6 mm ecol-med-37-1-00-couv:Mise en page 1 12/07/11 9:08 Page 1 (124 p) 1 1

ecologia mediterranea Vol. 37 (1) – 2011 0 2 – )

1 Vol. 37 (1) – 2011 (

7 ecologia 3 . l o Sommaire – Contents V mediterranea Éditorial – Editorial Renaissance des numéros spéciaux en 2011 Revue internationale d’écologie méditerranéenne T. D UTOIT (éditeur en chef ) ...... 3 International Journal of Mediterranean Ecology Articles originaux – Original articles Effets de l’âge des plantations de figuier de Barbarie (Opuntia ficus indica f. inermis ) sur les propriétés du sol et la végétation à Tébessa (zone semi-aride de l’est algérien) S. N EFFAR , A. B EDDIAR , N. R EDJEL , J. B OULKHELOUA ...... 5

Mediterranean experience and practice in Landscape Character Assessment I. N. VOGIATZAKIS ...... 17

Contribution élémentaire à l’étude de l’impact de l’ Atriplex halimus sur les caractéristiques physico-chimiques et biologiques du sol en Algérie Occidentale A. B OUZID , K. B ENABDELI ...... 33

The diet of the Maghrebian mouse-eared bat Myotis punicus (Mammalia, Chiroptera) in Kabylia, Northern Algeria M. A HMIM , A. M OALI ...... 45

Habitat heterogeneity and soil-vegetation relations in South of the Nile Delta, Egypt M. M. A BD EL-G HANI , M. M. A BOU -E L-E NAIN , A. I. A BOEL -A TTA , E. A. H USSEIN ...... 53

Seasonal variability and phenology of dwarf rush communities in Southern Spain K. D OLOS , M. R UDNER ...... 69

Effet de la durée de conservation, de la couleur et de la période de récolte des semences sur la germination de Diplotaxis harra (Forssk.) Boiss., plante envahissante en Tunisie méridionale T. TLIG , M. GORAI , M. NEFFATI ...... 83

Application of the Global Bioclimatic Classification to : implications for understanding the modern vegetation and biogeography M. D JAMALI , H. A KHANI , R. K HOSHRAVESH , V. A NDRIEU -P ONEL , P. P ONEL , S. B REWER ...... 91

Résumé de thèse – Ph. D summaries a e

René GUÉNON ...... 115 n a r

r Editor-in-Chief: Pr Thierry Dutoit

Revue indexée dans Pascal-C NRS et Biosis e t i d e m Institut méditerranéen d’écologie et de paléoécologie (I MEP ) Naturalia Publications a i

g Mediterranean Institute of Ecology and Palaeoecology o l o

ISSN 0153-8756 c e ecol-med-37-1-00-couv:Mise en page 1 12/07/11 9:08 Page 2

ecologia mediterranea Instructions aux auteurs ecologia mediterranea Instructions to authors Éditeur en chef : P r Thierry Dutoit Editeur-in-Chief : Pr Thierry Dutoit UMR CNRS IRD IMEP ecologia mediterranea publie des travaux de recherche AUTEURS UMR CNRS IRD IMEP ecologia mediterranea publishes original research ABSTRACTS , KEYWORDS AND SHORT VERSION Université d’Avignon, IUT originaux et des mises au point sur des sujets se rap - L’adresse de chaque auteur sera indiquée avec l’adresse Université d’Avignon, IUT reports and syntheses in the fields of fundamental and Abstracts should be no longer than 300 words. The Eng - Site Agroparc, BP 1207 portant à l’écologie fondamentale ou appliquée des courriel de l’auteur pour la correspondance. Dans le cas Site Agroparc, BP 1207 applied ecology of Mediterranean areas, except for lish short version should not exceed one page long 84911 Avignon cedex 09 régions méditerranéennes, à l’exception des milieux où la publication est le fait de plusieurs auteurs, il doit 84911 Avignon cedex 09 descriptive articles or articles about systematic. The edi - (1,000 words). Do not use more than six keywords. Key - France marins. La revue exclut les articles purement descriptifs être précisé lors du premier envoi la personne à qui doit France tors of ecologia mediterranea invite original contribu - words should not be present in the title. ou de systématique. ecologia mediterranea privilégie être retourné l’article après lecture. tions in the fields of: bioclimatology, biogeography, con - les domaines scientifiques suivants : bioclimatologie, servation biology, restoration ecology, populations REFERENCES Editorial Board All publications cited in the text should be presented in biogéographie, écologie des communautés, biologie de RÉSUMÉS , MOTS CLÉS ET VERSION ABRÉGÉE biology, genetic ecology, landscape ecology, community Comité éditorial Dr Audrey Marco, École nationale a list of references following the text of the manuscript. la conservation, écologie de la restauration, biologie des Les résumés doivent comporter 300 mots au maximum ecology, microbial ecology, vegetal and animal ecology, r supérieure du paysage, Marseille, France. The list of references should be arranged alphabetically D Audrey Marco, École nationale populations, écologie génétique, écologie du paysage, et la version anglaise abrégée 1 000 mots (environ une ecophysiology, palaeoecology, palaeoclimatology, on author’s names, and chronologically for each author. supérieure du paysage, Marseille, France. écologie microbienne, écologie végétale et animale, éco - page). Le nombre de mots clés est limité à six, dans la Dr James Aronson, CNRS , Montpellier, except marine ecology. Symposium proceedings, review You should abbreviate the titles of periodicals mentioned r physiologie, paléoclimatologie, paléoécologie. La revue langue des résumés ; ils ne doivent généralement pas France. articles, methodological notes, book reviews, Ph. D. the - D James Aronson, CNRS , Montpellier, in the list of references (except if you are not sure of it). accepte également la publication d’actes de colloques, figurer dans le titre. sis abstracts and comments on recent papers in ecologia France. Dr Alex Baumel, Université Paul-Cézanne, Check the manuscripts to make sure that all references d’articles de synthèse, de notes méthodologiques, de mediterranea are also published. Dr Alex Baumel, Université Paul-Cézanne, Marseille, France. are cited and that all citations in the text are included in comptes rendus d’ouvrages, des résumés de thèses, ainsi BIBLIOGRAPHIE Marseille, France. La bibliographie regroupera toutes les références citées Dr Élise Buisson, Université Avignon, France. the references. Use following system to write the refer - que des commentaires sur les articles récemment parus Manuscript reviews Dr Élise Buisson, Université Avignon, France. et elles seules. Les références seront rangées dans l’ordre Dr Marc Cheylan, EPHE , Montpellier, France. ences: dans ecologia mediterranea . Manuscripts are reviewed by appropriate referees, or by r alphabétique des auteurs et de façon chronologique. Les D Marc Cheylan, EPHE , Montpellier, France. Dr Cécile Claret, Université Paul-Cézanne, Journal article Les manuscrits sont soumis à des lecteurs spécialistes abréviations internationales des titres des revues doivent the Editors. The final decision to accept or reject the r Marseille, France. Andow D.A., Karieva P., Levin S.A. & Okubo A., 1990. D Cécile Claret, Université Paul-Cézanne, du sujet ou aux éditeurs. La décision finale d’accepter être utilisées (sauf en cas de doute). Vérifier attentive - manuscript is made by the Editors. Please send an elec - Spread of invading organisms. J. Ecol . 4: 177-188. Marseille, France. ou de refuser un article relève des éditeurs. L’article pro - ment le manuscrit pour s’assurer que toutes les réfé - Dr Bruno Fady, INRA , Avignon, France. tronic copy of your manuscript (doc or rtf files) to our journal (thierry.dutoit @univ-avignon.fr). When the arti - Dr Bruno Fady, INRA , Avignon, France. posé doit être envoyé en version électronique à rences citées dans le texte apparaissent bien en biblio - Pr Thierry Gauquelin, Université de cle is accepted, the authors should take reviewer’s com - Book r [email protected] (version doc ou rtf). Une graphie et inversement. Provence, Marseille, France. P Thierry Gauquelin, Université de ments into consideration. They will send back to the Harper J.L., 1977. Population biology of . Lon - Provence, Marseille, France. fois leur article accepté, les auteurs devront tenir compte Dr Raphaël Gros, Université Paul-Cézanne, don, Academic Press. 300 p. des remarques des lecteurs, puis ils renverront leur texte Article journal Editorial Office, within 1 month, an electronic Dr Raphaël Gros, Université Paul-Cézanne, Marseille, France. copy of the corrected manuscript (doc or rtf). Pass this corrigé sous un mois toujours sous format électronique Andow D.A., Karieva P., Levin S.A. & Okubo A., 1990. Book chapters Marseille, France. Dr Frédéric Guiter, Université Paul-Cézanne, delay, the manuscrpt will be considered as a new sub - (doc ou rtf). Passé ce délai, la seconde version sera Spread of invading organisms. J. Ecol . 4: 177-188. May R.M., 1989. Levels of organisation in ecology. In : Dr Frédéric Guiter, Université Paul-Cézanne, considérée comme une nouvelle proposition. Les illus - Marseille, France. mission. Enclose the original illustrations. Corrected Cherret J.M. (ed.), Ecological concepts . Oxford, Black - Marseille, France. trations originales seront jointes à l’envoi. Les épreuves Ouvrage Pr Serge Kreiter, Université Montpellier, proofs must be returned to the journal Editorial Office well Scientific Public: 339-363. without delay. Books and monographs to be reviewed r corrigées doivent être retournées au secrétariat de la Harper J.L., 1977. Population biology of plants . Lon - France. P Serge Kreiter, Université Montpellier, must be submitted to the Editor-in-chief. Conference proceedings France. revue sans délai. Les livres et monographies devant être don, Academic Press, 300 p. Pr N.S. Margaris, Université Mytilène, Grèce. Grootaert P., 1984. Biodiversity in insects, speciation r analysés seront envoyés à l’éditeur en chef. P N.S. Margaris, Université Mytilène, Grèce. Chapitre d’ouvrage Pr Frédéric Médail, Université Paul- Manuscript preparation and behaviour in Diptera. In : Hoffmann M. & Van der r Cézanne, Marseille, France. Veken P. (eds), Proceedings of the symposium on “Bio - P Frédéric Médail, Université Paul-Cézanne, TEXTE May R.M., 1989. Levels of organisation in ecology. In : TEXT diversity: study, exploration, conservation” . Ghent, Marseille, France. Cherret J.M. (ed.), Ecological concepts . Oxford, Black - Pr François Mesléard, Université Avignon – Les articles (dactylographiés en double interligne, en Manuscripts (typewritten with double spacing and A4 18 November 1992: 121-141. Pr François Mesléard, Université Avignon – well Scientific Public: 339-363. Tour du Valat, France. format A4) doivent être rédigés de préférence en fran - size for paper) should be preferably written in French, Tour du Valat, France. Dr Jérôme Orgeas, Université Paul- CITATIONS IN -TEXT çais ou en anglais. Si l’article soumis n’est pas rédigé English. If the language is not English, you should join r Actes de conférence Cézanne, Marseille, France. The words “figures” and “tables” announced in-text D Jérôme Orgeas, Université Paul-Cézanne, en anglais, il est demandé (en plus des résumés) une ver - an English short version and English titles of figures and Grootaert P., 1984. Biodiversity in insects, speciation should be written in extenso and with lower-case letter Marseille, France. sion anglaise abrégée ainsi qu’une traduction en anglais Dr Philippe Ponel, CNRS , Marseille, France. tables. The manuscript must be complete: e.g. French and behaviour in Diptera. In : Hoffmann M. & Van der type. In the text refer to the author’s name and year of Dr Philippe Ponel, CNRS , Marseille, France. des titres des figures et tableaux. L’article doit être com - Dr Roger Prodon, EPHE , Montpellier, France. and English titles, author(s) and address(es), French and Veken P. (eds), Proceedings of the symposium on “Bio - English abstracts, an English short version (if English is publication (followed by pages only if it is a quotation). r plet : titres français et anglais, auteur(s) et adresse(s), D Roger Prodon, EPHE , Montpellier, France. diversity: study, exploration, conservation” . Ghent, Dr Isabelle Laffont- Schwob , Université de If a publication is written by more than two authors, the résumés en français et anglais (au minimum), version not the language used in the article), key-words, text, r 18 November 1992: 121-141. Provence, Marseille, France. name of the first author should be used followed by “ et D Isabelle Laffont- Schwob , Université de anglaise abrégée (si le texte n’est pas en anglais), mots references, acknowledgements, figures and tables. For Provence, Marseille, France. Dr Brigitte Talon, Université Paul-Cézanne, research papers, the text should normally consist of 4 al. ” (this indication, however, should never be used in clés, texte, puis remerciements, bibliographie, figures et CITATIONS ET RENVOIS APPELÉS DANS LE TEXTE the list of references: first author and co-authors should Dr Brigitte Talon, Université Paul-Cézanne, tableaux. Le texte des articles originaux de recherche Marseille, France. sections: introduction, methods, results, discussion. In Les mots « figures » et « tableaux » annoncés dans le typing the manuscript, please clearly distinguish titles be mentioned in it). Examples: “Since Dupont (1962) Marseille, France. devrait normalement comporter quatre parties : intro - texte sont écrits en toutes lettres et en minuscules. Indi - Dr Éric Vidal, Université Paul-Cézanne, has shown that…”, or “This is in agreement with previ - r duction, méthodes, résultats, discussion. En ce qui Marseille, France. from others paragraphs. Titles and subtitles should not D Éric Vidal, Université Paul-Cézanne, quer le nom d’auteur et l’année de publication (mais be numbered. Avoid letters to number subtitles. Use ous results (Durand et al. 1990; Dupond & Dupont Marseille, France. concerne la saisie du texte, il est simplement demandé indiquer tous les auteurs dans la bibliographie). Exem - Dr I.N. Vogiatzakis, Open University of 1997)…”. aux auteurs de distinguer clairement les titres des diffé - lower-case letter type for names. Do not underline any Dr I.N. Vogiatzakis, Open University of ples : « Since Dupont (1962) has shown that… », or Cyprus, Nicosia, Chypre. rents paragraphes. Les titres ne seront pas numérotés. word. In English, there is one blank after any punctua - ABBREVIATES , NOMENCLATURE Cyprus, Nicosia, Chypre. “This is in agreement with previous results (Durand et tion, never before. Copy editing of manuscripts is per - Pour numéroter les sous-titres, éviter les lettres. Atten - al . 1990 ; Dupond & Dupont 1997)…”. Le numéro de AND LATIN WORDS tion, l’emploi de mots soulignés est à proscrire. Les formed by the journal. Explanation of a technical abbreviate is required when page de la citation n’est mentionné que dans le cas où ISSN 0153-8756 noms d’auteurs cités figureront en minuscules dans le elle est entre guillemets. Si la publication est écrite par AUTHORS the first use. International convention codes for nomen - ISSN 0153-8756 texte comme dans la bibliographie. En français, n’utili - plus de deux auteurs, le nom du premier doit être suivi The email address of the corresponding author should clature should be used. Latin words should be in italic sez les majuscules que pour les noms propres, sauf par et al. http://ecologia-mediterranea.univ-avignon.fr be mentioned on the manuscript. Each author’s address (et al ., a priori , etc.), particularly for plants or animal - exception justifiée. Les ponctuations doubles ( : ; ? ! ) should be specified. The first time, please precise the s’denomination (the first time, please precise author’s http://ecologia-mediterranea.univ-avignon.fr sont précédées d’un espace, contrairement aux ponc - ABRÉVIATIONS , NOMENCLATURE ET MOTS LATINS complete address of the correspondent author to which name: for example, Olea europaea L.). tuations simples ( , . ). En revanche, toutes les ponctua - L’usage d’une abréviation technique doit être précédée the proofs should be sent. FIGURES AND TABLES tions sont suivies d’un espace. La mise en forme défi - de sa signification lors de sa première apparition. Les All illustrations should be submitted separately and they nitive du texte sera assurée par la revue. codes de nomenclature doivent être respectés selon les should be preceded by the figures and tables legends on conventions internationales. Les mots latins doivent être a separate page. Figures and tables should be sent ready ABONNEMENT mis en italiques ( et al., a priori, etc.), et en particulier SUBSCRIPTION to be printed, so their size should be 16 22 cm or les noms de plantes ou d’animaux. Lors de la première × 8 × 22 cm maximum. All the illustrations being in-text (contact : [email protected]) apparition du nom d’une espèce, il est demandé d’y faire (contact: [email protected]) should be cited, increasing numbered, and should have figurer le nom d’auteur (exemple : Olea europaea L.). a legend. Computerised table columns should not be rep - 1 an = 1 numéro FIGURES ET TABLEAUX 1 year = 1 issue resented by signs (: or |). Les figures et tableaux (précédés des légendes corres - ELECTRONIC FILE Abonnement Frais de port Total pondantes sur une feuille séparée) doivent être remis Subscription Postage Total Authors receive a free copy where their paper is pub - France 20 € 3 € 23 € séparément du texte, prêts à l’impression, sans nécessi - France 20 € 3 € 23 € lished as well as an electronic version of their paper for ter de réduction (donc au maximum : format 16 22 cm distribution. Europe 20 € 6 € 26 € × Europe 20 € 6 € 26 € ou 8 × 22 cm). Tous les documents devant être insérés Monde 20 € 8 € 28 € dans le texte doivent être annoncés, numérotés dans World 20 € 8 € 28 € l’ordre croissant et légendés. Les tableaux informatisés ne doivent pas comporter de signes ( : ou | ) pour mar - Mail this subscription to: Abonnement à adresser à : Code banque Code guichet numéro de compte clé RIB quer les colonnes. 19106 00839 13995626000 62 SARL Transfaire SARL Transfaire FICHIER ÉLECTRONIQUE Bank: CA SISTERON Domiciliation : CA SISTERON Immeuble Wanad Les auteurs reçoivent gracieusement un fascicule de la Immeuble Wanad IBAN: FR76 1910 6008 3913 9956 2600 062 F-04250 TURRIERS IBAN : FR76 1910 6008 3913 9956 2600 062 revue où leur article est paru ainsi qu’une version élec - F-04250 TURRIERS BIC: AGRIFRPP891 BIC : AGRIFRPP891 tronique de leur article pour diffusion. ecol-med-37-1-00-debut:Mise en page 1 12/07/11 15:20 Page 1

ecologia mediterranea Revue internationale d’écologie méditerranéenne International Journal of Mediterranean Ecology

