Booklet of Abstracts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Programm 5 Layout 1
SPONSORS Pauli Center for Theoretical Studies QAP European Project PAULI CENTER for Theoretical Studies Sandia National Laboratories The Swiss National Science Foundation Institute for Quantum Computing ETH Zurich (Computer Science and Physics Department) id Quantique Quantum Science and Technology (ETH) CQT Singapore VENUE W-LAN ETH Zürich, Rämistrasse 101, CH-8092 Zürich 1. Check available WLAN’s Main building / Hauptgebäude 2. Connect to WLAN „public“ Conference Helpline 0041 (0)79 770 84 29 3. Open browser 4.Login at welcome page with Login: qip2010 Password: 2010qipconf Main entrance FLOOR E Registration/Information desk Poster session Computer room E 26.3 Main entrance Registration desk Information Computer room E 26.3 Poster session 1 FLOOR E. 0 Poster session FLOOR F Auditorium F 5: Tutorial (January 15 – 17, 2010) Auditorium maximum F 30: Scientific programme (January 18 – 22, 2010) F 33.1: Congress-Office, F 33.2: Cloak room Foyer and “Uhrenhalle”: Coffee breaks, Poster session Auditorium Maximum F 30 Scientific programmme January 18 – 22, 2010 F 33.1: Congress-Office Foyer: F 33.2 Cloak room Coffee breaks Poster session Auditorium F 5 Tutorial January 15 – 17, 2010 Uhrenhalle: Coffee breaks 2 RUMP SESSION StuZ, ETH Zürich, Universitätsstrasse 6, CH-8092 Zürich CAB Building room No. CAB F21 to CAB F27 18.30 – 23.00 h (January 20, 2010) Entry ETH CAB Building ETH Main Building 3 CONFERENCE DINNER Thursday, January 21, 2010, 19.00h Restaurant Lake Side Bellerivestrasse 170 CH-8008 Zürich Phone: +41 (0) 44 385 86 00 Directions from ETH main building • (Tram No. 9 to “Bellevue” (direction “Triemli”). -
Pilot Quantum Error Correction for Global
Pilot Quantum Error Correction for Global- Scale Quantum Communications Laszlo Gyongyosi*1,2, Member, IEEE, Sandor Imre1, Member, IEEE 1Quantum Technologies Laboratory, Department of Telecommunications Budapest University of Technology and Economics 2 Magyar tudosok krt, H-1111, Budapest, Hungary 2Information Systems Research Group, Mathematics and Natural Sciences Hungarian Academy of Sciences H-1518, Budapest, Hungary *[email protected] Real global-scale quantum communications and quantum key distribution systems cannot be implemented by the current fiber and free-space links. These links have high attenuation, low polarization-preserving capability or extreme sensitivity to the environment. A potential solution to the problem is the space-earth quantum channels. These channels have no absorption since the signal states are propagated in empty space, however a small fraction of these channels is in the atmosphere, which causes slight depolarizing effect. Furthermore, the relative motion of the ground station and the satellite causes a rotation in the polarization of the quantum states. In the current approaches to compensate for these types of polarization errors, high computational costs and extra physical apparatuses are required. Here we introduce a novel approach which breaks with the traditional views of currently developed quantum-error correction schemes. The proposed solution can be applied to fix the polarization errors which are critical in space-earth quantum communication systems. The channel coding scheme provides capacity-achieving communication over slightly depolarizing space-earth channels. I. Introduction Quantum error-correction schemes use different techniques to correct the various possible errors which occur in a quantum channel. In the first decade of the 21st century, many revolutionary properties of quantum channels were discovered [12-16], [19-22] however the efficient error- correction in quantum systems is still a challenge. -
Using Graph States for Quantum Computation and Communication
