High Performance Quantum Computing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pilot Quantum Error Correction for Global
Pilot Quantum Error Correction for Global- Scale Quantum Communications Laszlo Gyongyosi*1,2, Member, IEEE, Sandor Imre1, Member, IEEE 1Quantum Technologies Laboratory, Department of Telecommunications Budapest University of Technology and Economics 2 Magyar tudosok krt, H-1111, Budapest, Hungary 2Information Systems Research Group, Mathematics and Natural Sciences Hungarian Academy of Sciences H-1518, Budapest, Hungary *[email protected] Real global-scale quantum communications and quantum key distribution systems cannot be implemented by the current fiber and free-space links. These links have high attenuation, low polarization-preserving capability or extreme sensitivity to the environment. A potential solution to the problem is the space-earth quantum channels. These channels have no absorption since the signal states are propagated in empty space, however a small fraction of these channels is in the atmosphere, which causes slight depolarizing effect. Furthermore, the relative motion of the ground station and the satellite causes a rotation in the polarization of the quantum states. In the current approaches to compensate for these types of polarization errors, high computational costs and extra physical apparatuses are required. Here we introduce a novel approach which breaks with the traditional views of currently developed quantum-error correction schemes. The proposed solution can be applied to fix the polarization errors which are critical in space-earth quantum communication systems. The channel coding scheme provides capacity-achieving communication over slightly depolarizing space-earth channels. I. Introduction Quantum error-correction schemes use different techniques to correct the various possible errors which occur in a quantum channel. In the first decade of the 21st century, many revolutionary properties of quantum channels were discovered [12-16], [19-22] however the efficient error- correction in quantum systems is still a challenge. -
The Complexity Zoo
The Complexity Zoo Scott Aaronson www.ScottAaronson.com LATEX Translation by Chris Bourke [email protected] 417 classes and counting 1 Contents 1 About This Document 3 2 Introductory Essay 4 2.1 Recommended Further Reading ......................... 4 2.2 Other Theory Compendia ............................ 5 2.3 Errors? ....................................... 5 3 Pronunciation Guide 6 4 Complexity Classes 10 5 Special Zoo Exhibit: Classes of Quantum States and Probability Distribu- tions 110 6 Acknowledgements 116 7 Bibliography 117 2 1 About This Document What is this? Well its a PDF version of the website www.ComplexityZoo.com typeset in LATEX using the complexity package. Well, what’s that? The original Complexity Zoo is a website created by Scott Aaronson which contains a (more or less) comprehensive list of Complexity Classes studied in the area of theoretical computer science known as Computa- tional Complexity. I took on the (mostly painless, thank god for regular expressions) task of translating the Zoo’s HTML code to LATEX for two reasons. First, as a regular Zoo patron, I thought, “what better way to honor such an endeavor than to spruce up the cages a bit and typeset them all in beautiful LATEX.” Second, I thought it would be a perfect project to develop complexity, a LATEX pack- age I’ve created that defines commands to typeset (almost) all of the complexity classes you’ll find here (along with some handy options that allow you to conveniently change the fonts with a single option parameters). To get the package, visit my own home page at http://www.cse.unl.edu/~cbourke/. -
Quantum Information Science and the Technology Frontier Jake Taylor February 5Th, 2020
Quantum Information Science and the Technology Frontier Jake Taylor February 5th, 2020 Office of Science and Technology Policy www.whitehouse.gov/ostp www.ostp.gov @WHOSTP Photo credit: Lloyd Whitman The National Quantum Initiative Signed Dec 21, 2018 11 years of sustained effort DOE: new centers working with the labs, new programs NSF: new academic centers NIST: industrial consortium, expand core programs Coordination: NSTC combined with a National Coordination Office and an external Advisory committee 2 National Science and Technology Council • Subcommittee on Quantum Information Science (SCQIS) • DoE, NSF, NIST co-chairs • Coordinates NQI, other research activities • Subcommittee on Economic and Security Implications of Quantum Science (ESIX) • DoD, DoE, NSA co-chairs • Civilian, IC, Defense conversation space 3 Policy Recommendations • Focus on a science-first approach that aims to identify and solve Grand Challenges: problems whose solutions enable transformative scientific and industrial progress; • Build a quantum-smart and diverse workforce to meet the needs of a growing field; • Encourage industry engagement, providing appropriate mechanisms for public-private partnerships; • Provide the key infrastructure and support needed to realize the scientific and technological opportunities; • Drive economic growth; • Maintain national security; and • Continue to develop international collaboration and cooperation. 4 Quantum Sensing Accuracy via physical law New modalities of measurement Concept: atoms are indistinguishable. Use Challenge: measuring inside the body. Use this to create time standards, enables quantum behavior of individual nuclei to global navigation. image magnetic resonances (MRI) Concept: speed of light is constant. Use this Challenge: estimating length limited by ‘shot to measure distance using a time standard. noise’ (individual photons!). -