Vol. 37 (1) – 2011

Éditorial – Editorial

Renaissance des numéros spéciaux en 2011 Revival of special issues in 2011 T. DUTOIT (éditeur en chef) ...... 3

Articles originaux – Original articles Contents / Effets de l’âge des plantations de figuier de Barbarie (Opuntia ficus indica f. inermis) sur les propriétés du sol et la végétation à Tébessa (zone semi-aride de l’est algérien) Effects of the age of prickly pear (Opuntia ficus indica f. inermis) plantations on soil properties and vegetation at Tebessa (semi arid area of Eastern Algeria) S. NEFFAR, A. BEDDIAR, N. REDJEL, J. BOULKHELOUA ...... 5

Sommaire Mediterranean experience and practice in Landscape Character Assessment Expérience méditerranéenne et pratique de l’évaluation des caractéristiques du paysage I. N. VOGIATZAKIS ...... 17

Contribution élémentaire à l’étude de l’impact de l’Atriplex halimus sur les caractéristiques physico-chimiques et biologiques du sol en Algérie occidentale Basic contribution to the study of the impact of Atriplex halimus on the physical, chemical and biological properties of soil in Western Algeria A. BOUZID, K. BENABDELI ...... 33

The diet of the Maghrebian mouse-eared bat Myotis punicus (Mammalia, Chiroptera) in Kabylia, Northern Algeria Régime alimentaire du Murin du Maghreb Myotis punicus (Mammalia, Chiroptera) en Kabylie, nord de l’Algérie M. AHMIM, A. MOALI ...... 45

Habitat heterogeneity and soil-vegetation relations in South of the Nile Delta, Egypt Hétérogénéité des habitats et relations entre le sol et la végétation dans le sud du Delta du Nil, Égypte M. M. ABD EL-GHANI, M. M. ABOU-EL-ENAIN, A. I. ABOEL-ATTA, E. A. HUSSEIN ...... 53

ecologia mediterranea – Vol. 37 (1) – 2011 1 ecol-med-37-1-00-debut:Mise en page 1 12/07/11 15:20 Page 2

Seasonal variability and phenology of dwarf rush communities in Southern Spain Patrons de la dynamique saisonnière de la végétation des mares temporaires au Sud de l’Espagne K. DOLOS, M. RUDNER ...... 69

Effet de la durée de conservation, de la couleur et de la période de récolte des semences sur la germination de Diplotaxis harra (Forssk.) Boiss., plante envahissante en Tunisie méridionale Effect of storage period, color and collection period on seed germination of Diplotaxis Harra (Forssk.) Boiss., an invasive species of Southern Tunisia T. TLIG, M. GORAI, M. NEFFATI ...... 83

Application of the Global Bioclimatic Classification to Iran: implications for understanding the modern vegetation and biogeography Application de la Classification Bioclimatique Globale en Iran : implications pour comprendre la végétation actuelle et la biogéographie M. DJAMALI, H. AKHANI, R. KHOSHRAVESH, V. ANDRIEU-PONEL, P. PONEL, S. BREWER ...... 91

Résumé de thèse – Ph. D summaries René GUÉNON ...... 115

Revue indexée dans Pascal-CNRS et Biosis.

Journal indexed in PASCAL-CBRS and Biosis

http://ecologia-mediterranea.univ-avignon.fr/

Remerciements – Acknowledgments Le comité éditorial de la revue remercie les collègues qui ont participé à ce numéro pour leurs conseils, corrections et avis. The editorial committee thanks the colleagues who have participated in this volume for their advices, corrections and opinions.

Dr Arne SAATKAMP, IMEP, Université Paul Cézanne, Marseille, France Dr Françoise BUREL, CNRS, Université de Rennes, France Dr Jean-Philippe MEVY, Université de Provence, France © ecologia Dr Jérôme POULENARD, Université de Savoie, France mediterranea Dr Nicolas MONTES, Université de Provence, Marseille, France Fabrication : Dr Robin DUPONNOIS, Université Cadi Ayyad, Marrakech, Maroc Transfaire, M. Grégory BEUNEUX, Groupe Chiroptères Corse, Corte, France 04250 Turriers M. Sébastien ROUÉ, CPEPESC de Franche-Comté, Besançon, France Imprimé en Europe Pr Javier LOIDI, Université del País Vasco, Bilbao, Espagne ecol-med-37-1-00-debut:Mise en page 1 12/07/11 15:20 Page 3

Éditorial – Editorial

Renaissance des numéros spéciaux en 2011 Pr Thierry DUTOIT Le deuxième numéro d’ecologia mediterranea en 2011 verra la publication d’une Éditeur en chef thématique spéciale Restauration écologique des écosystèmes méditerranéens : Editor-in-Chief spécificités, espoirs et limites suite au 7e colloque international d’écologie de la restauration (SER Europe 2010) qui s’est tenu en Avignon du 23 au 27 août 2010. D’autres numéros ou thématiques spéciales viendront ensuite compléter cette reprise garantissant ainsi la pérennité et la diversité des thématiques abordées dans la revue ; les prochains numéros seront ainsi consacrés aux actes du 4e colloque international MEDPINE sur les pins méditerranéens qui s’est déroulé du 6 au 10 juin 2011 en Avignon et du 4e colloque international sur l’écologie du genévrier thurifère et espèces affines qui aura lieu du 5 au 8 octobre 2011 à Saint-Crépin dans les Hautes-Alpes, France.

Revival of special issues in 2011 The second number of ecologia mediterranea in 2011 will see the publication of a thematic set Ecological Restoration of Mediterranean Ecosystems: Specificities, Hopes and Limits that follows the 7th international congress on Ecological Restoration (SER Europe 2010) which was organized in Avignon from 23 till 27 August 2010. Other numbers or thematic sets will be published in the next years to guarantee the variety of themes approached in the journal; the next numbers will be dedicated to the acts of the 4th international congress MEDPINE on Mediterranean pines which tooke place from 6 till 10 June 2011 in Avignon and of the 4th international congress on the ecology of Juniperus thurifera which will take place from 5 till 8 October 2011 in Saint-Crépin in the Hautes-Alpes, France.

ecologia mediterranea – Vol. 37 (1) – 2011 3 ecol-med-37-1-01:Mise en page 1 12/07/11 9:09 Page 5

Effets de l’âge des plantations de figuier de Barbarie (Opuntia ficus indica f. inermis) sur les propriétés du sol et la végétation à Tébessa (zone semi-aride de l’est algérien) Effects of the age of prickly pear (Opuntia ficus indica f. inermis) plantations on soil properties and vegetation at Tebessa (semi arid area of eastern Algeria)

Souad NEFFAR1, Arifa BEDDIAR2, Noureddine REDJEL3 et Jamal BOULKHELOUA1 1. Département de biologie, Faculté des sciences de Tébessa, Université de Tébessa, Algérie Auteur correspondant : [email protected] 2. Laboratoire de biologie végétale et environnement, Département de biologie, Faculté des sciences, Université Badji Mokhtar, Annaba, Algérie 3. Direction générale pour le développement des zones arides et semi-arides, Ministère de l’Agriculture, Alger, Algérie

Résumé fique et la diversité ont été également estimés. Les résultats ont montré que l’âge des planta- La réhabilitation des parcours steppiques algé- tions avait des effets statistiquement significa- riens doit reposer sur le choix d’espèces végé- tifs sur le taux de matière organique, l’humidité, tales résistantes, notamment aux fortes séche- le taux de calcaire actif et le taux de recouvre- resses et faiblement exigeantes vis-à-vis des ment de la végétation. Ainsi, les plantations du conditions édaphiques. figuier de Barbarie pourraient contribuer à Le figuier de Barbarie (Opuntia ficus indica L.) l’amélioration de certains paramètres du sol et est en ce sens une espèce potentiellement inté- enrichir la biodiversité végétale des écosystèmes ressante. Dans ce présent travail, nous nous steppiques algériens. sommes proposé d’examiner les effets des plan- tations de figuier de Barbarie (Opuntia ficus indica) âgées de 5 et 20 ans sur les caractéris- Abstract tiques édaphiques et la biodiversité végétale. Ces plantations sont localisées dans la commune Algerian steppes rangeland biological reclama- de Tébessa (zone semi-aride de l’est algérien). tion has to be based on the choice of plant Dans chaque plantation, des échantillons de sol species with ecological parameters requirement, ont été prélevés et ont fait l’objet d’analyses such as drought tolerance and ability to grow in physico-chimiques telles que l’humidité, le pH, soils with low fertility and quality. Prickly pear la conductivité électrique, les taux de calcaire (Opuntia ficus indica L.) is a potentially inter- total et calcaire actif, le taux de matière orga- esting species to be considered. nique, les teneurs en azote et en phosphore The aim of this study is to prospect the impact assimilable. Quant à la végétation, le taux de of prickly pear plantations (0, 5, and 20 years recouvrement, l’abondance, la richesse spéci- old) on soil characteristics and plant biodiversity.

Mots clés : steppes algériennes, désertification, réhabilitation, propriétés édaphiques, taux de Keywords: Algerian steppes, desertification, land recouvrement, diversité végétale. reclamation, soil properties, plant cover, diversity.

ecologia mediterranea – Vol. 37 (1) – 2011 5 ecol-med-37-1-01:Mise en page 1 12/07/11 9:09 Page 6

SOUAD NEFFAR,ARIFA BEDDIAR,NOUREDDINE REDJEL,JAMAL BOULKHELOUA

Plantations located in Tebessa, a semi arid zone half, from 56 individuals for control soil to of eastern Algeria, were chosen in which soil 134 and 136 individuals for 5 and 20 years old was sampled for physico-chemical analysis: pH, plantations. electrical conductivity, water content, the rates of total and active calcareous, organic matter, The results suggest that Opuntia ficus indica nitrogen and available phosphorus. Cover rates, plantation, beside of the small amount of abundance, specific richness and plant diversity investment required for its establishment and were observed and evaluated. high economical and ecological advantages, Results of analysis of variance showed statistical contributes on a long term significantly to significant effects of plantation age on organic matter, water content, active calcareous and soil improve soil conditions and spontaneous plant cover rates. species abundance in semi arid zones. These results suggest that Opuntia ficus indica plantations in semi arid zones could contribute to improve soil conditions and plant species abundance. Introduction

Les steppes algériennes s’étendent sur une Version anglaise abrégée superficie de 20 millions d’hectares et sont situées entre les isohyètes 100 mm et 400 mm (Djebaili 1984 ; Aidoud et al. 2006 ; Nedj- The Algerian steppe is a large semiarid area raoui & Bedrani 2008). Ces steppes sont à of 20 millions hectares located between the vocation essentiellement agropastorale à annual isohyets of 100 mm and 400 mm (Dje- dominance pastorale. baili 1984; Aidoud et al. 2006; Nedjraoui & Bedrani 2008). An important part of it Un certain nombre de facteurs, tels que la reached a high level of erosion and degrada- démographie croissante, les mauvaises pra- tion. Programs of its biological reclamation tiques culturales et le surpâturage affectent le and rehabilitation must take into considera- couvert végétal, la biodiversité et le sol de cet tion the choice of plant species. Species those écosystème (Aidoud 1997) conduisant à sa are able to grow in harsh conditions, such as dégradation et ainsi à la rupture des équilibres low soil fertility, a small depth and a low écologiques et socio-économiques. Comme capacity of water retention. They must also be dans la plupart des cas, la reconstitution du drought tolerant. One of this species used in couvert végétal dans les parcours dégradés ne Algeria is Opuntia ficus indica L. peut plus être assurée par des mécanismes de régénération naturelle, et donc nécessite le The aim of this study is to evaluate the impact recours à des techniques d’aménagement et of 0, 5, and 20 years old Opuntia ficus indica de gestion spécifiques avec un choix rigou- plantations on some soil physicochemical reux d’espèces adaptées à ces régions. C’est properties (i.e. pH, electrical conductivity, le cas du figuier de Barbarie (Opuntia ficus water content, organic matter, calcareous indica L.), cactacée de type CAM (Gibson & rates, nitrogen, phosphorus rates) and on veg- Nobel 1986) qui présente de nombreux avan- etation characteristics (i.e. cover rates, abun- tages tant sur le plan économique qu’écolo- dance, specific richness and plant diversity). gique. En effet, cette espèce peu ou pas exi- Plantations of prickly pear were chosen in a geante sur le plan pédologique et climatique, semi arid zone of eastern Algeria, from which excepté les fortes gelées, requiert peu d’en- soil samples in the space between (interspace) tretien (Mulas & Mulas 2004) et protège le sol shrubs were collected and analyzed. Except contre l’érosion. En outre, elle possède une soil cover which was estimated during three valeur alimentaire en tant que fruit (Pimienta- seasons; abundance, richness and plant diver- Barrios 1993 in Kabas et al. 2006) et comme sity were observed during spring 2008. complément fourrager pour le cheptel surtout The results of statistical analysis consisting of durant la période de disette (Bensalem et al. ANOVA and comparison showed that the 2002 ; Dubeux et al. 2006). effect of Opuntia ficus indica plantations Le Houerou (1996) et Mendez et al. (2004) increased significantly the rate of organic ont déjà signalé respectivement les effets posi- matter from 2,47% to 4,97%, and of water tifs des barrières de figuier de Barbarie sur les content from 1,83% to 2,85%. Even though, teneurs en matière organique et les propriétés the diversity was not affected, the abundance physiques du sol et leur rôle protecteur en tant of plant species increased almost 2 fold and que plante-nourrice, réduisant la consomma-

6 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-01:Mise en page 1 12/07/11 9:09 Page 7

Effets de l’âge des plantations de figuier de Barbarie (Opuntia ficus indica f. inermis) sur les propriétés du sol et la végétation à Tébessa (zone semi-aride de l’est algérien)

tion des plantules par les herbivores. Mais la plupart des études sur le figuier de Barbarie se sont focalisées sur sa distribution spatiale en Méditerranée (Erre et al. 2009), sa biolo- gie (Snyman 2006; Reyes-Aguero et al. 2006) et sur la production et la qualité de son fruit (Parish & Felker 1997). Les travaux rela- tifs à l’impact des plantations sur les res- sources naturelles des milieux dégradés par- ticulièrement en Afrique du Nord sont plutôt rares. C’est dans ce contexte que le Haut Commis- sariat au développement de la steppe (HCDS) a lancé dans les années 1990 plusieurs actions d’amélioration et de réhabilitation des par- cours steppiques et des espaces marginaux par l’ensemencement et les plantations fourra- gères en partenariat avec les communautés agropastorales riveraines des périmètres com- muns et privés et par leur mise en défens. Parmi ces plantations, figurent celles de figuier de Barbarie. Cette opération vise comme objectifs principaux : (i) la réduction des superficies des terres défrichées, (ii) la valorisation des espaces marginaux, (iii) la génération d’une source supplémentaire de revenus pour les familles rurales qui permet- trait la stabilisation des populations. Dans le présent article, nous proposons d’éva- luer les effets des plantations d’Opuntia ficus indica sur les propriétés du sol et la végéta- tion en comparant des plantations âgées de moins de 5 ans et de plus de 20 ans avec des parcelles en friche dans une zone semi-aride de l’est algérien.

