CFD Assessment of Respiratory Drug Delivery Efficiency in Adults and Improvements Using Controlled Condensational Growth

Total Page:16

File Type:pdf, Size:1020Kb

CFD Assessment of Respiratory Drug Delivery Efficiency in Adults and Improvements Using Controlled Condensational Growth Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2014 CFD Assessment of Respiratory Drug Delivery Efficiency in Adults and Improvements Using Controlled Condensational Growth Ross L. Walenga Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Biomechanical Engineering Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/3641 This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. © Ross Lawrence Walenga 2014 All Rights Reserved CFD ASSESSMENT OF RESPIRATORY DRUG DELIVERY EFFICIENCY IN ADULTS AND IMPROVEMENTS USING CONTROLLED CONDENSATIONAL GROWTH A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University. by ROSS LAWRENCE WALENGA Bachelor of Science, Virginia Polytechnic Institute and State University, USA, 2000 Director: Dr. P. WORTH LONGEST Professor, Department of Mechanical and Nuclear Engineering and Department of Pharmaceutics Virginia Commonwealth University Richmond, Virginia December, 2014 ii Acknowledgment The completion of my doctorate has been a period of rapid personal and professional growth for me. At the beginning, I was able to execute a plan of action, but I had not yet developed my ability to see the big picture. Now, I find that I am able to use my natural inquisitiveness to guide my work and to confidently make meaningful decisions about the direction of my research. That does not discount the value of all the technical skill that I have developed during my time at VCU, which is significant too, but merely places it in perspective. Over the course of this process I have discovered that I love the creative and dynamic process of research with all of its unpredictability and meaningful discussion. Many people have helped tremendously during this process, for all of whom I am deeply grateful. My loving wife Amanda has been there to celebrate my accomplishments and to provide emotional support during times of difficulty. I cannot truly measure the sacrifices that she has made to ensure the successful completion of this degree, but I do know that without her I would not be where I am now. I also want to acknowledge our two beautiful daughters Abigail and Miriam, who, along with Amanda, have given me more joy than they can ever know. My advisor Dr. P. Worth Longest has made this degree possible with his generous and knowledgeable support. He told me from the start that there would be three phases of progression that I would pass through: a training phase, an application phase, and an innovation phase. I believe it is a great credit to him that I have been able to navigate these three stages and that I now have the confidence to engage in research on my own. I believe his greatest attribute iii as an advisor has been the ability to balance thoughtful support while still providing space for me to operate individually. It has always been about more than just the successful completion of a given project, as he has always had my professional development in mind. My colleagues Karl Bass, Katelyn Boone, Dr. Navvab Khajeh-Hosseini-Dalasm, Dale Farkas, Landon Holbrook, Dr. Alex Rygg, and Dr. Geng Tian have all been great partners to work with during these past few years. It was my pleasure to collaborate on a number of projects with them and to share our experiences as members of Dr. Longest’s lab. Current and former members of the VCU Department of Pharmaceutics including Dr. Michael Hindle, Dr. Ravi Behara, Dr. Renishkumar Delvadia, Dr. Laleh Golshahi, Dr. Anubhav Kaviratna, and Xiangyin Wei have all provided immense help with the in vitro experiments that are so instrumental to our research. My Ph.D. committee members were Dr. Heise, Dr. Hindle, Dr. Mossi, and Dr. Tafreshi, and I am grateful for their thoughtful comments and guidance during this process Finally, I want to acknowledge the grant funding that has made my dissertation research possible. An FDA U-award supported the characteristic tracheobronchial model and asthma constricted studies, while an NIH R01 grant supported the development of the mixer-heaters and the studies of nose-to-lung delivery in an NIV setting. iv Table of Contents ACKNOWLEDGMENT ............................................................................................................. II TABLE OF CONTENTS ........................................................................................................... IV LIST OF TABLES ................................................................................................................... VIII LIST OF FIGURES ................................................................................................................. XVI ABSTRACT ............................................................................................................................. XXV CHAPTER 1 SPECIFIC AIMS ............................................................................................. 