On the Power of Quantum Fourier Sampling
On the Power of Quantum Fourier Sampling Bill Fefferman∗ Chris Umansy Abstract A line of work initiated by Terhal and DiVincenzo [TD02] and Bremner, Jozsa, and Shepherd [BJS10], shows that restricted classes of quantum computation can efficiently sample from probability distributions that cannot be exactly sampled efficiently on a classical computer, unless the PH collapses. Aaronson and Arkhipov [AA13] take this further by considering a distribution that can be sampled ef- ficiently by linear optical quantum computation, that under two feasible conjectures, cannot even be approximately sampled classically within bounded total variation distance, unless the PH collapses. In this work we use Quantum Fourier Sampling to construct a class of distributions that can be sampled exactly by a quantum computer. We then argue that these distributions cannot be approximately sampled classically, unless the PH collapses, under variants of the Aaronson-Arkhipov conjectures. In particular, we show a general class of quantumly sampleable distributions each of which is based on an “Efficiently Specifiable” polynomial, for which a classical approximate sampler implies an average-case approximation. This class of polynomials contains the Permanent but also includes, for example, the Hamiltonian Cycle polynomial, as well as many other familiar #P-hard polynomials. Since our distribution likely requires the full power of universal quantum computation, while the Aaronson-Arkhipov distribution uses only linear optical quantum computation with noninteracting bosons, why is this result interesting? We can think of at least three reasons: 1. Since the conjectures required in [AA13] have not yet been proven, it seems worthwhile to weaken them as much as possible. -
American Leadership in Quantum Technology Joint Hearing
AMERICAN LEADERSHIP IN QUANTUM TECHNOLOGY JOINT HEARING BEFORE THE SUBCOMMITTEE ON RESEARCH AND TECHNOLOGY & SUBCOMMITTEE ON ENERGY COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED FIFTEENTH CONGRESS FIRST SESSION OCTOBER 24, 2017 Serial No. 115–32 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PUBLISHING OFFICE 27–671PDF WASHINGTON : 2018 For sale by the Superintendent of Documents, U.S. Government Publishing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. LAMAR S. SMITH, Texas, Chair FRANK D. LUCAS, Oklahoma EDDIE BERNICE JOHNSON, Texas DANA ROHRABACHER, California ZOE LOFGREN, California MO BROOKS, Alabama DANIEL LIPINSKI, Illinois RANDY HULTGREN, Illinois SUZANNE BONAMICI, Oregon BILL POSEY, Florida ALAN GRAYSON, Florida THOMAS MASSIE, Kentucky AMI BERA, California JIM BRIDENSTINE, Oklahoma ELIZABETH H. ESTY, Connecticut RANDY K. WEBER, Texas MARC A. VEASEY, Texas STEPHEN KNIGHT, California DONALD S. BEYER, JR., Virginia BRIAN BABIN, Texas JACKY ROSEN, Nevada BARBARA COMSTOCK, Virginia JERRY MCNERNEY, California BARRY LOUDERMILK, Georgia ED PERLMUTTER, Colorado RALPH LEE ABRAHAM, Louisiana PAUL TONKO, New York DRAIN LAHOOD, Illinois BILL FOSTER, Illinois DANIEL WEBSTER, Florida MARK TAKANO, California JIM BANKS, Indiana COLLEEN HANABUSA, Hawaii ANDY BIGGS, Arizona CHARLIE CRIST, Florida ROGER W. MARSHALL, Kansas NEAL P. DUNN, Florida CLAY HIGGINS, Louisiana RALPH NORMAN, South Carolina SUBCOMMITTEE ON RESEARCH AND TECHNOLOGY HON. BARBARA COMSTOCK, Virginia, Chair FRANK D. LUCAS, Oklahoma DANIEL LIPINSKI, Illinois RANDY HULTGREN, Illinois ELIZABETH H. -
Models of Quantum Complexity Growth
Models of quantum complexity growth Fernando G.S.L. Brand~ao,a;b;c;d Wissam Chemissany,b Nicholas Hunter-Jones,* e;b Richard Kueng,* b;c John Preskillb;c;d aAmazon Web Services, AWS Center for Quantum Computing, Pasadena, CA bInstitute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125 cDepartment of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125 dWalter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125 ePerimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 *Corresponding authors: [email protected] and [email protected] Abstract: The concept of quantum complexity has far-reaching implications spanning theoretical computer science, quantum many-body physics, and high energy physics. The quantum complexity of a unitary transformation or quantum state is defined as the size of the shortest quantum computation that executes the unitary or prepares the state. It is reasonable to expect that the complexity of a quantum state governed by a chaotic many- body Hamiltonian grows linearly with time for a time that is exponential in the system size; however, because it is hard to rule out a short-cut that improves the efficiency of a computation, it is notoriously difficult to derive lower bounds on quantum complexity for particular unitaries or states without making additional assumptions. To go further, one may study more generic models of complexity growth. We provide a rigorous connection between complexity growth and unitary k-designs, ensembles which capture the randomness of the unitary group. This connection allows us to leverage existing results about design growth to draw conclusions about the growth of complexity. -