Figure 1 – Localisation de la zone et de la station d’étude. Figure 1 – Location of the study area. Matériel et méthodes

Description de la zone et de la station d’étude Les précipitations annuelles moyennes sont de l’ordre de 384 mm avec des variations L’étude a été conduite dans la station de Anba intra, inter-saisons et interannuelles. La tem- située à une altitude de 887 m, une latitude pérature annuelle moyenne, la température 35o 25’ 08,3’’N et une longitude 008o 09’ maximale au mois de juillet et la température 42,4’’E. Cette station est localisée dans la minimale au mois de janvier sont respec- o o o commune de Tébessa, dans l’est algérien tivement de 15,80 C, 26,43 C et 6,18 C (figure 1). La commune de Tébessa fait par- (tableau1). Le diagramme de Gaussen et tie du haut plateau tellien de l’étage biocli- Bagnouls (figure 2) révèle une période sèche matique semi-aride caractérisé par un hiver s’étendant de la mi-mai jusqu’à la mi-octobre. froid et sec et un été très chaud et sec. Les Les principaux types de roches ou de forma- bases de données climatiques utilisées pro- tions superficielles présentes dans la zone sont viennent de la station météorologique de des calcaires. Ainsi les sols de la zone d’étude Tébessa et représentent une synthèse des don- appartiennent à la classe des sols calcima- nées de 1972 à 2008. gnésiques regroupant les sols carbonatés.

ecologia mediterranea – Vol. 37 (1) – 2011 7 ecol-med-37-1-01:Mise en page 1 12/07/11 9:09 Page 8

SOUAD NEFFAR,ARIFA BEDDIAR,NOUREDDINE REDJEL,JAMAL BOULKHELOUA

Tableau 1 – Données moyennes des précipitations et des températures de la période 1972-2008. Table 1 – Average data of precipitations and temperatures during 1972-2008.

Mois JFMAMJJASOND

T(oC) 6,18 7,64 10,20 13,29 18,83 23,28 26,43 25,70 21,46 17,00 12,02 7,62 P (mm) 26,44 24,77 37,80 35,33 38,83 39,91 13,47 29,28 40,37 30,46 33,30 34,37

Tableau 2 – Données moyennes des précipitations et des températures de l’année 2007-2008. Table 2 – Average data of precipitations and temperatures during 2007-2008.

Mois SONDJ FMAMJ JA

T(oC) 22,02 17,62 10,55 6,95 7,00 8,30 10,91 15,58 19,31 23,41 28,70 27,30 P (mm) 49,70 15,40 9,30 28,70 6,10 7,00 36,40 28,00 67,40 12,90 4,30 18,70

Sélection des parcelles d’étude 30 60 et échantillonnage des sols T(°C) 25 50 L’étude a été menée dans des parcelles plan- P(mm) tées d’Opuntia ficus indica âgées de moins de 20 40 5 ans et de plus de 20 ans et des parcelles voi- sines non plantées (témoin) (figures 3a, 3b, 15 30 3c). L’âge des plantations est obtenu suite à 10 20 des enquêtes menées sur terrain et confirmées par le HCDS, promoteur du développement

Température (°C) 5 10 Précipitations (mm) pastoral d’une manière générale et respon- sable du programme de réhabilitation et 0 0 d’amélioration des parcours en particulier. SONDJFMAMJJA Afin de réduire et de contrôler les variations Mois de l'année pédologiques et climatiques, toutes les par- celles ont été choisies proches les unes des Figure 2 – Diagramme de Gaussen et Bagnouls autres, y compris les parcelles témoins qui de la station d’étude (1972-2008). sont en friche. Figure 2 – Gaussen and Bagnouls diagramm of the study area (1972-2008). Trois parcelles, aux propriétés morpholo- giques et topographiques similaires, de super- ficie comprise entre 2 et 4 hectares chacune, ont été retenues pour chaque âge de planta- tion et le témoin. La technique de plantation est de deux types; soit sous forme de dépôt La texture est en général argileuse et la charge de cladodes dans des potets ou le long de caillouteuse est importante réduisant la pro- sillons parallèles aux courbes de niveaux avec fondeur de sol utile. L’évolution pédologique un espace inter-sillons inversement propor- y est difficile en raison de l’aridité du climat. tionnel au degré de la pente. Le sol étant peu Ces sols sont squelettiques, pauvres en profond, la masse racinaire se retrouve par matière organique et sont sensibles à la dégra- conséquent dans les couches les plus superfi- dation (Djebaili 1984 ; Halitim 1988). cielles du sol avec un développement hori- Des marques d’érosion sont observées régu- zontal pouvant atteindre les 8 mètres (Sud- lièrement et témoignent de la nature orageuse zuki-Hill 1995 in Mulas et Mulas 2004). des averses saisonnières que connaît la région. Les espèces végétales qui prédominent sont : Analyses physico-chimiques du sol Stipa tenacissima (L), Stipa parviflora (Desf), Thymus algeriensis (B et R), Artemisia herba En octobre 2008, quatre échantillons de sol alba (Asso), Artemisia campestris (L), Glo- d’une profondeur maximale de 20 cm ont été bularia alypum (L) et Anabasis articulata prélevés au milieu de l’espace interligne de (Forsk). chaque parcelle. Les sols ont été séchés à l’air,

8 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-01:Mise en page 1 12/07/11 9:09 Page 9

Effets de l’âge des plantations de figuier de Barbarie (Opuntia ficus indica f. inermis) sur les propriétés du sol et la végétation à Tébessa (zone semi-aride de l’est algérien)

Figure 3a – Plantation d’Opuntia ficus indica Figure 3b – Plantation d’Opuntia ficus indica âgée âgée de moins de 5 ans. de plus de 20 ans. Figure 3a – Young plantation of Opuntia ficus Figure 3b – Old Plantation of Opuntia ficus indica. indica.

Figure 3c – Parcelle-témoin. Figure 3d – Établissement de la végétation herbacée Figure 3c – Control-area. autour du figuier de Barbarie (Cliché, Neffar 2008). Figure 3d – Establishment of herbaceous vegetation around prickly pear (Photo, Neffar 2008).

tamisés à 2 mm et conservés dans des sacs en en azote total (N %) ont été déterminées par polyéthylène. la méthode de Keldjahl décrite par Bonneau La granulométrie est déterminée par tamisage & Souchier (1994). Les teneurs en phosphore humide (AFNOR 1990) et la texture des sols a assimilable (Pa) ont été déterminées par la été déduite par projection des valeurs des frac- méthode Olsen (Mathieu & Pieltain 2003). tions d’argiles, de limons et de sables sur un triangle textural. Le pH et la conductivité Observations végétales électrique (CE) ont été mesurés sur une sus- pension sol-eau au rapport (1/5). Les teneurs Vu le caractère steppique de la végétation, en calcaire total ont été déterminées par la seul le taux de recouvrement a été évalué à méthode de Dermech et al. (1982). Les chaque saison. L’établissement de la liste des teneurs en calcaire actif ont été déterminées espèces présentes et le relevé de leur abon- par la méthode de Drouineau (Mathieu & dance ont été réalisés durant la période de Pieltain 2003). Les teneurs en carbone orga- croissance optimale de la végétation. Les nique ont été déterminées par la méthode paramètres de la végétation (taux de recou- Anne (Bonneau & Souchier 1994). Les taux vrement du sol, abondance et diversité spéci- de matière organique ont été estimés en mul- fique) ont été estimés par la méthode linéaire tipliant les teneurs en carbone organique par de transect ou «line intercept» (Canfield 1,72 (Mathieu & Pieltain 2003). Les teneurs 1941 in Cook & Stubbendiek 1986). Pour

ecologia mediterranea – Vol. 37 (1) – 2011 9 ecol-med-37-1-01:Mise en page 1 12/07/11 9:09 Page 10

SOUAD NEFFAR,ARIFA BEDDIAR,NOUREDDINE REDJEL,JAMAL BOULKHELOUA

chaque parcelle d’étude, quatre « transects » Résultats ont été choisis aléatoirement au niveau de l’espace interligne. La longueur de la corde dépendait de la largeur de l’espace interligne Granulométrie et classes texturales et variait de 2 à 8 mètres. Le long de la corde D’après les valeurs respectives des fractions tendue, le relevé des paramètres de végétation argiles, sables et limons (tableau 3) projetées a été effectué tous les 10 cm. Ces observations sur le triangle textural, les sols étudiés appar- ont été effectuées durant le printemps 2008. tiennent aux classes texturales sablo-argi- Le taux de recouvrement a été évalué par une leuses à limon-sablo-argileuse pour les jeunes estimation du pourcentage de sol couvert par plantations et argileuse pour les vieilles plan- la végétation comme étant le rapport de la tations et les parcelles témoins. longueur occupée par la végétation sur la lon- gueur totale de la corde. Cette méthode bien qu’elle ne soit pas très précise, si le choix des Propriétés chimiques des sols «transects» n’est pas représentatif, a du D’après les résultats consignés dans le moins l’avantage d’être rapide. La diversité tableau 3, les sols des différentes parcelles ont spécifique a été évaluée par l’indice de Shan- montré un pH proche de 8, une conductivité non (H’) (Faurie et al. 2003). électrique inférieure à 1000 µS/cm, des teneurs en azote total de 0,10 %, des teneurs en phosphore assimilable inférieures à 2,53 ppm, des teneurs en calcaire total com- prises entre 16% et 20% et un rapport C/N Avec pi = ni/N où ni est le nombre d’individus compris entre 13 et 21. Les analyses de de chaque espèce, N est le nombre total des variance effectuées sur ces paramètres n’ont individus de toutes les espèces et S étant le pas révélé de différences significatives entre nombre d’espèces recensées. les parcelles plantées et les parcelles témoins. L’équitabilité (E) étant le rapport entre la Cependant, les taux d’humidité (p = 0,006) des diversité H’ calculée et celle obtenue pour le sols des parcelles plantées (2,41 % et 2,85 %) nombre d’espèces inventoriées en cas d’équi- se sont avérés significativement plus élevés fréquence. Elle varie entre 0 et 1. que le taux d’humidité des sols des parcelles témoins (1,83%). Nous avons également mesuré des teneurs en calcaire actif dans les sols des parcelles plantées (entre 6 % et 10 %) significativement plus basses (p < 0,001) que celles mesurées dans les sols des parcelles Analyses statistiques témoins (12 %). Différentes teneurs en matière L’analyse de la variance (ANOVA) à un critère organique (p = 0,0002) ont été observées entre de classification a été utilisée pour tester les les parcelles témoins (2,47%) et les jeunes effets d’une plantation de figuier de Barbarie plantations (3,12 %) et les plantations âgées de sur les paramètres chimiques du sol, l’abon- plus de 20 ans (4,97 %). dance et la richesse spécifique végétale. En fonction du résultat de l’ANOVA, un test de la Paramètres de la végétation PPDS (plus petite différence significative) de comparaison des moyennes a été effectué L’analyse de variance a révélé un effet signi- pour déterminer les différences statistique- ficatif de la plantation de figuier de Barbarie ment significatives entre les parcelles (p = 0,0001) sur le taux de recouvrement de témoins, les plantations de moins de 5 ans et la végétation qui se traduit par une augmen- les plantations de plus de 20 ans. L’ANOVA à tation particulièrement importante entre les deux critères de classification a été utilisée parcelles témoins et les plantations âgées de pour tester les effets de l’âge d’une plantation moins de 5 ans et ceci pour les trois saisons et de la saison sur le taux de recouvrement de d’observations (figure 4). la végétation. Nos résultats ont montré une absence d’effet significatif de la plantation sur l’abondance moyenne et la richesse spécifique moyenne (respectivement p = 0,26 et p = 0,56) (figures 5 et 6). Mais, si on prenait le nombre

10 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-01:Mise en page 1 12/07/11 9:09 Page 11

Effets de l’âge des plantations de figuier de Barbarie (Opuntia ficus indica f. inermis) sur les propriétés du sol et la végétation à Tébessa (zone semi-aride de l’est algérien)

Tableau 3 – Effet de l’âge des plantations sur les paramètres du sol. Table 3 – Effect of the age of Opuntia plantation on soil parameters.

Âge des plantations (ans) 0 < 5 > 20

Sables (%) 34,25 54,94 41,61 Limons (%) 20,44 21,97 14,45 Argiles (%) 45,30 23,07 43,93 pH 8,07 ± 0,01a 8,04 ± 0,01a 8,05 ± 0,13a Ce (µS/cm) 762,66 ± 26,78a 774,66 ± 18,94a 769,5 ± 23,26a L’humidité (%) 1,83 ± 0,37b 2,41 ± 0,3a 2,85 ± 0,65a Carbonates de calcium (%) 20,46 ± 3,55a 16,56 ± 0,56a 18,83 ± 3,01a Calcaire actif (%) 12,60 ±1,30a 6,9 ± 1,33c 10,69 ± 1,07b Carbone (%) 1,44 ± 0,50b 1,82 ± 0,24b 2,89 ± 0,59a Azote total (%) 0,10 ± 0,04a 0,13 ± 0,03a 0,13 ± 0,03a C/N 14,09 ± 7,41a 13,43 ± 4,14a 21,87 ± 8,69a Matière organique (%) 2,47 ± 0,86b 3,12 ± 0,41b 4,97 ± 1,01a Phosphore assimilable (ppm) 1,26 ± 0,36a 2,53 ± 1,82a 1,65 ± 0,52a

Les valeurs représentent la moyenne de 6 répétitions. Les valeurs suivies par la même lettre ne sont pas significatives au niveau p = 0,05. Les valeurs suivies de lettres différentes sont significatives au niveau p = 0,05. Values show the average of 6 repetitions. Means with different letters within a variable indicate significant difference at p = 0,05.

NS : effet non significatif.

Figure 5 – Effet de l’âge des plantations sur l’abondance moyenne. Figure 5 – Effect of the age of plantation ** Significatif au niveau p = 0,01. on abundance.

Figure 4 – Effet de l’âge des plantations sur le taux de recouvrement. Figure 4 – Effect of the age of plantation on recovery.

total des individus recensés dans les trois par- celles confondues pour chaque niveau d’âge, on trouverait entre 134 et 136 individus dans les parcelles plantées contre 56 individus dans les parcelles témoins (tableau 4). Il en est de même pour la richesse totale qui a enregistré une valeur de 10 espèces dans les vieilles plantations, 8 espèces dans les plantations âgées de moins de 5 ans contre 9 espèces dans NS : effet non significatif. les parcelles témoins (tableau 4). Figure 6 – Effet de l’âge des plantations Le calcul de l’indice de Shannon a révélé des sur la richesse spécifique moyenne. valeurs de diversité végétale très voisines Figure 6 – Effect of the age of plantation entre les différentes parcelles comprises entre on species richness.

ecologia mediterranea – Vol. 37 (1) – 2011 11 ecol-med-37-1-01:Mise en page 1 12/07/11 9:09 Page 12

SOUAD NEFFAR,ARIFA BEDDIAR,NOUREDDINE REDJEL,JAMAL BOULKHELOUA

Tableau 4 – Liste des espèces recensées dans les différentes parcelles en 2008. Table 4 – List of recensed species in different areas during 2008.