1 CHAPTER 2 BACKGROUND .............................................................................................. 9 2.1 OBJECTIVE 1: AIRWAY AND MASK MODEL DEVELOPMENT ........................... 9 2.1.1 Characteristic Upper Airway Models ................................................................................................. 10 2.1.2 Nasal Cavity Models of Variable Constriction.................................................................................... 13 2.1.3 Existing NIV Interfaces for Aerosol Delivery ...................................................................................... 15 2.2 OBJECTIVE 2: CFD ASSESSMENT OF MDI AND DPI DELIVERY ...................... 19 2.2.1 Characterization of MDI and DPI Aerosol Delivery in the TB Airways ............................................... 20 2.2.2 Effect of Asthma Constriction on Upper and Lower Airway Aerosol Deposition ............................... 23 2.3 OBJECTIVE 3: IMPROVED AEROSOL DELIVERY DURING NIV ....................... 26 v 2.3.1 Submicrometer Particle Production for ECG and EEG delivery .......................................................... 27 2.3.2 Depositional Loss and Variability during HFT Aerosol Delivery ......................................................... 29 2.3.3 Nebulized Aerosol Delivery during NPPV ........................................................................................... 31 2.3.4 Dry Powder Aerosol Delivery during NPPV ........................................................................................ 36 2.3.5 Variability of NPPV Aerosol Delivery ................................................................................................. 40 CHAPTER 3 CHARACTERISTIC TRACHEOBRONCHIAL MODEL ...................... 42 3.1 INTRODUCTION .......................................................................................................... 42 3.2 METHODS..................................................................................................................... 44 3.3 RESULTS....................................................................................................................... 58 3.4 DISCUSSION ................................................................................................................ 67 CHAPTER 4 EFFECTS OF ASTHMA CONSTRICTION .............................................. 89 4.1 INTRODUCTION .......................................................................................................... 89 4.2 METHODS..................................................................................................................... 90 4.3 RESULTS..................................................................................................................... 103 4.4 DISCUSSION .............................................................................................................. 108 CHAPTER 5 MIXER-HEATER CONSTRUCTION AND DEVELOPMENT............ 127 5.1 INTRODUCTION ........................................................................................................ 127 5.2 METHODS................................................................................................................... 128 5.3 RESULTS..................................................................................................................... 132 5.4 DISCUSSION .............................................................................................................. 134 vi CHAPTER 6 NASAL VARIABILITY AND EEG DELIVERY .................................... 140 6.1 INTRODUCTION ........................................................................................................ 140 6.2 METHODS................................................................................................................... 142 6.3 RESULTS..................................................................................................................... 154 6.4 DISCUSSION .............................................................................................................. 162 CHAPTER 7 NEBULIZED AEROSOL DELIVERY DURING NPPV ........................ 191 7.1 INTRODUCTION .......................................................................................................
Recommended publications
  • Standards for the Diagnosis and Treatment of Patients with COPD