Using Graph States for Quantum Computation and Communication Thesis by Kovid Goyal In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2009 (Submitted May 27, 2009) ii c 2009 Kovid Goyal All Rights Reserved iii To Dr. Ajay Patwardhan, for inspiring a whole generation of physicists. iv Acknowledgements I would like to start by acknowledging my thesis adviser, John Preskill, for giving me the freedom to pursue my interests and for setting a very high standard for me to aspire to. John has also provided the direction I needed at critical points in my career. I would like to thank Robert Raussendorf for sharing a lot of his ideas with me and patiently explaining them when needed. Most of the great ideas in Chapter 2 were orig- inated by him. Robert has been a mentor and a guide. I would like to thank Jim Harrington for introducing me to the numerical techniques needed for the analysis of the measurement based quantum computer and for writing relatively clear and easy to follow code. I would like to thank Austin Fowler for asking me a lot of questions and thereby greatly improving the clarity and depth of my understanding. Austin also inspired me to make this work as clear and easy to follow as possible. The magic state distillation circuit diagrams and the CNOT gate construction in Chapter 2 are his. I would like to thank Ben Toner, Panos Aliferis, Greg Ver Steeg and Prabha Mandayam Dodamanne for many stimulating discussions. I would like to thank my parents, Ashima and Niraj, for supporting my desire to be- come a physicist and for providing me with a stimulating and enjoyable childhood. -
Models of Quantum Complexity Growth
Models of quantum complexity growth Fernando G.S.L. Brand~ao,a;b;c;d Wissam Chemissany,b Nicholas Hunter-Jones,* e;b Richard Kueng,* b;c John Preskillb;c;d aAmazon Web Services, AWS Center for Quantum Computing, Pasadena, CA bInstitute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125 cDepartment of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125 dWalter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125 ePerimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 *Corresponding authors: [email protected] and [email protected] Abstract: The concept of quantum complexity has far-reaching implications spanning theoretical computer science, quantum many-body physics, and high energy physics. The quantum complexity of a unitary transformation or quantum state is defined as the size of the shortest quantum computation that executes the unitary or prepares the state. It is reasonable to expect that the complexity of a quantum state governed by a chaotic many- body Hamiltonian grows linearly with time for a time that is exponential in the system size; however, because it is hard to rule out a short-cut that improves the efficiency of a computation, it is notoriously difficult to derive lower bounds on quantum complexity for particular unitaries or states without making additional assumptions. To go further, one may study more generic models of complexity growth. We provide a rigorous connection between complexity growth and unitary k-designs, ensembles which capture the randomness of the unitary group. This connection allows us to leverage existing results about design growth to draw conclusions about the growth of complexity. -
Lecture 6: Quantum Error Correction and Quantum Capacity
Lecture 6: Quantum error correction and quantum capacity Mark M. Wilde∗ The quantum capacity theorem is one of the most important theorems in quantum Shannon theory. It is a fundamentally \quantum" theorem in that it demonstrates that a fundamentally quantum information quantity, the coherent information, is an achievable rate for quantum com- munication over a quantum channel. The fact that the coherent information does not have a strong analog in classical Shannon theory truly separates the quantum and classical theories of information. The no-cloning theorem provides the intuition behind quantum error correction. The goal of any quantum communication protocol is for Alice to establish quantum correlations with the receiver Bob. We know well now that every quantum channel has an isometric extension, so that we can think of another receiver, the environment Eve, who is at a second output port of a larger unitary evolution. Were Eve able to learn anything about the quantum information that Alice is attempting to transmit to Bob, then Bob could not be retrieving this information|otherwise, they would violate the no-cloning theorem. Thus, Alice should figure out some subspace of the channel input where she can place her quantum information such that only Bob has access to it, while Eve does not. That the dimensionality of this subspace is exponential in the coherent information is perhaps then unsurprising in light of the above no-cloning reasoning. The coherent information is an entropy difference H(B) − H(E)|a measure of the amount of quantum correlations that Alice can establish with Bob less the amount that Eve can gain. -