Nom de l’espèce Témoin Jeunes plantations Vieilles plantations Famille

1 – Hordeum murinum (L.) 4 37 73 Poacées 2 – Artemisia campestris (L.) 20 36 13 Asteracées 3 – Stipa parviflora (Desf.) 0 10 1 Poacées 4 – Thymus algeriensis (B et R) 50 0Lamiacées 5 – Rosmarinus officinalis (L.)1 0 0 Lamiacées 4 – Plantago albicans (L.) 20 43 17 Plantaginacées 5 – Reichardia picrioides (L.) 15 14 Asteracées 6 – Ijuga iva (L.) 01 0Lamiacées 7 – Echinops spinosus (L.)2 3 5Asteracées 8 – Malva sylvestris (L.)0 1 0Malvacées 9 – Pallenis spinosa (L.) Coss 00 5Asteracées 10 – Anthemis arvensis (L.)1 0 1Asteracées 11 – Medicago littoralis (Rhode) 00 1Fabacées 12 – Calendula arvensis (L.)1 0 4Asteracées Abondance totale 56 136 134 Richesse totale 98 10 H’ 2,24 2,22 2,18 E 0,70 0,74 0,65 NB : sur ce tableau, vu le nombre réduit des espèces, nous avons considéré les relevés des 3 parcelles pour chaque niveau d’âge comme étant un seul relevé.

2,24 dans les témoins et 2,18-2,22 dans les 2003). Les teneurs en phosphore assimilable plantations. L’équitabilité baisse légèrement sont faibles d’après la classification d’Olsen dans les vieilles plantations (E = 0,65) par (Mathieu & Pieltain 2003). rapport aux jeunes plantations et aux témoins L’ensemble de ces données amène à considé- qui ont enregistré respectivement les valeurs rer d’une part les dépendances entre les de 0,74 et 0,70 (tableau 4). teneurs en phosphore et celle du calcaire total et actif et d’autre part le pH. Ce dernier étant une variable principalement affectée par le matériel parental (Pansu et al. 1988 ; Rezaei Discussion & Gilkes 2005) et l’alcalinité enregistrée dans les différentes parcelles est certainement due à la nature calcaire de la roche mère de la L’objectif de ce travail était de tester l’hypo- région d’étude, d’où les valeurs de calcaire thèse selon laquelle les plantations de figuier total et actif observées (Djebaili 1984 ; Hali- de Barbarie pourraient améliorer les proprié- tim 1988). Par conséquent, cette situation tés édaphiques et floristiques de milieux réduit la teneur en phosphore assimilable dans dégradés. Les résultats de cette étude permet- le sol et donc sa disponibilité pour les plantes tent de retenir que ces dernières ont provoqué et les microorganismes (Khresat et al. 1988 ; des effets variables sur les paramètres du sol Romanya & Rovira 2007). En outre, les et la végétation. faibles teneurs en phosphore assimilable peu- vent être dues soit à la sécheresse, soit à l’éro- Variation dans les propriétés du sol sion ou au prélèvement par les plantes (Li et al. 2004 ; Urioste et al. 2006), soit à la lenteur L’effet de ces plantations, et ceci quel que soit de la dégradation de la matière organique tra- leur âge s’est révélé statistiquement non signi- duite par un ratio C/N élevé. ficatif sur plusieurs variables: le pH, la CE, L’augmentation des ratios C/N dans les plan- le taux de calcaire total, l’azote, le phosphore tations âgées de plus de 20 ans suggère, mal- assimilable et le rapport C/N. L’importante gré l’absence de différence significative entre variance dans chaque modalité testée suggère les parcelles, une tendance à l’accumulation que d’autres facteurs sont plus influents que de la matière organique plus accrue dans les l’âge. Les sols des différentes parcelles ont vieilles plantations (Boyer 1982 in Hamouni montré dans l’ensemble un pH alcalin, et al. 2004) exprimant ainsi une minéralisa- moyennement calcaires (Baize & Jabiol 1995) tion plus lente du carbone que de l’azote et légèrement salés (Mathieu & Pieltain (Urioste et al. 2006).

12 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-01:Mise en page 1 12/07/11 9:09 Page 13

Effets de l’âge des plantations de figuier de Barbarie (Opuntia ficus indica f. inermis) sur les propriétés du sol et la végétation à Tébessa (zone semi-aride de l’est algérien)

À l’opposé des paramètres précédents, le taux gements dans les processus de restauration. d’humidité et le taux de matière organique ont L’absence de différence dans le taux de recou- significativement augmenté sous les planta- vrement entre les saisons est probablement tions. L’augmentation de la matière organique due à la régularité pluviométrique qui a mar- peut être corrélée au taux de recouvrement qué les années 2007 et 2008 (tableau 2). enregistré dans les plantations et engendrerait Bien que la diversité végétale demeure de ainsi une augmentation de la capacité de façon controversée, une manière simple de rétention de l’eau des sols et donc des taux mesurer la biodiversité (Gosselin et al. 2004 d’humidité (Su & Zhao 2003). Nous pensons in Cheikh Al Bassatneh et al. 2007), nos qu’à l’instar des autres espèces utilisées dans résultats indiquent qu’elle ne doit pas être uti- la restauration des écosystèmes dégradés lisée comme le seul indice de l’efficacité d’un citées dans la littérature telles que Caragana procédé de restauration (Yang et al. 2006). Il microphylla (Su & Zhao 2003; Li et al. en est de même pour l’abondance moyenne 2007 ; Zhao et al. 2007 ; Huang et al. 2007), des individus, qui en dépit de la différence Retama sphaerocarpa (Caravaca et al. 2003) perceptible entre les différentes parcelles, ne et Aloe secundiflora (King 2007), l’Opuntia semble pas être influencée significativement ficus indica n’a pas amélioré directement le par l’âge des plantations. Si on considère taux de matière organique des sols. En effet, l’abondance et la richesse totale (tableau 4), Opuntia ficus indica est une espèce non nos résultats ont clairement montré un dou- caduque qui ne perd que ponctuellement des blement du nombre d’individus dans les plan- raquettes âgées très lignifiées et donc à dégra- tations de figuier de Barbarie et ceci malgré dation lente. Nous suggérons que le figuier de une richesse identique entre les différentes Barbarie aurait servi dans une certaine mesure parcelles. de barrière piégeant les graines dispersées par le vent des espèces de la steppe. De ce fait, il Les valeurs d’indice de diversité végétale se faciliterait l’établissement d’une végétation sont avérées très voisines entre les différentes herbacée qui contribuerait à augmenter les parcelles mais avec une équitabilité plus teneurs en matière organique dans les sols par faible chez les vieilles plantations traduisant son apport de la litière (Singh et al. 2001 in la dominance d’Hordeum murinum dont le Su & Zhao 2003). Il en résulterait une aug- nombre de plants a atteint 73 sur 134 indivi- mentation du dépôt des nutriments et une dus toutes espèces confondues. Il n’est cepen- réduction des eaux de ruissellement lors des dant pas possible de formuler des conclusions averses, ainsi qu’une meilleure protection fermes sur ces résultats car nos observations mécanique et une amélioration biologique de ont été réalisées au cours d’une seule saison la surface du sol (Li et al. 2007). La matière de croissance. organique est considérée comme l’un des plus D’après Brown et Al-Mazrooei (2003), le taux importants paramètres d’apport des nutri- de recouvrement est vu comme un processus ments dans les sols pauvres (Zhou et al. 2008) lent dans les écosystèmes désertiques, mais et l’un des indicateurs les plus pertinents de dans notre cas, en étudiant la question dans la qualité du sol (Rezaei & Gilkes 2005). un contexte d’amélioration, il est préférable de donner de l’importance à cette variable dans un premier temps au détriment des Variation dans les paramètres indices de structure (diversité et équitabilité) de végétation compte tenu de l’état de dégradation atteint par les parcours, leur faible stock de semences Les espèces recensées sont majoritairement dans le sol et les espèces végétales majoritai- des herbes annuelles ou vivaces avec une rement des annuelles dépendant des pluies dominance particulière de : Hordeum muri- saisonnières. En outre, la litière de ces herba- num (L.) et Plantago albicans (L.) rencon- cées pourrait constituer une source de matière trées dans toutes les parcelles. Il a été retenu organique intéressante dans ces plantations dans notre étude que le taux de recouvrement parce qu’elle se décompose plus facilement est significativement plus important dans les que celle des arbustes (Li et al. 2006). Par plantations par rapport aux témoins. En effet, ailleurs, les herbacées annuelles possèdent cette variable est considérée par Yang et al. une croissance rapide, un cycle de vie court (2006) comme étant le meilleur indicateur du (Mun & Whitford 1998 in Su & Zhao 2003) degré de restauration ou de désertification car et une plus grande production annuelle des il révèle fermement et sérieusement les chan- graines (Huang et al. 2007).

ecologia mediterranea – Vol. 37 (1) – 2011 13 ecol-med-37-1-01:Mise en page 1 12/07/11 9:09 Page 14

SOUAD NEFFAR,ARIFA BEDDIAR,NOUREDDINE REDJEL,JAMAL BOULKHELOUA

Conclusion Mediterranean area. Forest Ecology and Manage- ment, 182: 49-58. Canfield R.H., 1941. In : Cook C.W. & Stubbendieck J., Il découle de cette étude préliminaire que 1986. Range Research: Basic problems and tech- l’amélioration de la fertilité des sols dégradés niques. Society of Range management, Denver, des steppes par une plantation de figuier de Colorado, 51-71. Barbarie est un processus écologique com- Dermech Kh., Karouani M. & El Belkhi M., 1982. L’es- sentiel en pédologie. Haleb, Syrie, Direction des plexe soumis à l’effet simultané et conjugué publications universitaires. des différents facteurs biotiques et abiotiques Djebaili S., 1984. Steppes algériennes : phytosociologie (Liu et al. 1998 in Su & Zhao 2003). Nos et écologie. Alger, Office des publications universi- observations sur le terrain ont montré que taires, 177p. l’Opuntia ficus indica, arbuste arido-résistant Dubeux J.R., Ferreira dos Santos M.V., de Andrade Lira M., Cordeiro dos Santos D., Farias I., Lima L.E. & (Tegegne et al. 2007), pourrait protéger le sol Ferreira R.L.C., 2006. Productivity of Opuntia ficus contre l’érosion avec son appareil racinaire indica under different N and P fertilization and plant étendu, piéger avec sa partie aérienne les population in north-east Brazil. Journal of Arid limons éoliens riches en nutriments (Wezel et Environment, 67: 357-372. Erre P., Chessa I., Nieddu G. & Jones P.G., 2009. Diver- al 2000 in Su & Zhao 2003), et créer des sity and spatial distribution of Opuntia spp. in the «îlots de fertilité» autour de lui (figure 3d) Mediterranean Basin. Journal of Arid Environments, jouant ainsi le rôle de plante-refuge pour les doi: 10. 1016/j. jaridenv.2009. 05.010. graines incapables de s’installer dans les Faurie C., Ferra Ch., Medori P., Dévaux J. & Hemptinne espaces ouverts. J.L., 2003. Ecologie : approche scientifique et pra- tique. Paris, Tec & Doc, 407 p. Les plantations de figuier de Barbarie pour- Gibson A.C. & Nobel P., 1986. The Cactus primer. raient être une stratégie prometteuse de Cambridge, Harvard University Press. conservation des steppes algériennes et des Gosselin et al., 2004. In : Cheikh Al Bassatneh M., Fady espaces marginaux qui ont perdu toute voca- B., Simon-Teissier S. & Tatoni T., 2007. Biodiver- sité floristique et gestion sylvicole dans les systèmes tion agropastorale. forestiers supraméditerranéens et montagnards de la montagne de Lure (sud-est de la France). Ecologia mediterranea, 33 : 29-42. Halitim A., 1988. Sols des régions arides. Alger, Office Références des publications universitaires, 384 p. Huang D., Wang K. & Wu W.L., 2007. Dynamics of soil physical and chemical properties and vegetation Afnor, 1990. Granulats, analyse granulométrique par successions characteristics during grassland deser- tamisage. Norme P18-560. tification under sheep grazing in an agropastoral Aidoud A., 1997. Changement de végétation et chan- transition zone in Northern China. Journal of Arid gement d’usage dans les parcours steppiques d’Al- Environments, 70: 120-136. gérie. Sécheresse, 7 : 187-193. Khresat S.A., Rawajfih Z. & Mohammad M., 1988. Aidoud A., Le Floc’h E. & Le Houerou H.N., 2006. Les Land degradation in north-western Jordan: causes steppes arides du Nord de l’Afrique. Sécheresse, and processes. Journal of Arid Environment, 39: 17 : 19-30. 623-629. Baize D. & Jabiol B., 1995. Guide pour la description King E.G., 2007. Facilitative effects of Aloe secundi- des sols : techniques et pratiques. Paris, INRA, 375 p. flora shrubs in degraded semi-arid ranglands Bensalem H., Nefzaoui A. & Bensalem L., 2002. Sup- in Kenya. Journal of Arid Environment, plementation of Acacia cyanophylla Lindl foliage- doi:10.1016/j.jaridenv.2007.08.001. based diets with barley or shrubs from arid areas Le Houerou H.N., 1996. The role of cacti (Opuntia spp.) (Opuntia ficus indica f. inermis L. Mill and Atriplex in erosion control, land reclamation, rehabilitation nummularia L.) on growth and digestibility in and agricultural development in the Mediterranean lambs. Animal Feed Sciences and Technology, 96: Basin. Journal of Arid Environments, 33: 135-159. 15-30. Li F.M., Song Q.H., Jjemba P.K. & Shi Y.C., 2004. Bonneau M. & Souchier B., 1994. Constituants et pro- Dynamic of soil biomass microbial C and soil fer- priétés du sol. Paris, Masson, 665 p. tility in Cropland mulched with plastic film in a Boyer, 1982. In : Hamouni M., Touaf L. & Chekired Z., semi arid agro-ecosystem. Soil Biology and Bio- 2004. Analyse du sol, intérêt agronomique. Alger, chemistry, 36: 1893-1902. Institut national de l’irrigation et du drainage Li J., Zhao C., Zhu H., Li Y. & Wang F., 2007. Effect of (INSID), 27 p. plant species on shrub fertile island at an oasis- Brown G. & Al-Mazrooei S., 2003. Rapid vegetation desert ecotone in the South Junggar Basin China. regeneration in a seriously degraded Rantherium Journal of Arid Environments, 71: 350-361. epapposum community in northern Kuwait after 4 Li X.R., Jia X.H. & Dong J.R., 2006. Influence of deser- years of protection. Journal of Environmental tification on vegetation pattern variation in the cold Management, 68: 387-395. semi arid grasslands of Qinghai – Tibet Plateau, Caravaca F., Alguacil M.M., Figueroa D., Barea J.M. & Northwest China. Journal of Arid Environment, 64: Roldan A., 2003. Re-establishment of Retama 505-22 sphaerocarpa as a target species for reclamation of Liu S.R., Li X.M. & Niu L.M., 1998. The degradation soil physical and biological properties in a semi arid of soil fertility in pure larch plantations in the nor-

14 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-01:Mise en page 1 12/07/11 9:09 Page 15