    Copyright #ERSJournals Ltd 2004 EurRespir J 2004;23: 932– 946 EuropeanRespiratory Journal DOI: 10.1183/09031936.04.00014304 ISSN0903-1936 Printedin UK –allrights reserved ATS/ ERSTASK FORCE Standardsfor the diagnosisand treatment of patientswith COPD: asummaryof the ATS/ERSposition paper B.R. Celli*, W. MacNee*,andcommittee members Committeemembers: A Agusti, A Anzueto, B Berg, A S Buist, P M A Calverley, N Chavannes, T Dillard, B Fahy, A Fein, J Heffner, S Lareau, P Meek, F Martinez, W McNicholas, J Muris, E Austegard, R Pauwels, S Rennard, A Rossi, N Siafakas, B Tiep, J Vestbo, E Wouters, R ZuWallack *P ulmonaryand Critical C are D ivision, St Elizabeth s’ Medical Center, Tufts U niversity School of Medicine, Boston, Massachusetts, USA # Respiratory Medicine ELE GI, Colt R esearch Lab Wilkie Building, CONTEMedical Schoo l, T eviot Place, Edinburgh, UK CONTENTSNTS Background. ............................ 932 Managementof stab eCOPD:surgery in and for Goals and objectives 933 COPD.. ............................... 938 Participants 933 Surgery in COPD 938 Evidence, methodology and validation 933 Surgery for COPD 938 Concept of a "live",modular document 933 Managementof stab e COPD: s eep. ........... 938 Organisation of the document 933 Managementof stab eCOPD:air-trave . 939 De® nitionof COPD. ...................... 933 Exacerbationof COPD: de® nition, eva uation and Diagnosisof COPD. ...................... 933 treatment ............................... 939 Epidemio ogy,risk factors andnatura history De® nition 939 ofCOPD ............................... 934 Assessment 940 Patho ogyand pathophysio ogyin COPD . ....... 934 Indication for hospitalisation 940 C inica assessment, testingand differentia diagnosisof Indications for admission to specialised or intensive COPD.. ............................... 934 care unit 940 Medicalhistory 935 Treatment of exacerbations 940 Physicalsigns 935 Exacerbationof COPD: inpatient oxygen therapy.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,029,579 Trammell (45) Date of Patent: Jul
    United States Patent (19) 11 Patent Number: 5,029,579 Trammell (45) Date of Patent: Jul. 9, 1991 54 HYPERBARIC OXYGENATION 4,452,242 6/1984 Bänziger ......................... 128/205.26 APPARATUS AND METHODS 4,467,798 8/1984 Saxon et al. ... ... 128/205.26 4,474,571 10/1984 Lasley ................................... 604/23 75 Inventor: Wallace E. Trammell, Provo, Utah 4,509,513 4/1985 Lasley ....... ... 128/202.12 4,624,656 1 1/1986 Clark et al. ........................... 604/23 73) Assignee: Ballard Medical Products, Midvale, 4,691,.695 9/1987 Birk et al. ............................. 128/38 Utah Appl. No.: 392,169 FOREIGN PATENT DOCUMENTS 21) 317900 12/1919 Fed. Rep. of Germany ... 128/256 22) Filed: Aug. 10, 1989 1 14443 12/1941 United Kingdom ................ 128/248 Related U.S. Application Data OTHER PUBLICATIONS 63 Continuation of Ser. No. 297,351, Jan. 13, 1989, aban TOPOX Literature. doned, which is a continuation of Ser. No. 61,924, Jun. Oxycure Literature. 15, 1987, abandoned, which is a continuation-in-part of B & F Medical Products, Inc. Literature. Ser. No. 865,762, May 22, 1986, abandoned. Primary Examiner-Richard J. Apley (51) Int. Cl. ............................................... A61H 9/00 Assistant Examiner-Linda C. M. Dvorak (52) U.S. Cl. ................................ 128/205.26; 128/30; Attorney, Agent, or Firm-Lynn G. Foster 128/202.12; 128/205.24; 604/23 (58) Field of Search ...................... 128/202. 12, 205.26, 57 ABSTRACT 128/28, 30, 30.2, 38, 40, 402; 600/21; 604/23, A novel hyperbaric oxygenation apparatus, and related 289, 290, 293,304, 305, 308 methods, the apparatus comprising a chamber in the form of a disposable inflatable bag of impervious inex 56 References Cited pensive synthetic resinous material which can be used at U.S.
    [Show full text]
  • Effect of Assist Negative Pressure Ventilation by Microprocessor
    258 ORIGINAL ARTICLE Thorax: first published as 10.1136/thorax.57.3.258 on 1 March 2002. Downloaded from Effect of assist negative pressure ventilation by microprocessor based iron lung on breathing effort M Gorini, G Villella, R Ginanni, A Augustynen, D Tozzi, A Corrado ............................................................................................................................. Thorax 2002;57:258–262 Background: The lack of patient triggering capability during negative pressure ventilation (NPV) may contribute to poor patient synchrony and induction of upper airway collapse. This study was undertaken to evaluate the performance of a microprocessor based iron lung capable of thermistor trig- gering. Methods: The effects of NPV with thermistor triggering were studied in four normal subjects and six patients with an acute exacerbation of chronic obstructive pulmonary disease (COPD) by measuring: (1) the time delay (TDtr) between the onset of inspiratory airflow and the start of assisted breathing; (2) the pressure-time product of the diaphragm (PTPdi); and (3) non-triggering inspiratory efforts (NonTrEf). In patients the effects of negative extrathoracic end expiratory pressure (NEEP) added to NPV were also evaluated. See end of article for Results: With increasing trigger sensitivity the mean (SE) TDtr ranged from 0.29 (0.02) s to 0.21 authors’ affiliations ....................... (0.01) s (mean difference 0.08 s, 95% CI 0.05 to 0.12) in normal subjects and from 0.30 (0.02) s to 0.21 (0.01) s (mean difference 0.09 s, 95% CI 0.06 to 0.12) in patients with COPD; NonTrEf ranged Correspondence to: from 8.2 (1.8)% to 1.2 (0.1)% of the total breaths in normal subjects and from 11.8 (2.2)% to 2.5 Dr M Gorini, Via Ragazzi (0.4)% in patients with COPD.