Booklet of Abstracts
Booklet of abstracts Thomas Vidick California Institute of Technology Tsirelson's problem and MIP*=RE Boris Tsirelson in 1993 implicitly posed "Tsirelson's Problem", a question about the possible equivalence between two different ways of modeling locality, and hence entanglement, in quantum mechanics. Tsirelson's Problem gained prominence through work of Fritz, Navascues et al., and Ozawa a decade ago that establishes its equivalence to the famous "Connes' Embedding Problem" in the theory of von Neumann algebras. Recently we gave a negative answer to Tsirelson's Problem and Connes' Embedding Problem by proving a seemingly stronger result in quantum complexity theory. This result is summarized in the equation MIP* = RE between two complexity classes. In the talk I will present and motivate Tsirelson's problem, and outline its connection to Connes' Embedding Problem. I will then explain the connection to quantum complexity theory and show how ideas developed in the past two decades in the study of classical and quantum interactive proof systems led to the characterization (which I will explain) MIP* = RE and the negative resolution of Tsirelson's Problem. Based on joint work with Ji, Natarajan, Wright and Yuen available at arXiv:2001.04383. Joonho Lee, Dominic Berry, Craig Gidney, William Huggins, Jarrod McClean, Nathan Wiebe and Ryan Babbush Columbia University | Macquarie University | Google | Google Research | Google | University of Washington | Google Efficient quantum computation of chemistry through tensor hypercontraction We show how to achieve the highest efficiency yet for simulations with arbitrary basis sets by using a representation of the Coulomb operator known as tensor hypercontraction (THC). We use THC to express the Coulomb operator in a non-orthogonal basis, which we are able to block encode by separately rotating each term with angles that are obtained via QROM. -
Entangled Many-Body States As Resources of Quantum Information Processing
ENTANGLED MANY-BODY STATES AS RESOURCES OF QUANTUM INFORMATION PROCESSING LI YING A thesis submitted for the Degree of Doctor of Philosophy CENTRE FOR QUANTUM TECHNOLOGIES NATIONAL UNIVERSITY OF SINGAPORE 2013 DECLARATION I hereby declare that the thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. LI YING 23 July 2013 Acknowledgments I am very grateful to have spent about four years at CQT working with Leong Chuan Kwek. He always brings me new ideas in science and has helped me to establish good collaborative relationships with other scien- tists. Kwek helped me a lot in my life. I am also very grateful to Simon C. Benjamin. He showd me how to do high quality researches in physics. Simon also helped me to improve my writing and presentation. I hope to have fruitful collaborations in the near future with Kwek and Simon. For my project about the ground-code MBQC (Chapter2), I am thank- ful to Tzu-Chieh Wei, Daniel E. Browne and Robert Raussendorf. In one afternoon, Tzu-Chieh showed me the idea of his recent paper in this topic in the quantum cafe, which encouraged me to think about the ground- code MBQC. Dan and Robert have a high level of comprehension on the subject of the MBQC. And we had some very interesting discussions and communications. I am grateful to Sean D. -
Lecture 6: Quantum Error Correction and Quantum Capacity
Lecture 6: Quantum error correction and quantum capacity Mark M. Wilde∗ The quantum capacity theorem is one of the most important theorems in quantum Shannon theory. It is a fundamentally \quantum" theorem in that it demonstrates that a fundamentally quantum information quantity, the coherent information, is an achievable rate for quantum com- munication over a quantum channel. The fact that the coherent information does not have a strong analog in classical Shannon theory truly separates the quantum and classical theories of information. The no-cloning theorem provides the intuition behind quantum error correction. The goal of any quantum communication protocol is for Alice to establish quantum correlations with the receiver Bob. We know well now that every quantum channel has an isometric extension, so that we can think of another receiver, the environment Eve, who is at a second output port of a larger unitary evolution. Were Eve able to learn anything about the quantum information that Alice is attempting to transmit to Bob, then Bob could not be retrieving this information|otherwise, they would violate the no-cloning theorem. Thus, Alice should figure out some subspace of the channel input where she can place her quantum information such that only Bob has access to it, while Eve does not. That the dimensionality of this subspace is exponential in the coherent information is perhaps then unsurprising in light of the above no-cloning reasoning. The coherent information is an entropy difference H(B) − H(E)|a measure of the amount of quantum correlations that Alice can establish with Bob less the amount that Eve can gain. -