Effets de l’âge des plantations de figuier de Barbarie (Opuntia ficus indica f. inermis) sur les propriétés du sol et la végétation à Tébessa (zone semi-aride de l’est algérien)

theastern part of China. In: Su Y. & Zhao H., 2003. Singh K.P., Mandal T.N. & Tripathi S.K., 2001. Patterns Soil properties and plant species in an age sequence of restoration of soil physicochemical properties and of Caragana microphylla plantations in the Horqin microbial biomass in different land slide sites in the Sandy land, North China. Ecological Engineering, soil forest ecosystems of Nepal Himalaya. In: Su Y. 20: 223-235. & Zhao H., 2003. Soil properties and plant species Mathieu C. & Pieltain F., 2003. Analyse chimique de in an age sequence of Caragana microphylla plan- sol : méthodes choisies. Paris, Tec & Doc, 388 p. tations in the Horqin Sandy land, North China. Eco- Mendez E., Guevara J.C. & Estevez O.R., 2004. Distri- logical Engineering, 20: 223-235. bution of cacti in Larrea spp.shrublands in Men- Snyman H.A., 2006. A greenhouse study of root dyna- doza, Argentina. Journal of Arid Environment, 58: mics of cactus pears, Opuntia ficus indica and O. 451-462. robusta. Journal of Arid Environments, 65: 529-542. Mulas M. & Mulas G., 2004. Potentialités d’utilisation Su Y. & Zhao H., 2003. Soil properties and plant spe- stratégique des plantes des genres Atriplex et Opun- cies in an age sequence of Caragana microphylla tia dans la lutte contre la désertification. Short and plantations in the Horqin Sandy land, North China. Medium-Term Priority Environnemental Action Ecological Engineering, 20: 223-235. Programme (SMAP). Université des études de SAS- Sudzuki-Hills F., 1995. Anatomy and morphology. In: SAR, 112 p. Mulas M. & Mulas G., 2004. Potentialités d’utili- Mun H. T. & Whitford W. G., 1998. Changes in mass sation stratégique des plantes des genres Atriplex and chemistry of plant roots during long-term et Opuntia dans la lutte contre la désertification. decomposition on a Chihuahuan Desert watershed. Short and Medium-Term Priority Environnemental In: Su Y & Zhao H., 2003. Soil properties and plant Action Programme (SMAP). Université des études de species in an age sequence of Caragana microphylla SASSAR. plantations in the Horqin Sandy land, North China. Tegegne F., Kijora C. & Peters K.J., 2007. Study of the Ecological Engineering, 20: 223-235. optimal level of cactus pear (Opuntia ficus indica) Nedjraoui D. & Bédrani S., 2008. La désertification supplementation to sheep and its contribution as dans les steppes algériennes: causes, impacts et source as water. Small Ruminant Research, 72: 157- actions de lutte. VertigO – la revue électronique en 164. sciences de l’environnement ; 8 [en ligne], mis en Trieste A.M., Hevia G.G., Hepper E.N., Anton L.E., ligne le 7 novembre 2008. Bono A.A. & Buschiazzo D.E., 2006. Cultivation URL : http://vertigo.revues.org/index5375. effects of the distribution of organic carbon, total html. Consulté le 16 décembre 2008. nitrogen and phosphorus in soils of the semiarid Pansu M., Gautheyrou J. & Loyer J.Y., 1998. L’analyse region of Argentinian Pampas. Geoderma, 136: 621- du sol, échantillonnage, instrumentation et contrôle. 630. Paris, Masson, 497 p. Yang H., Lu Q., Wu B., Yang H., Zhang J. & Lin Y., Parish J. & Felker P., 1997. Fruit quality and production 2006. Vegetation diversity and its application in of cactus pear (Opuntia spp.) fruit clones selected sandy desert revegetation on Tibetan Plateau. Jour- for increased frost hardiness. Journal of Arid Envi- nal of Arid Environment, 65: 619-631. ronments, 37: 123-143. Zhao H.L, Zhou R.L., Su Y.Z., Zhang H., Zhao L.Y. & Pimienta-Barrios E., 1993. El nopal (Opuntia spp.) una Drake S., 2007. Shrub facilitation of desert land res- alternative ecologica productive para les zonas ari- toration in the Horqin Sand Land of Inner Mongo- das y semiaridas. In: Kabas O., Ozmerzi A. & lia. Ecological engineering, 31: 1-8. Akinci I., 2006. Physical properties of cactus pear Zhou R.L., Li Y. Q., Zhao H.L. & Drake S., 2008. grown wild in Turkey. Journal of Food Engineering, Desertification effects on C and N content of sandy 73:198-202. soils under grassland in Horqin, northern China. Reyes-Aguero J.A., Aguirre J.R. & Valiente-Banuet A., Geodema, 145: 370-375. 2006. Reproductive biology of Opuntia: A review. Wezel A., Rajot J. L. & Herbrig C., 2000. Influence of Journal of Arid Environments, 64: 549-585. shrubs on soil characteristics and their functions in Rezaei S. & Gilkes R., 2005. The effect of landscape Sahelian agroecosystems in semi arid Niger. In: Su attributes and plant community on soil chemical Y. & Zhao H., 2003. Soil properties and plant spe- properties in rangelands. Geoderma, 125: 167-176. cies in an age sequence of Caragana microphylla Romanya J. & Rovira P., 2007. Labile phosphorus forms plantations in the Horqin Sandy land, North China. in irrigated and rained semi arid Mediterranean Ecological Engineering, 20: 223-235. grassy crops with long term organic or conventio- nal farming practices. European Journal Agronomy, 27: 62-71.

ecologia mediterranea – Vol. 37 (1) – 2011 15 ecol-med-37-1-02:Mise en page 1 12/07/11 15:19 Page 17

Mediterranean experience and practice in Landscape Character Assessment Expérience méditerranéenne et pratique de l’évaluation des caractéristiques du paysage

Ioannis N. VOGIATZAKIS Environmental Conservation and Management Programme, School of Pure & Applied Sciences Open University of Cyprus, P.O. Box 24801, 1304 Nicosia Tel: +357 22411933 E-mail: [email protected]

Abstract few examples that demonstrate the ecological validity of such a framework. This partly reflects Increasingly there is a move from site based to the fact that landscapes are still low in the polit- landscape based conservation delivery. This is a ical agenda as demonstrated by the very small result of a paradigm shift in ecology associated number of European countries in the Mediter- with the rapid changes of the 20th century and ranean that have ratified the European Land- growing concern about their impact on land- scape Convention. scape quality. Relevant policy measures at the European level soon followed these changes calling for the management of all landscapes. Landscape character is a distinct, recognisable and consistent pattern of elements in the land- Introduction scape that makes a landscape different to another. Landscape Character Assessment (LCA) is a technique used to classify, describe and The theory of landscape ecology founded and understand the evolution and physical and cul- described in the seminal work by Forman tural characteristics of a landscape. LCA uses a (1986) set the scene for a paradigm shift in range of data sources to identify and describe ecology from site based to landscape based areas of common character and can operate at processes. Landscape as defined by Forman a range of scales i.e. continental, national and regional. The emerging landscape classifications and Godron (1986) is a mosaic of “interact- are based on the use of GIS and statistics in ing ecosystems”. Although the landscape may order to map landscapes, evaluate their charac- appear principally physical it is experienced ter and apply the framework for decision mak- by people who live, travel or see it from afar. ing and planning. Often the distinction is made between natural The aim of this paper is to review the use of LCA and cultural landscapes. In reality this dis- in the Mediterranean context. The paper pro- tinction is artificial since in Europe, and par- vides an overview of LCA, describes the existing landscape classifications in the Mediterranean ticularly in the Mediterranean, there are very and evaluates the applicability of the method few areas free of human intervention. Land- for landscape identification, pressure identifica- scapes have thus long been viewed as ‘multi- tion, monitoring change and nature conserva- functional’, integrating ecological, economic, tion. The review demonstrates that landscape socio-cultural, historical and aesthetic dimen- mapping and assessment is still limited in the Mediterranean. Where undertaken the existing sions (Fry 2001; Brandt & Vejre 2003; Piorr typologies have not been produced in a consis- 2003). In nature conservation, in particular, tent way across the Basin, with little emphasis the shift away from a designation led given on the cultural imprints, while there are approach to a landscape approach, seeks to encourage a more comprehensive vision of land management and rural decision-making. Nature conservation and management are now Keywords: Classification, GIS, mapping, nature conservation, planning, typology. considered effective only when carried out at

ecologia mediterranea – Vol. 37 (1) – 2011 17 ecol-med-37-1-02:Mise en page 1 12/07/11 15:19 Page 18

IOANNIS N. VOGIATZAKIS

the landscape level (Griffiths et al. 2010; national problem that spans a wide range of Woodcock et al. 2010). Landscape scale spatial scales. This complexity is probably the approaches are fundamental to the under- reason why landscape-specific methodologies standing of past and present cultural evolution and concepts have not yet been fully (Aalen 2001) and now considered to be an embraced in the Mediterranean, and despite appropriate spatial framework for the analy- the fact that one of the most prominent sis of sustainability (Morse et al. 2010). authorities and advocate of these methodolo- Landscape character is “a distinct, recognis- gies Zev Naveh originates from the area (see able and consistent pattern of elements in the Naveh 1994; 2000). Currently there is inade- landscape that makes a landscape different to quacy in our level of knowledge of the land- another, not better or worse” (Swanwick scape typology, i.e. variety of landscapes, but 2002). It is a functional hierarchy of abiotic, also the main processes and forces influenc- biotic and cultural components (Mücher et al. ing their transformation in the region. The 2005). Landscape Character Assessment second Chapter, section 6C, of the European (LCA) is a set of techniques and procedures Landscape Convention is dedicated to the used to classify, describe and understand the identification and assessment of landscapes evolution and physical and cultural character- (Council of Europe 2000). To that end land- istics of landscape. LCA has a long history in scape character assessment as described Europe with north-west European countries herein is a necessary starting point for man- leading the way on methodological aspects agement and a prerequisite for the evaluation but also on implementation through policy and risk assessment of losses or changes in and legislation (e.g. Griffiths et al. 2004). In the landscape. recent years, significant progress has also been made in south Europe with regard to the Landscape means different things to different description and mapping of landscape types people and this is also reflected in Landscape (Pinto-Correia et al. 2002; Marušič & Jančič Character Assessment (LCA). The common 1998; Blasi et al. 2000). denominator though, i.e. the landscape, pro- vides the appropriate framework where envi- The Mediterranean Landscape Charter ronmental pressures can be understood and (known as the Sevilla Charter, 1993) was the dealt with. Therefore, LCA has evolved into first document to cover specific issues about a more complex and holistic approach over the management and protection of Mediter- the years. The implementation of LCA is ranean landscapes and to stress the need for important for all the countries that have rati- protection of their natural and cultural her- fied the European Landscape Convention itage. Other international initiatives such as (ELC). LCA provides a framework to identify the Dobris assessment (Stanners & Bourdeau and assess landscapes, understand landscape 1995) and the European Landscape Conven- change, and develop landscape quality objec- tion (ELC) (Council of Europe 2000) soon tives in partnership with stakeholders – all followed this. According to the European specific measures of the ELC (Washer & Landscape Convention “the landscape con- Jongman 2003). Area classification is the pre- tributes to the formation of local cultures and cursor to landscape classification of which that it is a basic component of the European there are two types of analysis depending on natural and cultural heritage, contributing to the scale. These include detailed analyses of human well-being and consolidation of the restricted areas based on selected variables or European identity.” This statement is also true global approaches based on one or two types for the Mediterranean. The natural back- of data such as the distribution of ecosystem ground of diverse climate, geology and topog- types or geomorphology. There are many raphy has been transformed by human use of examples of land classifications at national the land to create the rich mosaic of cultural (Bunce et al. 1996), continental (Washer & landscapes that characterise so much of the Jongman 2003; Metzger et al. 2005) or global basin (Vogiatzakis et al. 2008). However, scale (FAO 1996). An early attempt by FAO many of these landscapes are typical through- (1996) to establish Agro-ecological zones is a out the Mediterranean to the extent that inhab- good demonstration of a land classification itants and visitors alike can resonate with technique at a global scale based on spatial these distinct landscapes. environmental data. Many of these schemes The management of the Mediterranean land- include the Mediterranean but none of them scapes is a multidisciplinary, and cross- have been developed exclusively for the area.

18 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-02:Mise en page 1 12/07/11 15:19 Page 19

Mediterranean experience and practice in Landscape Character Assessment

The aim of this paper is to review the use of landscape character assessment and its appli- cation in the Mediterranean context (Fig- ure 1). The paper provides an overview of LCA, describes the existing landscape classi- fication attempts in the Mediterranean, and evaluates the applicability of the methods for landscape identification, pressure identifica- tion, monitoring change and nature conserva- tion in the region.

Landscape Characterisation

The process of landscape character assess-

ment involves the distinct stages of charac- Figure 1 – Landscape Character Studies in the Mediterranean as discussed terisation, evaluation and decision-making. in the paper. Characterization comprises the identification of areas of distinct character, the classification and mapping of those areas and the descrip- tion and explanation of their character. The rationale behind landscape character mapping development to components that may be con- is that particular combinations of physical and sidered as belonging to a ‘humanities’ or ‘cul- cultural factors occurring in different areas tural’ umbrella (Groom et al. 2006). These result in similar landscapes. The approach is attributes are usually employed in a hierarchy based on a series of natural (i.e. landform, which reflecting their importance from the geology, soils) and cultural factors (i.e. land coarser (macro-) to the finer (micro-) scale. use, settlement pattern) that are used to describe the variability in the landscape at Although it is commonly accepted that a sci- various spatial scales depending on the entifically sound typology should be based on research scope. The data sources may include detailed information on the distribution, qual- existing published sources, field survey infor- ity and quantity of biophysical variables, in mation and the input of stakeholders to iden- many cases such information may only be tify and describe areas of common character. derived from heterogeneous data sets of dif- LCA can operate at a range of scales from fering quality (Table 1). Quality is compro- continental to national and regional and may mised by, for example: modernity, spatial result in landscape character types (relatively scale, and area coverage. Before the process small generic, repeatable spatial units) or of mapping can begin all of the relevant, read- landscape character areas (larger unique spa- ily available information for the study area tial units) (Groom et al. 2006). needs to be collated as a series of digital map layers within the GIS. Some of the available The stages of characterisation (Griffiths et al. datasets that can be employed for these stud- 2004) include: ies in the Mediterranean are given in Table 1. • Defining the scope of the study; The methods range from simple interpretative • Undertaking a desk study to identify areas or mechanistic-analytical approaches to more of common character; complex analytical and/or interactive • Carrying out a field survey to gather further approaches (Brabyn et al. 1996; Groom et al. information about the landscape; 2006). These usually lead in a hierarchical • Classification and description to define and system (Figure 2), based upon the successive communicate landscape character types and sub-division of a series of mapped attributes. areas. A distinction is made between a landscape There is a wide range of factors used in land- typology and the application of that typology scape classification including natural science to generate a classification. The classification components e.g. geology, landform and veg- is the result of using the typology to map the etation, through social science components area of interest. The typology necessarily pre- e.g. land use, cultural factors and historic cedes the classification, requiring the sam-

ecologia mediterranea – Vol. 37 (1) – 2011 19 ecol-med-37-1-02:Mise en page 1 12/07/11 15:19 Page 20

IOANNIS N. VOGIATZAKIS

Table 1 – Potential Datasets for Landscape Character Assessment.