    [Show full text]
  • What Are the Respiratory Requirements for the Treatment of COVID-19 Pneumonia?
    What are the respiratory requirements for the treatment of COVID-19 pneumonia? Background What happens in the lungs during COVID-19 pneumonia? Patients may require support of their breathing by having ventilatory assistance for a range of reasons, but patients who are seriously affected by COVID-19 will primarily develop pneumonia which may progress to acute respiratory distress syndrome (ARDS) in which there is extreme inflammation with damage and fluid accumulation within the small gas-exchange sacs of the lung (alveoli).1 These patients require specialised ventilation strategies to prevent hypoxia (oxygen depletion of their tissues) which have been well defined2,3, and which are known to deliver optimum therapy4. How is ventilatory assistance conventionally delivered? Since the first positive pressure devices were introduced in the 1950s, it has become conventional to ventilate the lungs, in a wide variety of disease, by delivering positive pressure ventilatory support, either via a tightly-fitting face mask (CPAP), or through a cuffed endo-tracheal tube using positive pressure ventilators (PPV). These devices have become increasingly sophisticated and a whole generation of anaesthetists/intensivists have become expert in their use. However, before this method was introduced there was a long history of using negative pressure ventilation (NPV) by placing the patient’s body within a chamber with their head outside, with a seal at the neck. The lungs were inflated creating a negative pressure in the chamber or tank (the “iron lung”). NPV mimics and enhances natural respiration. The change from NPV to PPV was not a planned decision related to their relative evidence or efficacy, but occurred because of the convenience of not having to manage a patient inside a large tank, and ironically, a shortage of these large and expensive devices during the polio epidemic during the 1950s.
    [Show full text]
  • Position!Statement:!! Tracheostomy! Management!
    ! ! The!New!Zealand!Speech/language!Therapists’!Association! (NZSTA)! ! ! ! Position!Statement:!! Tracheostomy! Management! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Copyright!©!2015!The!New!Zealand!Speech;language!Therapists’!Association!! !!!!! ! Disclaimer:!To!the!best!of!The!New!Zealand!Speech;language!Therapists’!Association’s!(‘the!Association’)! knowledge,!this!information!is!valid!at!the!time!of!publication.!The!Association!makes!no!warranty!or! representation!in!relation!to!the!content!or!accuracy!of!the!material!in!this!publication.!The!Association! expressly!disclaims!any!and!all!liability!(including!liability!for!negligence)!in!respect!of!use!of!the! information!provided.!The!Association!recommends!you!seek!independent!professional!advice!prior!to! making!any!decision!involving!matters!outlined!in!this!publication.!! ! ! ! Acknowledgements! ! Working!party! Lucy!Greig!(lead)! Molly!Kallesen! Melissa!Keesing! Anna!Miles! Turid!Peters! Samantha!Scott! Katie!Ward! !! Speech!Pathology!Australia!for!sharing!Speech&Pathology&Australia.&(2013).& Tracheostomy&Management&Clinical&Guideline.&Melbourne:&Speech&Pathology& Australia.&with!members!of!the!New!Zealand!Speech;language!Therapists’! Association.! !! Advisors! Karen!Brewer,!Speech;language!Therapist,!Te!Kupenga!Hauora!Maori,!Faculty!of! Medical!&!Health!Sciences,!The!University!of!Auckland.! ! Erena!Wikaire,!Physiotherapist,!Te!Kupenga!Hauora!Maori,!Faculty!of!Medical!&! Health!Sciences,!The!University!of!Auckland.! ! Reviewers! The!New!Zealand!Speech;language!Therapists’!Association!Executive!Committee!