1 Objectives of the Workshop 2 Open Problem Discussion
Final Report: BIRS Workshop 16w5029 Quantum Computer Science April 17–22, 2016 Co-organizers: Michele Mosca, Martin Roetteler, and Peter Selinger 1 Objectives of the workshop Shor’s famous quantum algorithms for integer factoring and to compute discrete logarithms helped to kick-start the field of quantum computing. A topic that has received significantly less attention is that of actually translating quantum algorithms into elementary instructions that can then be carried out on a future large-scale quantum computer. This leads to questions about automation of the translation process, a question that gives rise to several challenges that arise naturally from there, for instance: how to program a quantum computer? How to model the underlying instructions? How to compile and optimize code that has been written in a high level of abstraction? This interdisciplinary workshop aimed at making progress on these questions and brought to- gether over 40 researchers from a diverse set of research communities: those working in quan- tum computing, and those working on the mathematical foundations of programming languages and their implementations. We anticipate a vibrant exchange of novel ideas, to tackle important problems such as the optimization of large-scale quantum algorithms, and their synthesis into the instruction set of a fault-tolerant quantum computer. On the first day there was a very lively open problems debate, a summary of which is provided in this report. The problems ranged from big challenges that likely will remain open for some time, to concrete problems, some of which were tackled during the workshop. Besides the open problem discussion and a plethora of talks on recent topics of interests, salient features of the workshop were various software demo sessions in which some of the participants performed live demos of their software programs, and two tutorials about quantum programming languages. -
A Practical Phase Gate for Producing Bell Violations in Majorana Wires
PHYSICAL REVIEW X 6, 021005 (2016) A Practical Phase Gate for Producing Bell Violations in Majorana Wires David J. Clarke, Jay D. Sau, and Sankar Das Sarma Department of Physics, Condensed Matter Theory Center, University of Maryland, College Park, Maryland 20742, USA and Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA (Received 9 October 2015; published 8 April 2016) Carrying out fault-tolerant topological quantum computation using non-Abelian anyons (e.g., Majorana zero modes) is currently an important goal of worldwide experimental efforts. However, the Gottesman- Knill theorem [1] holds that if a system can only perform a certain subset of available quantum operations (i.e., operations from the Clifford group) in addition to the preparation and detection of qubit states in the computational basis, then that system is insufficient for universal quantum computation. Indeed, any measurement results in such a system could be reproduced within a local hidden variable theory, so there is no need for a quantum-mechanical explanation and therefore no possibility of quantum speedup [2]. Unfortunately, Clifford operations are precisely the ones available through braiding and measurement in systems supporting non-Abelian Majorana zero modes, which are otherwise an excellent candidate for topologically protected quantum computation. In order to move beyond the classically simulable subspace, an additional phase gate is required. This phase gate allows the system to violate the Bell-like Clauser- Horne-Shimony-Holt (CHSH) inequality that would constrain a local hidden variable theory. In this article, we introduce a new type of phase gate for the already-existing semiconductor-based Majorana wire systems and demonstrate how this phase gate may be benchmarked using CHSH measurements. -
Limitations on Transversal Computation Through Quantum