Source Description

Climate UEA, UK The Climate Research Unit (CRU) at University of East Anglia offers several high-resolution global datasets. These include precipitation, temperature, relative humidity etc. Averaged climate data at individual country level are also available (http://www.cru.uea.ac.uk/cru/data/hrg.htm). Topography USGS U.S. Geological Survey (USGS) is distributing elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM data were collected specifically with a technique known as interferometry, Data available to the geospatial data user community include 1-arc-second (approximately 30-meter) resolution data over the United States, and 3-arc-second (approximately 90-meter) data over non-U.S.territory (http://erg.usgs.gov/isb/pubs/factsheets/fs07103.html). USGS GTOPO30 is a global digital elevation model (DEM) available by the USGS. Within this dataset elevation is regularly spaced at 30-arc seconds (c. 1 km). The DEM is based on data from 8 different sources of elevation. The co-ordinate system is decimal degrees of latitude and longitude referenced in WGS84 (http://edcdaac.usgs.gov/gtopo30/README.asp). From this DEM other parameters can be derived such as slope and aspect. Geology & Soils ESB The Soil Geographical Database of Europe at scale 1: 1 000 000 managed by the European Soil Bureau (ESB). A rasterised map with a grid resolution of 10 km x 10 km cell is available. The ESDB only includes the European countries of the Mediterranean. FAO-UNESCO The Digital Soil Map of the World is a compendium of information on the distribution of soils in the world. The scale of the original map (and the vector-formatted data) is 1: 5 000 000. The cell size of the raster data is 5 x 5 arc-minute http://www.fao.org/ag/agl/agll/dsmw.htm). Land Use – Land Cover CORINE EU programme to provide information on the status of and changes to the environment. This database was derived from visual interpretation of Landsat satellite imagery in combination with ancillary information. It does not cover the Former Republic of Yugoslavia and Albania but it includes Tunisia and Morocco. PELCOM A 1km spatial resolution Pan-European Land Cover database which contains 16 classes and extends to Turkey, and part of the Syrian coast. This dataset does not cover any of the North African Countries (http://www.geo-informatie.nl/projects/pelcom/). GLC2000 The GVM unit of the JRC has produced a new global landcover classification for the year 2000 (GLC2000), in collaboration with over 30 research teams from around the world. Access is provided through registration. FAO: The purpose of the AFRICOVER project is to establish a digital geo-referenced database on land cover for the whole of Africa (http://www.africover.org/webmap.htm). The Multipurpose Africover Database for the Environmental Resources (MADE) is produced at a 1: 200 000 scale (1: 100 000 for small countries and specific areas). Of the African Countries that boarder the Mediterranean there are data currently only for Egypt. Geomorphology No consistent Mediterranean or European geomorphological map exist. However, detailed digital elevation models (DEMs) are available, which convey a high proportion of the information required, i.e. altitude and slope. These data act as surrogates for geomorphological information. The best dataset available is the United States Geological Survey (USGS) HYDRO1k global digital elevation model, with a resolution of 1km2. (http://edcdaac.usgs.gov/gtopo30/hydro/). GIS Global Dataset Products AGI – ESRI A compilation of geologic, hydrologic, elevation, land cover and other thematic datasets organized by regions of the world. The dataset comprises relatively small scale data (1:1 million scale or 1 Km resolution).

pling of the whole range of landscape units to identify the attributes that discriminate between the full complements of landscape types. This is a complex task and is influenced by a whole range of factors, including the objectives and scale of the project, data attrib- utes, the sampling scheme the diversity and complexity of the landscape types and the techniques to classify the samples into a con- sistent typology. Some of the most common variables employed more often in LCA include climate, landform, geology and land-cover (see review in Groom et al. 2006). The data for these Figure 2 – Landscape Assessment hierarchy at different levels of spatial resolution (Griffiths et al. 2004). attributes are stored in a database within a GIS software. This is then followed by the overlay and subsequent subdivision of these variables

20 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-02:Mise en page 1 12/07/11 15:19 Page 21

Mediterranean experience and practice in Landscape Character Assessment

into discrete homogeneous units. This opera- cover the north Mediterranean, excluding tion can be carried out “manually” or auto- Cyprus. The first of those attempts was the matically. Although the first approach can be work by Meeus (1995) which resulted in 30 time consuming for large datasets, it allows Landscape types for Europe. Within these the user greater control over the process landscapes there are 7 landscapes types in the enabling decisions over the subdivisions e.g. Mediterranean including mountains. Current- by following natural breaklines for landform ly the European Landscapes Map (Mücher et delineation or by amalgamating very small al. 2010) is the only work that provides a polygons of a geological attribute. In the sec- more detailed account of the north of the ond approach decision rules can be derived to Mediterranean landscapes compared to the extract the information needed from the indi- one by Meeus (1995). The classification is vidual variables’ layers which can be then hierarchical and relies on climate, altitude, simply overlaid automatically within the GIS parent material and land use to subdivide the (Jellema et al. 2009; Mücher et al. 2010). In landscape. This work which employed seg- some cases the use of automated analysis can mentation techniques produced 11 landscape be followed by some form of interactive types at level 3 of the classification (Table 2). refinement (experts’ opinion) of the auto- These are further subdivided by 10 main land mated results (Groom et al. 2006). The next cover classes at the fourth level of the classi- step is the use of statistical procedures to fication (Mücher et al. 2010). The approach determine the rules to decide between classes is in a way a synthesis of the European clas- in order to produce repeatable results with sifications including some of the Mediter- minimal personal bias. Clustering techniques ranean countries as described below in have been widely used for environmental chronological order. stratification purposes (Bunce et al. 1996; Slovenia was among the first countries to Metzger et al. 2005; Griffiths et al. 2004). develop a national typology (Marušič & Jančič Clustering results in groups of landscapes 1998). The study identifies initially 5 broad with similar attributes that will form the pro- landscape regions which further subdivides in posed landscape types. an hierarchical manner to provide more detailed classifications at Levels 2, 3 and 4 to derive 14, 45, 55 landscape units respectively. The cultural component of landscapes plays a Landscape classifications significant role in the development of this in the Mediterranean typology and further landscape evaluation. In Portugal there is a typology and mapping of Despite its wide use in NW Europe as a tool the whole country (including the Azores) as a for landscape planning, the development of a 2-level hierarchical set of unique landscape landscape typology for Mediterranean coun- character units. At both levels all units are tries has been limited. The two pan-European mapped as single polygons and they are pre- attempts to classify the landscapes of Europe sented in a standardised cartographic and

Table 2 – Mediterranean landscapes according to LANMAP hierarchical typology (after Mücher et al. 2010) and the typology proposed by Meeus (1995) showing correspondence between the two schemes.

Mediterranean landscapes LANMAP LANMAP LANMAP (Meeus 1995) Level 1 Level 2 Level 3

Montado and dehesa Mediterranean Mediterranean hills Mediterranean hills rocks (Mhr) Delta (M) (Mh) Mediterranean hills sediments (Mhs) Mediterranean semi-bocage Mediterranean hills organic materials (Mho) Coltura promiscua Mediterranean lowlands Mediterranean lowlands rocks (Mlr) Delta (Ml) Mediterranean hills sediments (Mls) Huerta Mediterranean hills organic materials (Mlo) Mediterranean open land Mediterranean mountains Mediterranean mountains rocks (Mmr) (Mm) Mediterranean mountains sediments (Mms) Mediterranean mountains organic materials (Mmo) Mountains Mediterranean high Mediterranean high mountains rocks (Mnr) mountains (Mn) Mediterranean high mountain sediments (Mns) Mediterranean alpine (Ma) Mediterranean alpine rocks (Mar)

ecologia mediterranea – Vol. 37 (1) – 2011 21 ecol-med-37-1-02:Mise en page 1 12/07/11 15:19 Page 22

IOANNIS N. VOGIATZAKIS

descriptive format. The set of criteria used is CORINE land cover level 4 data as additional broad, with representation of biophysical, cul- factors. This typology was principally based tural and experiential factors. Landscape units on physical parameters although land cover have been defined by a mixture of map over- was also included (Figure 3). From a higher lay, empirical knowledge and expert assess- to a lower level of abstraction, land regions, ment, with recognition of the need for flexi- land systems, land facets, land units and land bility in the weights given to different factors elements are identified (Blasi et al. 2000). In in different cases (Pinto-Correia et al. 2000). France, and despite the lack of a national The work in Portugal resulted in 128 land- typology, there has been a systematic inven- scape units for the whole continental part of tory of landscapes in every region through the the country, organised in 22 regional groups. so called landscape atlases. These provide a In Spain an atlas of the Spanish landscapes two-level typology and mapping of LCA units was published in 2003 (Mata Olmo & Sanz for every French region on the basis of bio- Herraíz 2003) aiming at the characterisation physical and cultural/historic factors (see for and identification of Spanish landscapes example Brunet & Girarden 2001). The only based on experts interpretation. The Spanish available typology so far for Cyprus was typology comprises three levels: landscapes, based on the methodology employed in the landscape types and landscape associates. UK (Griffiths et al. 2004). The Cyprus land- With the exception of the Balearic and the scape description units were defined by a Canary Islands the maps are represented in 1: series of definitive attributes including phys- 200 000 scale. The typologies for Spain and iography (combined geological structure and Portugal were a result of joint project. How- landform), ground type (combined geological ever, the methodologies were not the same, rock type and soils), land cover, and cultural although same types of variables were used pattern (settlement) from topographic maps. and contact ensured conformal mapping of Table 3 shows the data sources used and their landscape units along the borders. Despite the limitations. The typology resulted in the iden- differences adjustments are possible unlike tification and characterisation of 17 land- other neighbouring countries classifications in scapes (Warnock et al. 2008). In the typology Europe. developed in Malta there is a strong empha- In Italy recent work resulted in the mapping sis on the visual aesthetic component of the of macro-landscapes (either four or eight landscape. Therefore the classification was landscape spatial configuration types) from a based on the predominant landscape elements, geophysical (geology, landform) based map- topography and visual influence and resulted ping of 38 landscape types (Blasi et al. 2000). in 61 landscape units for Malta and 35 units The macro-landscape mapping uses cluster for the island of Gozo (MEPA 2004). analysis of CORINE land cover level 1 or A recent attempt in Tunisia produced a coastal level 2 data for the derivation of the four or typology based on the methodology developed eight landscape spatial configuration types. in the UK with some adjustments to regional Further development will also use bioclimate, specificities. The methodology employed cli- lithomorphology, vegetation series and mate, landform, geology and Land Cover to

Table 3 – Datasets used for Landscape Character Mapping in Cyprus and their limitations.

Property Source Format Scale Year Limitations

Topography Town Orthophotos 1: 50 000 2008 Some photos are dark Planning Department DEM (raster) 25m resolution 2008 Depressions not well represented Geology Geological Vector 1: 250 000 1979 Too coarse for ecological applications Survey (revised 1995) Some polygons not closed Soils Department of Vector 1: 250 000 2002 Extrapolation and aerial interpretation Agriculture used in some areas since survey was Soil & Water Sector not possible in the North occupied part Land Use-Land Cover CORINE – EU Vector 1: 100 000 2005 Minimum mapping unit 25 ha Limited field validation in the North occupied part of the island

22 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-02:Mise en page 1 12/07/11 15:19 Page 23

Mediterranean experience and practice in Landscape Character Assessment

identify five landscape types for the coastal zone of Tunisia. A more detailed classification took place for the Cap Bon Peninsula (Fig- ure4), which resulted in 10 landscape types (Vogiatzakis & Cassar 2007).

Landscape Evaluation & Decision Making

The European Landscape Convention makes explicit reference to two important issues apart from the identification of landscapes as described in the previous section. The first is the analysis of drivers and pressures trans- forming landscapes including the resulting changes. The second is the assessment of these landscapes taking into account the par- ticular values assigned to them by the inter- ested parties and the population concerned. LCA should go beyond the identification of important landscapes and must be capable of making reasoned judgements about the rela- tive sensitivity of different types of landscape, their current condition, and equally important how vulnerable they are to change. Evaluation and decision making follow the characterisa- tion stage in an LCA and provide outputs to inform landscape planning decisions, strate- gies for landscape conservation and enhance- ment or feed into other decision-making tools Figure 3 – Landscape types in Sicily, excerpt from the Italian national such as Environmental Impact Assessment landscape map (Ciancio et al. 2004). (Table 4).

Figure 4 – Landscape types in the Cap Bon peninsula Tunisia (Vogiatzakis & Cassar 2007).

ecologia mediterranea – Vol. 37 (1) – 2011 23 ecol-med-37-1-02:Mise en page 1 12/07/11 15:19 Page 24

IOANNIS N. VOGIATZAKIS

Table 4 – The most common applications of Landscape Character Assessment.

Application Example

Development Use LCA to inform criteria-based planning policies and guidance in Local Development Documents, integrating development planning with conservation and land management within the planning system. Planning policy & Planning strategy As part of an Integrated Rural Development Programme aiming at landscape and heritage protection and economic and community regeneration Biodiversity Action Plans Establish appropriate targets for habitat restoration at a range of scales Landscape monitoring & Landscape designations Undertake sensitivity analysis to determine the potential for change Environmental Impact Assessment Make an assessment of condition to determine needs and opportunities for change Planning future townscapes Assessment of the character of the landscape around the town, which can be used as the basis for policies and proposals that provide a framework for protecting landscape quality around the town and the character of the urban area itself. Sustainable Development Use landscape as the spatial framework to derive sustainability indicators

Applications in the In the early 1990s following the results of an Mediterranean context EU funded project the idea for a Green Data- book of Threatened Mediterranean Land- Identifying Pressures scapes was put forward (Volume 24, Land- scape & Urban Planning 1993; Green & Vos After the Second World War Mediterranean 2001) in analogy to the Red Data Book for landscape transformation was not only driven species. Behind this initiative was the concept by traditional land practices such as agricul- of a holistic approach to the conservation of ture and grazing but increasingly by other both the natural and cultural assets of a social and economic imperatives that bore lit- region’s landscape pioneered by Zev Naveh tle relation to the local and regional contexts (1994; 2000). Some of these threatened land- in which settlements and agriculture had scapes included relict natural landscapes (Vos developed over millennia. Further anthro- 2001), vanishing traditional landscapes like pogenic pressures such as population growth the montados and dehesas (Pinto-Correia and industrialization have stimulated consid- 2000) and stressed large-scale agricultural erable land-use change, especially agricultural landscapes (Rackham & Moody 1996). intensification, with associated impacts Although this was an invaluable first assess- including soil erosion, eutrophication and ment it was based on experts’ opinion rather industrial and power-plant construction than an objective and repeatable methodol- (Naveh & Lieberman 1994). These processes ogy. Any similar future assessments could now threaten landscape integrity and diversity employ landscape character assessment to in the region altering its characteristically provide a decision-making framework for ‘fine-grained’ and multifunctional nature such judgements to be made. (Table 5).

Table 5 – Changes in Mediterranean landscapes.

Landscape Changes (adapted from Heywood 1999) Drivers of change (MEA 2005)

Changes in agriculture towards large scale operations Population issues Merging of farms into larger units Energy issues Loss of boundaries with a consequent loss of biodiversity Invasive alien species Abandonment of terracing Habitat Loss, Pollution, and Land Degradation Movement away from the land to the towns and cities Economic changes Crop substitution in terms of individual crops or whole agroecosystems Short-term disturbances and natural events Introduction of new crops and intensive commercial horticulture Climate change and sea level rise Alien and invasive species Effects of agricultural, industrial and urban pollution Genetic resources erosion, pollution

24 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-02:Mise en page 1 12/07/11 15:19 Page 25