    [Show full text]
  • Respiratory Failure Diagnosis Coding
    RESPIRATORY FAILURE DIAGNOSIS CODING Action Plans are designed to cover topic areas that impact coding, have been the frequent source of errors by coders and usually affect DRG assignments. They are meant to expand your learning, clinical and coding knowledge base. INTRODUCTION Please refer to the reading assignments below. You may wish to print this document. You can use your encoder to read the Coding Clinics and/or bookmark those you find helpful. Be sure to read all of the information provided in the links. You are required to take a quiz after reading the assigned documents, clinical information and the Coding Clinic information below. The quiz will test you on clinical information, coding scenarios and sequencing rules. Watch this video on basics of “What is respiration?” https://www.youtube.com/watch?v=hc1YtXc_84A (3:28) WHAT IS RESPIRATORY FAILURE? Acute respiratory failure (ARF) is a respiratory dysfunction resulting in abnormalities of tissue oxygenation or carbon dioxide elimination that is severe enough to threaten and impair vital organ functions. There are many causes of acute respiratory failure to include acute exacerbation of COPD, CHF, asthma, pneumonia, pneumothorax, pulmonary embolus, trauma to the chest, drug or alcohol overdose, myocardial infarction and neuromuscular disorders. The photo on the next page can be accessed at the link. This link also has complete information on respiratory failure. Please read the information contained on this website link by NIH. 1 http://www.nhlbi.nih.gov/health/health-topics/topics/rf/causes.html
    [Show full text]
  • The Following Information Was Take From
    The following excerpt has been taken from the Christopher & Dana Reeve Foundation Paralysis Resource Center website. http://www.christopherreeve.org/site/c.mtKZKgMWKwG/b.4453421/k.9F9F/Respiratory .htm Respiratory, Ventilator and Trach Resources As we breathe, oxygen in the air is brought into the lungs and into close contact with the blood, which absorbs it and carries it to all parts of the body. At the same time, the blood gives up carbon dioxide, which is carried out of the lungs with air breathed out. Lungs are not affected by paralysis. However, the muscles of the chest, abdomen, and diaphragm can be affected. As the various breathing muscles contract, they allow the lungs to expand, which changes the pressure inside the chest so that air rushes into the lungs. This is inhaling – which requires muscle strength. As those same muscles relax, the air flows back out of your lungs, and you exhale. If paralysis occurs at the C-3 level or higher, the phrenic nerve is no longer stimulated and therefore the diaphragm does not function. This means mechanical assistance -- usually a ventilator – will be needed to breathe. Persons with paralysis at the mid-thoracic level and higher will have trouble taking a deep breath and exhaling forcefully. Because they don’t have use of abdominal or intercostal muscles, these people have also lost the ability to forcefully cough. This can lead to lung congestion and respiratory infections. Moreover, secretions can act as glue, causing the sides of your airways to stick together and not inflate properly. This is called atelectasis, or a collapse of part of the lung.