Limitations on Transversal Computation through Quantum Homomorphic Encryption Michael Newman1 and Yaoyun Shi2 1Department of Mathematics 2Department of Electrical Engineering and Computer Science University of Michigan, Ann Arbor, MI 48109, USA [email protected], [email protected] Abstract Transversality is a simple and effective method for implementing quantum computation fault- tolerantly. However, no quantum error-correcting code (QECC) can transversally implement a quantum universal gate set (Eastin and Knill, Phys. Rev. Lett., 102, 110502). Since reversible classical computation is often a dominating part of useful quantum computation, whether or not it can be implemented transversally is an important open problem. We show that, other than a small set of non-additive codes that we cannot rule out, no binary QECC can transversally implement a classical reversible universal gate set. In particular, no such QECC can implement the Toffoli gate transversally. We prove our result by constructing an information theoretically secure (but inefficient) quan- tum homomorphic encryption (ITS-QHE) scheme inspired by Ouyang et al. (arXiv:1508.00938). Homomorphic encryption allows the implementation of certain functions directly on encrypted data, i.e. homomorphically. Our scheme builds on almost any QECC, and implements that code’s transversal gate set homomorphically. We observe a restriction imposed by Nayak’s bound (FOCS 1999) on ITS-QHE, implying that any ITS quantum fully homomorphic scheme (ITS-QFHE) implementing the full set of classical reversible functions must be highly ineffi- cient. While our scheme incurs exponential overhead, any such QECC implementing Toffoli transversally would still violate this lower bound through our scheme. arXiv:1704.07798v3 [quant-ph] 13 Aug 2017 1 Introduction 1.1 Restrictions on transversal gates Transversal gates are surprisingly ubiquitous objects, finding applications in quantum cryptography [29], [25], quantum complexity theory [11], and of course quantum fault-tolerance. -
Quantum Computing : a Gentle Introduction / Eleanor Rieffel and Wolfgang Polak
QUANTUM COMPUTING A Gentle Introduction Eleanor Rieffel and Wolfgang Polak The MIT Press Cambridge, Massachusetts London, England ©2011 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. For information about special quantity discounts, please email [email protected] This book was set in Syntax and Times Roman by Westchester Book Group. Printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Rieffel, Eleanor, 1965– Quantum computing : a gentle introduction / Eleanor Rieffel and Wolfgang Polak. p. cm.—(Scientific and engineering computation) Includes bibliographical references and index. ISBN 978-0-262-01506-6 (hardcover : alk. paper) 1. Quantum computers. 2. Quantum theory. I. Polak, Wolfgang, 1950– II. Title. QA76.889.R54 2011 004.1—dc22 2010022682 10987654321 Contents Preface xi 1 Introduction 1 I QUANTUM BUILDING BLOCKS 7 2 Single-Qubit Quantum Systems 9 2.1 The Quantum Mechanics of Photon Polarization 9 2.1.1 A Simple Experiment 10 2.1.2 A Quantum Explanation 11 2.2 Single Quantum Bits 13 2.3 Single-Qubit Measurement 16 2.4 A Quantum Key Distribution Protocol 18 2.5 The State Space of a Single-Qubit System 21 2.5.1 Relative Phases versus Global Phases 21 2.5.2 Geometric Views of the State Space of a Single Qubit 23 2.5.3 Comments on General Quantum State Spaces -
Keisuke Fujii Photon Science Center, the University of Tokyo /PRESTO, JST 2017.1.16-20 QIP2017 Seattle, USA
2017.1.16-20 QIP2017 Seattle, USA Threshold theorem for quantum supremacy arXiv:1610.03632 Keisuke Fujii Photon Science Center, The University of Tokyo /PRESTO, JST 2017.1.16-20 QIP2017 Seattle, USA Threshold theorem for quantum supremacy arXiv:1610.03632 (ascendancy) Keisuke Fujii Photon Science Center, The University of Tokyo /PRESTO, JST Outline • Motivations • Hardness proof by postselection • Threshold theorem for quantum supremacy • Applications: 3D topological cluster computation & 2D surface code • Summary Quantum supremacy with near-term quantum devices “QUANTUM COMPUTING AND THE ENTANGLEMENT FRONTIER” by J Preskill The 25th Solvay Conference on Physics 19-22 October 2011; arXiv:1203.5813 How can we best achieve quantum supremacy with the relatively small systems that may be experimentally accessible fairly soon, systems with of order 100 qubits? and Talk by S. Boixo et al https://www.technologyreview.com/s/601668/google-reports-progress-on-a-shortcut-to- quantum-supremacy/ Intermediate models for non-universal quantum computation Intermediate models for non-universal quantum computation Boson Sampling Aaronson-Arkhipov ‘13 Universal linear optics Science (2015) Linear optical quantum computation Experimental demonstrations J. B. Spring et al. Science 339, 798 (2013) M. A. Broome, Science 339, 794 (2013) M. Tillmann et al., Nature Photo. 7, 540 (2013) A. Crespi et al., Nature Photo. 7, 545 (2013) N. Spagnolo et al., Nature Photo. 8, 615 (2014) J. Carolan et al., Science 349, 711 (2015) Intermediate models for non-universal quantum computation IQP Boson Sampling Aaronson-Arkhipov ‘13 (commuting circuits) Bremner-Jozsa-Shepherd ‘11 Universal linear optics Science (2015) + | i T + | i + | i T + | i … … Linear optical quantum computation + T | i Experimental demonstrations Ising type interaction J. -