Mediterranean experience and practice in Landscape Character Assessment

The adoption of a truly holistic landscape (favourable, unfavourable recovering, approach has been advocated as the link to unfavourable declining), or water quality. An sustainability in the Mediterranean region example from the Mediterranean maybe a (Makhzoumi & Pungetti 1999). Such landscape type typified by extensive cork oak approaches are now advocated by interna- wood pasture in large patches, connected by tional and national organisations to sum- stonewalls but much of that character has marise pressures and threats and to develop been eroded by agricultural intensification the policies for sustainability (Hopkins 2002). unit is said to be in poor ecological condition. Existing indices such as the commonly used Sensitivity may be an intrinsic property of a Environmental Sustainability Index (Morse landscape due to the nature of its components 2004), although useful for the construction of (landforms, soils, etc.). However, the term league tables of national performance, do not often implies a reaction to an external stimu- help with issues of sustainability operating at lus. Sensitivity is related to the nature and pat- more site-specific levels. So far Sustainabil- tern of key elements that define landscape ity Indicators and their relevant derived prod- character. Landscapes with ‘time depth’ (i.e. ucts such as Sustainability Indices have been which display a long and continuous history measured on geo-political spaces alone i.e. of evolution), and those that are characterised countries, regions, provinces which present by a clear and consistent pattern of key ele- familiar terms for decision makers. However, ments tend to be more sensitive to change ecosystems processes take place beyond the compared to landscapes of recent origin, or artificially imposed boundaries of these with fewer distinguishing features. Sensitiv- spaces. Landscape is physical – it can be seen ity can be expressed as the ratio of the change and experienced and is a term which people in a system to the change in a landscape com- know and understand. This property gives ponent where larger ratio implies greater sen- landscape as a spatial unit an advantage over sitivity (Usher 2001). In landscape character geo-political boundaries within which to assessment sensitivity analysis is employed to analyse sustainability. Therefore landscape, as determine the potential for change (capacity a recognisable spatial unit, can be adopted to to absorb change) and make an assessment of link sustainability indicators to landscape condition to determine needs and opportuni- types in the Mediterranean. This framework ties for change (Swanwick 2004). An has already been employed in the Mediter- approach often adopted in landscape sensitiv- ranean to identify the main pressures in the ity studies involves three main components: a Cap Bon Peninsula of Tunisia (Vogiatzakis & character analysis to establish what is appro- Cassar 2007) as well as the island of Gozo priate in a particular landscape; a sensitivity (Cassar 2010) but there is certainly more work analysis to define the potential for change; that needs to be done. and a function/condition analysis to define the need/opportunities for enhancement (Fig- Monitoring Change ure 5). For example the landscape assessment of the Maltese islands evaluated sensitivity on When assessing the state of a landscape a dis- tinction is usually made between the charac- ter of a landscape unit and its current condi- Figure 5 – Defining a vision for the future: an example from Cyprus tion. Character refers to the physical and (Warnock et al. 2008). cultural attributes that characterize a land- scape unit – differences, for example, in soil, Cyprus Landscape Assessment geology, landform and land use. By contrast, Settled plateau farmlands: A plateau landscape with a rolling topography condition, refers to the extent to which the associated with a limestone geology. The limestone has weathered to give rendzina soils which are often shallow with rocky outcrops. This is a typical ecological attributes of a landscape settled agricultural landscape of nucleated hilltop villages and a mixed unit are present (Griffiths et al. 2004). For land use of arable crops, vineyards and orchards. It is a generally open example indicators of character of the landscape of scattered trees with little surviving natural vegetation. Mediterranean landscape could be the extent Strength of character: This is an ancient settled agricultural landscape with a strong cultural character. This is reflected in the presence of of typical semi-natural vegetation, the pres- villages surrounded by an irregular pattern of small fields often bounded ence of characteristic land use types and the by stone walls. presence of stonewalls. On the other hand Condition: Many of the significant stone boundary features, although still indicators of condition could be the state of present, were in decline due to lack of management. stonewalls (well maintained, abandoned, The vision: Conserve and restore the historic pattern of this settled, destroyed) or the state of protected areas cultivated landscape.

ecologia mediterranea – Vol. 37 (1) – 2011 25 ecol-med-37-1-02:Mise en page 1 12/07/11 15:19 Page 26

IOANNIS N. VOGIATZAKIS

the basis of change of landscape character due landscape classification was integrated with to urban development. In that study only the ecological data to identify and design ecolog- physiography of the landscape was employed ical networks and provide a basis for conser- to ascribe the islands landscapes into five sen- vation planning at different scales (Blasi et al. sitivity categories (MEPA 2004). 2008). Vogiatzakis et al. (2006) used land- Landscape change can be also monitored with scape typology as a spatial framework for the use of landscape specific indicators which cork oak habitat mapping in Northern Sar- would allow spatial and temporal compar- dinia. Landscape types showed a clear a cor- isons. These indicators may refer to landscape respondence between the distribution of cork structure, management and functions although oak pastures and cork oak woodland. The the latter may be more difficult to define (see approach is advocated for the development of Pinto-Correia et al. 2002). On the other hand strategies for the maintenance, restoration and a distinction is made between indicators of re-creation of these habitat types on the character and those of condition as developed island. In the island of Gozo, Cassar (2010) in the case of England (Haines-Young et al. assessed the ecological value of different 2004; Haines-Young 2007). Some indicators landscape units as the spatial framework to may be generic and may correspond to the assess ecological value based on a series of developed landscape typology whereas spe- criteria such as rarity, endemism, irreplace- cific indicators may be selected as more ability, naturalness. The assessment was used appropriate for different landscapes. Although to identify these landscape units that should this might be sufficient for comparison be targeted with conservation measures. In between same landscape types or to examine Slovenia landscape quality was evaluated changes in a landscape through time, a mean- using five criteria: naturalness, spatial order, ingful comparison between different land- diversity, harmony, symbolic meaning scape types should rely on common indica- (Marušič & Jančič 1998). tors. In Italy for example Ciancio et al. (2004) developed a set of 14 common indicators in order to provide with a profile of the socio- economic development in each landscape unit. Discussion

Current and future attempts Ecological Applications Currently in the Mediterranean only a small The potential of Landscape Character Assess- number of countries, mainly in the north, have ment (LCA) as an appropriate spatial frame- developed national landscape classifications. work for ecological applications has been The approaches to landscapes and landscape widely demonstrated in Northern Europe. characterisation are as diverse as the land- LCA Examples include assessing the rela- scapes. Even in Northern Europe where there tionship between landscapes and habitats is a longer tradition, approaches and factors (Mucher et al. 2008), landscapes and trends used for mapping differ (Groom et al. 2006). in phenology (De Wit & Mucher 2009), spa- There is however a core number of attributes tial planning for habitat restoration (Griffiths that it is commonly employed throughout et al. 2011), report on the conservation status (Table 6). of the ‘wider countryside’ (Haines-Young et In view of these differences can a pan- al. 2004), and develop policies for habitat Mediterranean landscape typology be devel- restoration and wildlife protection (Griffiths oped? The recent experience of the LANMAP et al. 2004). project (Mücher et al. 2010) highlighted the Similar examples although limited in extent need for an objective and consistent method- can be found also in the Mediterranean Basin, ology to be employed when developing including a comparative study between the typologies of large geographical scale due to trans-frontier national park of Arribes de the complexity of the concepts involved. The Duero (Spain) and Duoro Internacional development of a pan-Mediterranean typol- (Mucher et al. 2005). In Italy Landscape ogy could follow some structured criteria such Typology formed the basis to identify a series as the representation of climate and geology, of ecological properties of the landscape such economic potential but also sustainability of as diversity permeability, connectivity and land use, the inclusion of extensively man- porosity (Ciancio et al. 2004). In addition aged areas, and the landscapes’ scenic and

26 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-02:Mise en page 1 12/07/11 15:19 Page 27

Mediterranean experience and practice in Landscape Character Assessment

Table 6 – Variables commonly employed in Landscape Typology Development in the Mediterranean.

Variable Description Europe Spain Italy Portugal France Slovenia Malta Cyprus

Climate Climate zones may be defined using III I precipitation and temperature data.

Landform The relative relief and shape of the land IIIIIIII surface as derived from interpretation of a Digital Elevation Model or topographic map.

Geological A simplified geological base IIIIIIII Structure map showing Geology-structure/age Geology-structure refers both to geological Period and to broad differences in lithology.

Land use The broad pattern of primary land IIIIII I use at the landscape scale as derived from existing land use maps.

aesthetic quality, and the inclusion of regional scapes, be incorporated in LCA (Groom et al. characteristics (Meeus 1995). The last of 2006). these criteria in particular, would ensure that The involvement of stakeholders is recognised any developed typology will have policy rel- as integral part of the LCA and in accordance evance. Scale is an important challenge in any to the European Landscape Convention. This typology and therefore it is necessary that the may result in a more informed assessment, developed framework is hierarchical. This greater ownership of the applications and will allow studies to be undertaken and com- establish an ongoing cooperation for future parisons to be made at different spatial scales work. Their role might be in the stage of char- in a way that for example local field data can acterisation as well as the evaluation of plau- be placed in the Mediterranean context. In the sible landscape change scenarios at local level case of ecological applications the 1: 50 000 and depends on the time and resources avail- scale of mapping may provide the strategic able (see Haines-Young 2007). In Cyprus for overview for policy development, e.g. target- example the preliminary results of the typol- ing resources for agri-environment schemes, ogy were presented and discussed at a stake- the assessment of ecological condition. How- holders’ workshop (Warnock et al. 2008). In ever, a finer scale e.g. 1: 10 000 maybe nec- particular advice was sought on the nomen- essary for selecting sites for habitat restora- clature used in the typology to account for the tion and other specific land management regional context in order that landscape types issues. are meaningful to and identifiable by the local Another important point is identifying the communities. extent of the Mediterranean landscapes. Although landscapes extend beyond adminis- trative boundaries not all the landscapes found Physical vs cultural attributes in the countries bordering the Mediterranean The interrelationship between nature and peo- are truly Mediterranean landscapes. The iden- ple varies from place to place, due to differ- tification and mapping of Mediterranean land- ences in physical conditions and the type of scapes could follow some of the widely used human use or occupancy. Landscape Typolo- delineations for the Mediterranean area (e.g. gies have so far mainly relied on the physical Grenon & Batisse 1989; Quezél, 1985). and less on the cultural attributes of the land- There are more aspects related to boundaries scape. The physical factors are more perma- in LCA and their cartographic representation. nent compared to the historic-cultural which For example, should the mapping units appear are subject to human behaviour, history and as crisp boundaries on a map or whether tran- social dynamics. In addition the mapping sitions by means of fuzzy mapping should be product is often the result of the predominant also represented? In addition how can a discipline behind the classification and map- dynamic mapping approach, necessary to rep- ping. For example an early landscape classi- resent the ever changing nature of the land- fication for Sardinia (Aru et al. 1991) resulted

ecologia mediterranea – Vol. 37 (1) – 2011 27 ecol-med-37-1-02:Mise en page 1 12/07/11 15:19 Page 28

IOANNIS N. VOGIATZAKIS

in a fairly descriptive typology at a regional Landscape in the political agenda scale based mainly on rock types with limited information on morphology and land cover Despite the great cultural and natural diver- and little emphasis placed on cultural ele- sity of the Mediterranean, landscapes ments. The recent Italian landscape classifi- throughout the Basin are faced with common cation on the other hand reflects the “exclu- threats including pollution, overgrazing, and sive” involvement of natural scientists and in tourism development. These problems com- particular vegetation ecologists (Blasi et al. bined with lack of public awareness, political 2000, 2005). commitment (demonstrated with inadequacy Cultural factors have been as instrumental as of legislation or ineffective enforcement) and natural ones in the development of Mediter- inter-sectoral cooperation, hinder the protec- ranean landscapes (Makhzoumi & Pungetti tion and sustainable planning of natural and 1996; Grove & Rackham 2001; Rolé 2007). cultural landscapes. What differs is the scale Mediterranean biodiversity is a product of of these problems and the means/tools natural as much as cultural processes (Di Cas- employed to solve them that reflect a clear tri 1981; Heywood 1995, 1999) with plenty divide between the countries of the North and of examples of plant and animal species that South Mediterranean (Vogiatzakis et al. are associated with cultural landscapes (Rack- 2006). Policy wise what is becoming evident ham & Moody 1996; Grove & Rackham for the Mediterranean is the lack of incorpo- 2001). In addition there are numerous agri- ration of landscape on national and regional cultural practices which attest to the ecologi- policies as well as the lack of a clear vision cal significance of the cultural-historical on landscape planning (Terkenli 2004) which aspects of landscape (Pinto-Correia 2003). results in turn in lack of landscape mapping. Evidence is emerging from northern Europe The European Landscape Convention has no which have alerted to the significance of his- influence over non-European Mediterranean torical landscape setting on biodiversity countries. If we use as an indicator the num- which is only evident after a time lag (see ber of Mediterranean countries, members of Lindborg & Eriksson 2004; Cousins 2009). the Council of Europe, which have ratified the Usually it is the mapping of the cultural com- convention so far this includes only Italy and ponent, particularly in relation to farming sys- Croatia. tems and associated field patterns, which is The landscape approach is consistent with missing due to the absence of datasets or map- recent changes in policy and legislation at the ping tradition in this respect. This needs to be European level (e.g. the Pan-European Bio- considered in future work. It is likely that this logical and Landscape Diversity Strategy and will involve the use of a combination of infor- the European Landscape Convention) but also mation from a variety of sources, including with coming responses to climate change documentary evidence, old maps and addi- impacts. Climate change related research has tional field survey. demonstrated there will be shifts in suitable Many of the typical Mediterranean landscapes climate space for individual species at various are associated with the land-sea interface. spatial scales over the coming decades which, Although most of the existing typologies in inevitably, will affect the structure and func- the Mediterranean follow the standard proce- tion of Mediterranean ecosystems (IPCC dures of a purely land based characterisation, 2007; Cheddadi et al. 2001; Mooney et al. in the case of Malta the typology developed 2001). This will require a more dynamic also includes field of vision from the coast approach to nature conservation (Araújo et al. (MEPA 2004). This should be taken into 2004). In addition, and since the Mediter- account particularly in the development of ranean Basin is characterised by a high level regional landscape assessments, since many of human activity and a low level of undis- parts of the Mediterranean Basin are charac- turbed areas, the designation of protected terised by groups of islands (e.g. Aegean, areas that fall under the IUCN categories V Balearics, Aeolian) or the interface between (established for landscape protection) and VI mainlands and their nearby islands. (for the sustainability of natural resources) has often been advocated as the best adapted to the Mediterranean environmental reality and its conservation needs (Council of Europe & UNEP 2004). Currently and although the term landscape is implicitly mentioned in various

28 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-02:Mise en page 1 12/07/11 15:19 Page 29

Mediterranean experience and practice in Landscape Character Assessment

Table 7 – Main policy and legislation instruments in the Mediterranean Basin (Vogiatzakis et al. 2008).

Instrument Year Scale Focus

Mediterranean Action Plan (MAP) 1975 Mediterranean Marine Environment Barcelona Convention 1976 Mediterranean Marine Environment Nicosia Charter 1990 Euro-Mediterranean Sustainable Development Sevilla Charter 1993 Mediterranean Landscape Alghero Convention 1995 Mediterranean Coastal and Marine Biodiversity Mediterranean Wetlands Strategy 1996 Mediterranean Wetlands Natura 2000 network European Union Species and Habitats European Landscape Convention 2000 Pan-European Landscape PEBLDS (Pan-European Biodiversity and Landscape Strategy) 1996 Pan-European Landscape, Biodiversity Convention on Biological Diversity 1992 Global Biodiversity UNESCO declaration on cultural diversity 2001 Global Cultural Diversity UNESCO World Heritage Convention Global Cultural heritage and Cultural landscapes

protected area designations and policies Acknowledgements (Table 7) there is no effort to manage them as such in many Mediterranean countries. This This research synthesis is a result of funding is either because there is no interest or be- from various sources including the UNEP cause concrete science to underpin landscape PAP/RAC, Natural England UK, the Royal management is lucking (Terkenli 2004). This Society, Cyprus Town Planning Department, is further impeded by the fact that landscape the Laona Foundation and the University of continues to mean different things to different Reading to which I am grateful. I would also disciplines and there is an ongoing debate on like to acknowledge discussions with Mr issues such as landscape sensitivity its meas- Steven Warnock and Dr Geoffrey Griffiths. urement and application (Natural England 2009). As Usher (2001) pointed out “… there is no consensus on what kind of a landscape we want, or how aspects of that landscape can be manipulated to give us what we want. This is a field of research were really new References ideas are wanted, and where interdisciplinary Aalen F.H.A., 2001. Landscape development and research should be the norm”. change. In: Green B. & Vos W. (eds), Threatened Landscapes: Conserving Cultural Environments. Spon Press: 3-20. Araújo M.B., Cabeza M., Thuiller W., Hannah. L., Conclusion Williams P.H., 2004. Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Change Biol. 10: Although landscapes are dynamic entities in 1618-1626. constant evolution, there is still a need to Aru A., Baldaccini P. & Vacca A., 1991. Nota illustra- guide landscape change, and maintain its tiva alla carta dei suoli della Sardegna. Regione Autonoma della Sardegna, Cagliari. diversity and distinctiveness in order to man- Blasi C., Capotorti G., Frondoni R., 2005. Defining and age the countryside more effectively. Land- mapping typological models at the landscape scale. scape Character Assessment provides an Plant Biosystems 139: 155-163. important strategic overview within which to Blasi C., Carranza M.L., Frondoni R., Rosati L., 2000. develop policies for a multifunctional land- Ecosystem classification and mapping: a proposal scape in which the conflicting demands of for the Italian landscapes. Appl. Veg. Sci 3: 233-242. Blasi C., Zavattero L., Marignani M., Smiraglia D., agriculture, development, recreation and Copiz R., Rosati L., Vico E. D., 2008. The concept nature conservation need to be resolved. The of land ecological network and its design using a development of landscape typologies provides land unit approach. Plant Biosystems 142: 540-549. the spatial framework for monitoring ecolog- Brabyn L., 1996. Landscape classification using GIS ical processes but also for the derivation of and national digital databases. Landscape Res. 21: 277-300. indicators of change, condition and sustain- Brandt J. & Vejre H. (eds), 2004. Multifunctional Land- ability. scapes. Vol. 1, Theory, Values and History.WIT Press, Southampton. Brunet P. & Girarden P., 2001. Inventaire régional des paysages de Basse-Normandie.