    [Show full text]
  • Volume 46 Contents
    VOLUME 46 CONTENTS No 1 JANUARY 1991 Page Original articles 1 Risk of tuberculosis in immigrant Asians: culturally acquired immunodeficiency? P J Finch, F J C Millard, J D Maxwell 6 Effect of negative pressure ventilation on arterial blood gas pressures and inspiratory muscle strength during an exacerbation of chronic obstructive lung disease J M Montserrat, J A Martos, A Alarcon, R Celis, V Plaza, Thorax: first published as on 1 January 1991. Downloaded from C Picado 9 The protective effect of a beta2 agonist against excessive airway narrowing in response to bronchoconstrictor stimuli in asthma and chronic obstructive lung disease E H Bel, A H Zwinderman, M C Timmers, i H Dijkman, P J Sterk 15 Corticosteroid treatment as a risk factor for invasive aspergillosis in patients with lung disease L B Palmer, H E Greenberg, M J Schiff 21 Continuous extrapleural intercostal nerve block after pleurectomy E J Mozell, S Sabanathan, A J Mearns, P J Bickford-Smith, M R Majid, C Zografos 25 Erythropoietin concentrations in obstructive sleep apnoea J M Goldman, R M Ireland, M Berthon-Jones, R R Grunstein, C E Sullivan, J C Biggs 28 Effects ofhypercapnia and hypocapnia on respiratory resistance in normal and asthmatic subjects F J J van den Elshout, C L A van Herwaarden, H Th M Folgering 33 Abnormal lung function associated with asbestos disease of the pleura, the lung, and both: a comparative analysis K H Kilburn, R H Warsaw 39 Cysteine and glutathione concentrations in plasma and bronchoalveolar lavage fluid after treatment with N-acetylcysteine M
    [Show full text]
  • (HIMS) : an International Study of Incidents Occuring in Hyperbaric Medicine Units
    (IIIMS): An The Hyperbaric Incident Monitoring study International Study of Incidents Occurring in Hyperbaric Medicine Units Christy Joan Pirone BSN, Rfl Master of clinical science infulf;.ltment of the requirementfor the Degree of Thesis submitted to the University of Adetaide Adelaide UniversitY Department of Ctinical Nursing October 2000 GONTENTS Page Abstract Summary of Thesis vlll Declaration 1X Dedication x Acknowledgments xl List of Tables xiv List of Figures xv List of Abbreviations xvi 1 Introduction 2 The Research Questions 2 Aims 2 Obiectives J Overview of the thesis structure Chapter 1 Incident Monitoring In llealth Care 5 5 1.1 Scope and Significance of the Clinical Problem 7 l'2tncidentReportinginHealthcare:ReviewoftheLiterature 7 1.2.a Overviø,t¡ and Methodologl of the Revietv I 1.2.b Evolution snd methods of incident reporting 13 1.2.c IncidentAnalYsis 1l Chapter 2 History of SafetY in Clinical Hyperbaric Medicine t7 22 2.1 Hyperbaric Specific National StandardJGuidelines 22 2.2 Training Chapter 3 Review of the Literature: Incidents and safety in 27 Hyperbaric Medical Practice 28 3.1 MethodologYofthereview 29 3.2 Review of Incident Monitoring in Hyperbaric 31 3.2.a Findings of Incident Reporting in Iþperbaric 33 3.3 Incident literature review by type of incident 34 3.4 Fire úrcidents 36 3.5 Pressure Incidcnts 38 3.6 Hyperbaric StaffSafetY 38 3.6.a Fitness to dive 43 3.6.b Incidents Affecting Stqf Safety DecomPres s ion Illne s s (DC I) Barotrauma Pressure related iniuries OrygentoxicitY Mus c ulo s læl e t al Effe ct s
    [Show full text]
  • Medical Ventilator 1 Medical Ventilator
    Medical ventilator 1 Medical ventilator A medical ventilator may be defined as any machine designed to mechanically move breatheable air into and out of the lungs, to provide the mechanism of breathing for a patient who is physically unable to breathe, or breathing insufficiently. See also mechanical ventilation. While modern ventilators are generally thought of as computerized machines, patients can be ventilated indefinitely with a bag valve mask, a simple hand-operated machine. After Hurricane Katrina, dedicated staff "bagged" patients in New Orleans hospitals for days with simple bag valve masks. Ventilators are chiefly used in intensive care medicine, home care, and emergency medicine (as standalone units) and in anesthesia (as a component of an anesthesia machine). The Bird VIP Infant ventilator Function In its simplest form, a modern positive pressure ventilator consists of a compressible air reservoir or turbine, air and oxygen supplies, a set of valves and tubes, and a disposable or reusable "patient circuit". The air reservoir is pneumatically compressed several times a minute to deliver room-air, or in most cases, an air/oxygen mixture to the patient. If a turbine is used, the turbine pushes air through the ventilator, with a flow valve adjusting pressure to meet patient-specific parameters. When overpressure is released, the patient will exhale passively due to the lungs' elasticity, the exhaled air being released usually through a one-way valve within the patient circuit called the patient manifold. The oxygen content of the inspired gas can be set from 21 percent (ambient air) to 100 percent (pure oxygen). Pressure and flow characteristics can be set mechanically or electronically.