Quantum Information Science
Quantum Information Science Seth Lloyd Professor of Quantum-Mechanical Engineering Director, WM Keck Center for Extreme Quantum Information Theory (xQIT) Massachusetts Institute of Technology Article Outline: Glossary I. Definition of the Subject and Its Importance II. Introduction III. Quantum Mechanics IV. Quantum Computation V. Noise and Errors VI. Quantum Communication VII. Implications and Conclusions 1 Glossary Algorithm: A systematic procedure for solving a problem, frequently implemented as a computer program. Bit: The fundamental unit of information, representing the distinction between two possi- ble states, conventionally called 0 and 1. The word ‘bit’ is also used to refer to a physical system that registers a bit of information. Boolean Algebra: The mathematics of manipulating bits using simple operations such as AND, OR, NOT, and COPY. Communication Channel: A physical system that allows information to be transmitted from one place to another. Computer: A device for processing information. A digital computer uses Boolean algebra (q.v.) to processes information in the form of bits. Cryptography: The science and technique of encoding information in a secret form. The process of encoding is called encryption, and a system for encoding and decoding is called a cipher. A key is a piece of information used for encoding or decoding. Public-key cryptography operates using a public key by which information is encrypted, and a separate private key by which the encrypted message is decoded. Decoherence: A peculiarly quantum form of noise that has no classical analog. Decoherence destroys quantum superpositions and is the most important and ubiquitous form of noise in quantum computers and quantum communication channels. -
Logical Paradoxes in Quantum Computation
Logical paradoxes in quantum computation Nadish de Silva Department of Computer Science University College London London, UK [email protected] Abstract [1–7, 11, 44]. At its core, contextuality is concerned with systems The precise features of quantum theory enabling quantum compu- (quantum or otherwise) possessing properties whose values are not tational power are unclear. Contextuality—the denial of a notion of assumed to be simultaneously ascertainable. The primary question classical physical reality—has emerged as a promising hypothesis: asked of such systems is whether they can, in principle, be modelled e.g. Howard et al. showed that the magic states needed to practically under the assumption that all properties do simultaneously have achieve quantum computation are contextual. consistent values. The central technical tools are Bell inequalities Strong contextuality, as defined by Abramsky-Brandenburger, is [14, 17, 46] that bound the strength of classical correlations. an extremal form of contextuality describing systems that exhibit The notion of strong contextuality, due to Abramsky-Brandenburger logically paradoxical behaviour. [5], is an extremal form of contextuality describing probabilistic After introducing number-theoretic techniques for constructing systems that exhibit logically paradoxical behaviour. Whereas stan- exotic quantum paradoxes, we present large families of strongly dard contextuality is witnessed by the violation of a probabilistic contextual magic states that are computationally optimal in the Bell inequality, strong contextuality is witnessed by a logical para- sense that they enable universal quantum computation via deter- dox [6]. These paradoxes lie at the heart of contextuality in the ministic injection of gates of the Clifford hierarchy. We thereby sense that any contextual data is a convex mixture of classical and bolster a refinement of the resource theory of contextuality that strongly contextual data [4].