF STEROID RESPONSE IN HUMAN NEURONS AND MICRORNA NETWORKS AS A CONTRIBUTOR TO REPRODUCTIVE STEROID PATHOLOGY A Dissertation submitted to the Faculty of the Graduate School of Arts and Sciences of Georgetown University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Global Infectious Diseases By Allison Courtney Goff, M.A. Washington, DC April 16, 2021 Copyright 2020 by Allison Courtney Goff All Rights Reserved ii THE IDENTIFICATION OF TRANSCRIPTIONAL SIGNATURES OF STEROID RESPONSE IN HUMAN NEURONS AND MICRORNA NETWORKS AS CONTRIBUTORS TO REPRODUCTIVE STEROID PATHOLOGY Allison Courtney Goff, M.A. Thesis Advisors: David Goldman, M.D. and Peter J. Schmidt, M.D. ABSTRACT Ovarian steroids change the brain in utero, during puberty, and in adulthood. At the neuronal level, ovarian steroids affect structure, gene networks, and physiological outputs, and at the neurocircuitry level they modulate working memory, reward, and emotion. In reproductive related affective disorders such as premenstrual dysphoric disorder (PMDD), alterations in mood and affect are linked to changes in ovarian steroid levels. However, the pathophysiology of these disorders is just beginning to be characterized. For PMDD, previous work demonstrated intrinsic differences in the ESC/E(Z) complex, a major epigenetic modifier. However, this work showed a discrepancy between transcripts and protein: while transcripts in this complex tend to be upregulated in PMDD, protein quantities were downregulated. The work in this thesis builds directly on this knowledge by investigating the role of microRNAs, a unique class of regulatory molecules that dynamically regulate gene networks and are capable of resolving seemingly paradoxical relationships between transcript and protein levels.
    [Show full text]
  • Expression of Membrane Progesterone Receptors in Eutopic and Ectopic Endometrium of Women with Endometriosis
    Hindawi BioMed Research International Volume 2020, Article ID 2196024, 7 pages https://doi.org/10.1155/2020/2196024 Research Article Expression of Membrane Progesterone Receptors in Eutopic and Ectopic Endometrium of Women with Endometriosis Edgar Ricardo Vázquez-Martínez,1 Claudia Bello-Alvarez,1 Ana Lorena Hermenegildo-Molina,1 Mario Solís-Paredes,2 Sandra Parra-Hernández,3 Oliver Cruz-Orozco,4 J. Roberto Silvestri-Tomassoni,5 Luis F. Escobar-Ponce,6 Luis A. Hernández-López,5 Christian Reyes-Mayoral,4 Andrea Olguín-Ortega,5 Brenda Sánchez-Ramírez,5 Mauricio Osorio-Caballero,7 Elizabeth García-Gómez,8 Guadalupe Estrada-Gutierrez,9 Marco Cerbón,1 and Ignacio Camacho-Arroyo 1 1Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico 2Departamento de Genética y Genómica Humana, Instituto Nacional de Perinatología, Mexico 3Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico 4Subdirección de Reproducción Humana, Instituto Nacional de Perinatología, Mexico 5Departamento de Ginecología, Instituto Nacional de Perinatología, Mexico 6Coordinación de Ginecología Laparoscópica, Instituto Nacional de Perinatología, Mexico 7Departamento de Salud Sexual y Reproducción Humana, Instituto Nacional de Perinatología, Mexico 8Unidad de Investigación en Reproducción Humana, Consejo Nacional de Ciencia y Tecnología (CONACyT)-Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico 9Dirección de Investigación, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico Correspondence should be addressed to Ignacio Camacho-Arroyo; [email protected] Received 11 March 2020; Revised 23 May 2020; Accepted 18 June 2020; Published 14 July 2020 Academic Editor: Paul Harrison Copyright © 2020 Edgar Ricardo Vázquez-Martínez et al.
    [Show full text]
  • Steroid and G Protein Binding Characteristics of the Seatrout and Human Progestin Membrane Receptor ␣ Subtypes and Their Evolutionary Origins
    0013-7227/07/$15.00/0 Endocrinology 148(2):705–718 Printed in U.S.A. Copyright © 2007 by The Endocrine Society doi: 10.1210/en.2006-0974 Steroid and G Protein Binding Characteristics of the Seatrout and Human Progestin Membrane Receptor ␣ Subtypes and Their Evolutionary Origins Peter Thomas, Y. Pang, J. Dong, P. Groenen, J. Kelder, J. de Vlieg, Y. Zhu, and C. Tubbs University of Texas Marine Science Institute (P.T., Y.P., J.D., C.T.), Port Aransas, Texas 78373; Centre for Molecular and Biomolecular Informatics (P.G., J.K., J.d.V.), Nijmegen Centre for Molecular Life Sciences, Radbout University Nijmegen, 6500 HC Nijmegen, The Netherlands; and Department of Biology (Y.Z.), East Carolina University, Greenville, North Carolina 27858 A novel progestin receptor (mPR) with seven-transmembrane immunoprecipitation experiments demonstrate the receptors domains was recently discovered in spotted seatrout and ho- are directly coupled to the Gi protein. Similar to G protein- mologous genes were identified in other vertebrates. We show coupled receptors, dissociation of the receptor/G protein com- that cDNAs for the mPR ␣ subtypes from spotted seatrout plex results in a decrease in ligand binding to the mPR␣s and (st-mPR␣) and humans (hu-mPR␣) encode progestin recep- mutation of the C-terminal, and third intracellular loop of tors that display many functional characteristics of G protein- st-mPR␣ causes loss of ligand-dependent G protein activation. coupled receptors. Flow cytometry and immunocytochemical Phylogenetic analysis indicates the mPRs are members of a staining of whole MDA-MB-231 cells stably transfected with progesterone and adipoQ receptor (PAQR) subfamily that is the mPR␣s using antibodies directed against their N-terminal only present in chordates, whereas other PAQRs also occur regions show the receptors are localized on the plasma mem- in invertebrates and plants.