    [Show full text]
  • Severe Airway Complications Are Described
    Respiratory Medicine Case Reports 15 (2015) 33e35 Contents lists available at ScienceDirect Respiratory Medicine Case Reports journal homepage: www.elsevier.com/locate/rmcr Case report Syndrome of iron pill inhalation in four patients with accidental tablet aspiration: Severe airway complications are described * U. Caterino , P. Battistoni, S. Batzella, R. Dello Iacono, G. Lucantoni, G. Galluccio Center for Thoracic Endoscopy, S. Camillo Forlanini Hospital, Rome, Italy abstract Keywords: Iron pill inhalation represents a uncommon cause of syntomatic endobronchial foreign bodies. Unlike Aspiration foreign body, the direct contact of iron tablet onto the bronchial mucosa results in severe bronchial Bronchial necrosis damage in addition to obstruction and local irritation. Four patients with Iron Pill Inhalation Syndrome Ferrous sulphate are described. All but one patient developed irreversible bronchial stenosis as late post inflammatory complication. Bronchoscopic features and clinical evolution are described in order to reduce the risk of severe side-effects in patients highly suspected for iron pill aspiration. © 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Introduction asthma. While the chest X-ray was normal, spirometry revealed obstruction of the small and moderate airways. Despite steroid In patients with swallowing disorders and history of martial treatment, the symptoms continued for months and the patient therapy, the onset of cough, dyspnoea and recurrent pneumonias was addressed to our endoscopy unit for further evaluation. She are mandatory indication for bronchoscopic examination [1e7]. underwent a chest HRCT scan revealing a pulmonary consolidation Accidental iron pill-inhalation represents an acute broncho- of right lower lobe and partial right middle lobe atelectasis.
    [Show full text]
  • Negative Pressure Ventilation in the Treatment of Acute Respiratory Failure: an Old Noninvasive Technique Reconsidered
    Eur Respir J, 1996, 9, 1531–1544 Copyright ERS Journals Ltd 1996 DOI: 10.1183/09031936.96.09071531 European Respiratory Journal Printed in UK - all rights reserved ISSN 0903 - 1936 SERIES: 'CLINICAL PHYSIOLOGY IN RESPIRATORY INTENSIVE CARE' Edited by A. Rossi and C. Roussos Negative pressure ventilation in the treatment of acute respiratory failure: an old noninvasive technique reconsidered A. Corrado, M. Gorini, G. Villella, E. De Paola Negative pressure ventilation in the treatment of acute respiratory failure: an old non- Unità di Terapia Intensiva Respiratoria, invasive technique reconsidered. A. Corrado, M. Gorini, G. Villella, E. De Paola. ©ERS Villa d'Ognissanti, Azienda Ospedaliera di Journals Ltd 1996. Careggi, Firenze, Italy. ABSTRACT: Noninvasive mechanical ventilatory techniques include the use of nega- Correspondence: A. Corrado tive and positive pressure ventilators. Negative pressure ventilators, such as the "iron Unità di Terapia Intensiva Respiratoria lung", support ventilation by exposing the surface of the chest wall to subatmos- Villa d'Ognissanti pheric pressure during inspiration; whereas, expiration occurs when the pressure Viale Pieraccini, 24 around the chest wall increases and becomes atmospheric or greater than atmos- 50139 Firenze pheric. Italy. In this review, after a description of the more advanced models of tank ventila- tors and the physiological effects of negative pressure ventilation (NPV), we sum- Keywords: Acute respiratory failure marize the recent application of this old technique in the treatment of acute respiratory chronic obstructive pulmonary disease failure (ARF). Several uncontrolled studies suggest that NPV may have a potential iron lung negative pressure ventilation therapeutic role in the treatment of acute on chronic respiratory failure in patients neuromuscular disorders with chronic obstructive pulmonary disease and restrictive thoracic disorders, reduc- paediatric diseases ing the need for endotracheal intubation.
    [Show full text]