Defense Primer: Quantum Technology
Updated June 7, 2021 Defense Primer: Quantum Technology Quantum technology translates the principles of quantum Successful development and deployment of such sensors physics into technological applications. In general, quantum could lead to significant improvements in submarine technology has not yet reached maturity; however, it could detection and, in turn, compromise the survivability of sea- hold significant implications for the future of military based nuclear deterrents. Quantum sensors could also sensing, encryption, and communications, as well as for enable military personnel to detect underground structures congressional oversight, authorizations, and appropriations. or nuclear materials due to their expected “extreme sensitivity to environmental disturbances.” The sensitivity Key Concepts in Quantum Technology of quantum sensors could similarly potentially enable Quantum applications rely on a number of key concepts, militaries to detect electromagnetic emissions, thus including superposition, quantum bits (qubits), and enhancing electronic warfare capabilities and potentially entanglement. Superposition refers to the ability of quantum assisting in locating concealed adversary forces. systems to exist in two or more states simultaneously. A qubit is a computing unit that leverages the principle of The DSB concluded that quantum radar, hypothesized to be superposition to encode information. (A classical computer capable of identifying the performance characteristics (e.g., encodes information in bits that can represent binary -
QIP 2010 Tutorial and Scientific Programmes
QIP 2010 15th – 22nd January, Zürich, Switzerland Tutorial and Scientific Programmes asymptotically large number of channel uses. Such “regularized” formulas tell us Friday, 15th January very little. The purpose of this talk is to give an overview of what we know about 10:00 – 17:10 Jiannis Pachos (Univ. Leeds) this need for regularization, when and why it happens, and what it means. I will Why should anyone care about computing with anyons? focus on the quantum capacity of a quantum channel, which is the case we understand best. This is a short course in topological quantum computation. The topics to be covered include: 1. Introduction to anyons and topological models. 15:00 – 16:55 Daniel Nagaj (Slovak Academy of Sciences) 2. Quantum Double Models. These are stabilizer codes, that can be described Local Hamiltonians in quantum computation very much like quantum error correcting codes. They include the toric code This talk is about two Hamiltonian Complexity questions. First, how hard is it to and various extensions. compute the ground state properties of quantum systems with local Hamiltonians? 3. The Jones polynomials, their relation to anyons and their approximation by Second, which spin systems with time-independent (and perhaps, translationally- quantum algorithms. invariant) local interactions could be used for universal computation? 4. Overview of current state of topological quantum computation and open Aiming at a participant without previous understanding of complexity theory, we will discuss two locally-constrained quantum problems: k-local Hamiltonian and questions. quantum k-SAT. Learning the techniques of Kitaev and others along the way, our first goal is the understanding of QMA-completeness of these problems. -
Research Statement Bill Fefferman, University of Maryland/NIST
Research Statement Bill Fefferman, University of Maryland/NIST Since the discovery of Shor's algorithm in the mid 1990's, it has been known that quan- tum computers can efficiently solve integer factorization, a problem of great practical relevance with no known efficient classical algorithm [1]. The importance of this result is impossible to overstate: the conjectured intractability of the factoring problem provides the basis for the se- curity of the modern internet. However, it may still be a few decades before we build universal quantum computers capable of running Shor's algorithm to factor integers of cryptographically relevant size. In addition, we have little complexity theoretic evidence that factoring is com- putationally hard. Consequently, Shor's algorithm can only be seen as the first step toward understanding the power of quantum computation, which has become one of the primary goals of theoretical computer science. My research focuses not only on understanding the power of quantum computers of the indefinite future, but also on the desire to develop the foundations of computational complexity to rigorously analyze the capabilities and limitations of present-day and near-term quantum devices which are not yet fully scalable quantum computers. Furthermore, I am interested in using these capabilities and limitations to better understand the potential for cryptography in a fundamentally quantum mechanical world. 1 Comparing quantum and classical nondeterministic computation Starting with the foundational paper of Bernstein and Vazirani it has been conjectured that quantum computers are capable of solving problems whose solutions cannot be found, or even verified efficiently on a classical computer [2].