    [Show full text]
  • Rodent Models of Non-Classical Progesterone Action Regulating Ovulation
    UCLA UCLA Previously Published Works Title Rodent Models of Non-classical Progesterone Action Regulating Ovulation. Permalink https://escholarship.org/uc/item/0f88c11b Authors Mittelman-Smith, Melinda A Rudolph, Lauren M Mohr, Margaret A et al. Publication Date 2017 DOI 10.3389/fendo.2017.00165 Peer reviewed eScholarship.org Powered by the California Digital Library University of California REVIEW published: 24 July 2017 doi: 10.3389/fendo.2017.00165 Rodent Models of Non-classical Progesterone Action Regulating Ovulation Melinda A. Mittelman-Smith*, Lauren M. Rudolph, Margaret A. Mohr and Paul E. Micevych Department of Neurobiology, David Geffen School of Medicine at UCLA, The Laboratory of Neuroendocrinology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, United States It is becoming clear that steroid hormones act not only by binding to nuclear receptors that associate with specific response elements in the nucleus but also by binding to receptors on the cell membrane. In this newly discovered manner, steroid hormones can initiate intracellular signaling cascades which elicit rapid effects such as release of internal calcium stores and activation of kinases. We have learned much about the trans- location and signaling of steroid hormone receptors from investigations into estrogen receptor α, which can be trafficked to, and signal from, the cell membrane. It is now clear that progesterone (P4) can also elicit effects that cannot be exclusively explained Edited by: by transcriptional changes. Similar to E2 and its receptors, P4 can initiate signaling at the Shyama Majumdar, University of Illinois at Chicago, cell membrane, both through progesterone receptor and via a host of newly discovered United States membrane receptors (e.g., membrane progesterone receptors, progesterone receptor Reviewed by: membrane components).
    [Show full text]
  • Whole-Transcriptome Analysis of Fully Viable Energy Efficient Glycolytic
    CANCER GENOMICS & PROTEOMICS 17 : 469-497 (2020) doi:10.21873/cgp.20205 Whole-transcriptome Analysis of Fully Viable Energy Efficient Glycolytic-null Cancer Cells Established by Double Genetic Knockout of Lactate Dehydrogenase A/B or Glucose-6-Phosphate Isomerase ELIZABETH MAZZIO 1, RAMESH BADISA 1, NZINGA MACK 1, SHAMIR CASSIM 2, MASA ZDRALEVIC 3# , JACQUES POUYSSEGUR 2,3 and KARAM F.A. SOLIMAN 1 1College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A.; 2Department of Medical Biology, Centre Scientifique de Monaco, Monaco, Monaco; 3University Côte d'Azur, IRCAN, CNRS, Centre A. Lacassagne, Nice, France Abstract. Background/Aim: Nearly all mammalian tumors viability. These findings show a high biochemical energy of diverse tissues are believed to be dependent on efficiency as measured by ATP in glycolysis-null cells. Next, fermentative glycolysis, marked by elevated production of transcriptomic analysis conducted on 48,226 mRNA lactic acid and expression of glycolytic enzymes, most notably transcripts reflect 273 differentially expressed genes (DEGS) lactic acid dehydrogenase (LDH). Therefore, there has been in the GPI KO clone set, 193 DEGS in the LDHA/B DKO significant interest in developing chemotherapy drugs that clone set with 47 DEGs common to both KO clones. selectively target various isoforms of the LDH enzyme. Glycolytic-null cells reflect up-regulation in gene transcripts However, considerable questions remain as to the typically associated with nutrient deprivation / fasting and consequences of biological ablation of LDH or upstream possible use of fats for energy: thioredoxin interacting protein targeting of the glycolytic pathway. Materials and Methods: (TXNIP), mitochondrial 3-hydroxy-3-methylglutaryl-CoA In this study, we explore the biochemical and whole synthase 2 (HMGCS2), PPAR γ coactivator 1 α ( PGC-1 α), transcriptomic effects of CRISPR-Cas9 gene knockout (KO) and acetyl-CoA acyltransferase 2 (ACAA2).
    [Show full text]