ecologia mediterranea – Vol. 37 (1) – 2011 29 ecol-med-37-1-02:Mise en page 1 12/07/11 15:19 Page 30

IOANNIS N. VOGIATZAKIS

Bunce R.G.H., Barr C.J., Gillespie M.K. & Howard Heywood V.H., 1999. The Mediterranean Region: A D.C., 1996. The ITE Land classification: Providing major centre of plant diversity. Cahiers Options an environmental stratification of Great Britain. méditerranéennes 38: 1-15. Environ. Monit. Assess. 39: 39-46. Heywood V. H., 1995. The Mediterranean flora in the Cassar L.F., 2010. A landscape approach to conserva- context of world biodiversity. Ecol. Medit. 21: 11- tion: integrating ecological sciences and participa- 18. tory methods. International Environment Institute, Hopkins L., 2002. IUCN and the Mediterranean University of Malta. p. 210. Islands: opportunities for biodiversity conservation Cheddadi R., Guiot J. & Jolly D., 2001. The Mediter- and sustainable use. IUCN. ranean vegetation: What if the atmospheric CO2 IPCC WG, 2007. Climate Change 2007: The Physical increased? Landscape Ecol. 16: 667-675. Science Basis. Contribution of Working Group I. In: Ciancio O., Corona P., Marchetti M., Chirici G., Bar- Solomon S., Qin D., Manning M., Chen Z., Marquis bati A. & Travaglini D., 2004. Carta degli aspetti M., Averyt K.B., Tignor M., Miller H.L. (eds), paesistici d’Italia. Relazione Tecnica Finale. Uni- Fourth Assessment Report of the Intergovernmental versità degli Studi di Firenze. Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York. Clark J., Darlington J. & Fairclough G., 2004. Using Historic Landscape Characterisation. English Heri- Jellema A., Stobbelaar D.-J., Groot J.C.J. & Rossing tage & Lancashire County Council. W.A.H., 2009. Landscape character assessment using region growing techniques in geographical Council of Europe 2000. European Landscape Conven- o information systems. J. Environ. Manage. 90 tion. Florence. European Treaty Series.N 176. (Suppl. 2): S161-S174. Council of Europe & UNEP (2004). Marine and Coas- Lindborg R. & Eriksson O., 2004. Historical landscape tal Biodiversity. Report presented at the Eighth connectivity affects present plant species diversity. Meeting of the Council for the Pan-European Bio- Ecology 85: 1840-1845. logical and Landscape Diversity Strategy. Madrid. Mazzoleni S., Di Pasquale G., Mulligan M., Di Martino Cousins S.A.O., 2009. Extinction debt in fragmented P. & Rego F. (eds), 2004. Recent Dynamics of the grasslands: paid or not? J. Veg. Sci. 20: 3-7. Mediterranean Vegetation and Landscape. John Di Castri F., 1981. Mediterranean type shrublands of the Wiley & Sons, Chichester. world. In: Goodall D.W., Di Castri F. & Sprecht Makhzoumi J. & Pungetti G., 1999. Ecological Design R.L. (eds), Mediterranean Type Shrublands. Else- and Planning: the Mediterranean Context. Spon vier, Amsterdam: 1-52. Press. FAO, 1996. Agro-ecological Zoning Guidelines. FAO Marušič J. & Jančič M., 1998. Regional Distribution of Soils Bulletin 73, Rome. Landscape Types in Slovenia: Methodological Forman R.T.T. & Godron M., 1986. Landscape Ecology. Bases. Ministry of Environment and Physical Plan- Wiley and Sons, London-New York. p. 640. ning. Ljubljana. Fry G.L.A., 2001. Multifunctional landscapes-towards Mata Olmo R. & Sanz Herráiz C. (eds.), 2003. Atlas de transdisciplinary research. Landscape and Urban los Paisajes de España. Secretaría General Técnica. Plan. 57: 159-168. Ministerio de Medio Ambiente-Universidad Autó- noma de Madrid, 778 p. Green B. & Vos W. (eds), 2001. Threatened Land- scapes: conserving cultural landscapes. Spon. Meeus J.H.A., 1995. Pan-European landscapes. Land- scape and Urban Planning 31: 57-79. Grenon M. & Batisse M., 1989. Futures for the Medi- MEPA (Malta Environment & Planning Authority), terranean: The Blue Plan. Oxford University Press. 2004. Landscape Assessment Study of the Maltese Griffiths G.H., Porter J., Simmons E. & Warnock S., Islands. Government of Malta. 2004. The Living Landscapes Project: landscape Metzger M.J, Bunce R.G.H., Jongman R.H.G., Mucher character and biodiversity. English Nature Report o C.A. & Watkins J.W., 2005. A climatic stratification n 475. of the environment of Europe, Global Ecol. Bio- Griffiths G.H., Vogiatzakis I.N., Porter J.R, & Burrows geogr. 14: 549-563. C., 2011. A landscape scale spatial model for semi- Mooney H.A., Kalin Arroyo M.T., Bond W.J., Canadell natural broadleaf woodland expansion in Wales, J., Hobbs R.J., Lavorel S. & Nelson R.P., 2001. UK. Journal for Nature Conservation. 19: 43-53. Mediterranean climate ecosystems. In: Chapin F.S. Groom G., Wascher D., Potschin M. & Haines-Young III, Sala O.E. & Huber-Sannwald E. (eds), Global R., 2006. Landscape character assessments and fel- Diversity in a Changing Environment. Scenarios for low travellers across Europe: a review. In: Bunce the 21st Century. Springer-Verlag, New York. R.G.H. & Jongman R.H.G. (eds), Landscape eco- Morse S., 2004. Indices and indicators in development. logy in the Mediterranean: inside and outside An unhealthy obsession with numbers. Earthscan, approaches. IALE Publication Series 3: 227-231. London. Grove A.T. & Rackham O., 2001. The Nature of Medi- Morse S., Vogiatzakis I.N., Griffiths G.H., 2010. In terranean Europe: an ecological history. Yale Uni- press. Space and sustainability. Potential for land- versity Press. scape as a spatial unit for assessing sustainability. Haines-Young R., 2007. Tracking change in the cha- Sustain. Dev. racter of the English Landscape 1999-2003. Natu- Mücher C.A., Klijn J.A., Wascher D. M., Schaminée ral England, Catalogue Number NE42. J.H.J., 2010. A new European Landscape Classifi- Haines-Young R., Martin J., Tantram D. & Swanwick cation (LANMAP): A transparent, flexible and user- C., 2004. Countryside Quality Counts Tracking oriented methodology to distinguish landscapes. Change in the English Countryside: Constructing Ecol. Indic. 10: 87-103. an Indicator of Change in Countryside Quality. Mücher C.A., Garcia-Feced C., Perez-Soba M., Wascher Final Report Nottingham University Consultants D.M., 2005. Landscapes of Europe. In: Perez-Soba Limited. M., Wascher D.M. (eds), Landscape Character

30 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-02:Mise en page 1 12/07/11 15:19 Page 31

Mediterranean experience and practice in Landscape Character Assessment

Areas – Places for Building Sustainable Europe. Europe’s living landscapes. Essays on exploring our Policy Brochure as deliverable from EU’s accom- identity in the countryside.LANDSCAPE panying measure project European Landscape Cha- EUROPE/KNNV. racter Assessment Initiative (ELCAI), funded under Stanners D. & Bourdeau P., 1995. Europe's Environ- the 5th Framework Programme on Energy, Envi- ment: The Dobris Assessment. European Environ- ronment and Sustainable Development. Information ment Agency. Press, Oxford, United Kingdom: 6-8. Swanwick C., 2004. Techniques and Criteria for Jud- Mücher C.A., Hazeu G., Swetnam R., Pino J., Halada ging Capacity and Sensitivity. Topic Paper 6. The L., & Gerard F., 2008. Historic land cover changes Countryside Agency & Scottish Natural Heritage. at Natura 2000 sites and their associated landscapes across Europe. In: Proceedings 28th EARSeL Sym- Swanwick D., 2002. Landscape Character Assessment. posium: Remote Sensing for a Changing Europe, Guidance for England and Scotland. The Country- Istanbul, Turkey, June 2-7, 2008: 146. side Agency & Scottish National Heritage, Chel- Natural England 2009. Practical Approaches to Land- tenham (UK); Edinburgh, 84 p. scape Sensitivity and Capacity. Workshop Procee- Terkenli T., 2004. Landscape research in Greece: an dings, Bristol.: 31. overview, BELGEO, 2-3: 277-288. Naveh Z., 1994. From Biodiversity to ecodiversity – A Turner M., 2005. Landscape Ecology: What is the state landscape ecological approach to conservation and of science? Annu Rev. Ecol. Syst. 36: 319-344. restoration. Restor. Ecol. 2: 180-189. Usher M.B., 2001. Landscape sensitivity: from theory Naveh Z., 2000. What is holistic landscape ecology? A to practice. Catena 42: 375-383. conceptual introduction. Landscape and Urban Vogiatzakis I.N., Griffiths G.H., Cassar L. & Morse S., Plan. 50: 7-26. 2005. Mediterranean Coastal Landscapes: Mana- Naveh, Z. & Lieberman A.S., 1994. Landscape Eco- gement Practices, Typology and Sustainability. Pro- logy: Theory and Application. 2nd edition, Sprin- ject Report, UNEP-PAR/RAC: 50. ger, New York. Vogiatzakis I.N., Griffiths G.H., Melis M.T., Marini A., Pinto-Correia T., 2000. Future development in Portu- & Careddu M.B., 2006. Landscape Typology in the guese rural areas: how to manage agricultural sup- Mediterranean context: A tool for habitat restora- port for landscape conservation? Landscape Urban tion. Journal of Mediterranean Ecology 7: 23-30. Plan. 50: 95-106. Pinto-Correia T., Cancela d’Abreu A. & Oliveira R., Vogiatzakis I.N. & Cassar L.F., 2007. Coastal Lans- 2002. Landscape Units in Portugal and the Deve- capes of Tunisia with special focus on Cap Bon: A lopment and Application of Landscape Indicators. Proposed Landscape Character Assessment. UNEP NIJOS/OECD Expert Meeting – Agricultural Land- PAP/RAC. scape Indicators – Oslo October 2002. Vogiatzakis I.N., Pungetti G. & Mannion A. (eds), 2008. Piorr H.-P., 2003. Environmental policy, agri-environ- Mediterranean Island Landscapes: natural and cul- mental indicators and landscape indicators, Agr. tural approaches. Landscape Series Vol. 9. Springer Ecosyst Environ. 98: 17-33. Publishing. Pungetti G., Marini A. & Vogiatzakis I.N., 2008. Sardi- Warnock S., Griffiths G.H. & Vogiatzakis I.N., 2008. nia. In: Vogiatzakis I.N., Pungetti G., Mannion Cyprus landscape mapping project. Final Report. A.M., Mediterranean Island Landscapes: natural Landscape Mapping Group, University of Reading: and cultural approaches. Springer Landscape Series 31. Vol. 11. Washer D. & Jongman R. (eds), 2003. European Land- Quezél P., 1985. Definition of the Mediterranean region scapes: classification, evaluation and conservation. and the origin of its flora. In: Gomez-Campo C. European Environment Agency, Environment Tech- (ed.), Plant conservation in the Mediterranean Area, nical Reports, Copenhagen. Dr. W. Junk: 9-24. Woodcock B.A., Vogiatzakis I.N., Westbury D.B., Law- Rackham O. & Moody J., 1996. The Making of the Cre- son C.S., Edwards A.R., Brook A.J., Harris S.J., tan Landscape. Manchester University Press. Lock K.A., Masters G., Brown V.K. & Mortimer Rolé A., 2007. The terraced landscapes of the Maltese S.R., 2010. The role of management and landscape islands. In: Pedroli B., Van Doorn A., De Blust G., context in the restoration of grassland phytophagous Paracchini M.L., Wascher D. & Bunce F. (eds), beetles. J. Appl. Ecol. 42: 366-376.

ecologia mediterranea – Vol. 37 (1) – 2011 31 ecol-med-37-1-03:Mise en page 1 12/07/11 9:10 Page 33

Contribution élémentaire à l’étude de l’impact de l’Atriplex halimus sur les caractéristiques physico-chimiques et biologiques du sol en Algérie occidentale Basic contribution to the study of the impact of Atriplex halimus on the physical, chemical and biological properties of soil in western Algeria

Aman BOUZID (1er auteur) Faculté des sciences exactes et des sciences de la nature et de la vie, Université Abdelhamid Ibn Badis de Mostaganem, route de Kharouba no 11, 27000, Algérie E-mail : [email protected] Adresse personnelle : cité des 164 logements Bloc K2 no 16 Makam Chahid, Sidi Bel Abbes 22000, Algérie

Khéloufi BENABDELI (coauteur) Faculté des sciences de la nature et de la vie, laboratoire géo-environnement, Université de Mascara, route de Mamounia, 29000, Algérie E-mail : [email protected]

Résumé au niveau de toutes les familles d’individus, notamment les stations de basses altitudes où L’évaluation de l’impact de l’Atriplex halimus, les sols sont de bonne fertilité. qui est introduit en Algérie dans le cadre de la valorisation des terres arides et semi-arides, sur les caractéristiques physico-chimiques et biolo- giques des sols est l’objectif assigné à ce travail. Abstract Trois sites d’observations ont été retenus pré- Atriplex halimus is a plant introduced in Alge- sentant des contextes différents d’habitat selon ria, with the intention to enhance arid and un gradient altitudinal universel et d’un tran- semi-arid areas. The purpose of this work was sect nord-sud. L’approche méthodologique rete- to assess its effect on physical, chemical, and nue est celle de l’analyse comparative des carac- biological characteristics of soils. téristiques physico-chimiques et biologiques Three different sites were selected according to entre un sol sous couvert d’Atriplex halimus et the universal altitudinal gradient and north- un sol nu témoin. Les résultats obtenus ont mis south transect. We compared the characteristics en exergue des différences assez significatives, of two soils; the first one was planted with the les sols à couvert d’Atriplex halimus se caracté- studied species and the second one was the con- risant par une augmentation du taux de matière trol open space. organique, de la CEC ainsi que par la concentra- tion des cations corrélés aux teneurs du sol en Results showed significant differences between argile. both studied soils. The first was characterized by a high level of organic matter, a significant Quant à la faune du sol, on observe une nette increase of CEC and cations correlated with the augmentation tant en biomasse qu’en densité clay content of soil. Concerning the soil fauna, we noticed an increase in biomass and in den- Mots clés : Atriplex halimus, sol, faune, sity of all individuals particularly in low altitude interaction, Algérie occidentale. stations, where soils are more fertile.

ecologia mediterranea – Vol. 37 (1) – 2011 33 ecol-med-37-1-03:Mise en page 1 12/07/11 9:10 Page 34

AMAN BOUZID,KHÉLOUFI BENABDELI

Introduction caractéristiques physico-chimiques et biolo- giques du sol ? Le genre Atriplex halimus a été étudié dans Pour y répondre, la démarche méthodolo- tous ses aspects tant écologiques, botaniques, gique adoptée repose sur une caractérisation physiologiques, biochimiques que géné- écologique de la région d’étude et une locali- tiques ; mais son écologie stationnelle reste sation judicieuse des placettes d’observations encore peu connue en Algérie. De toutes les identifiées. Il s’ensuivra une exploitation des études entreprises sur le genre Atriplex, il y a résultats obtenus soutenue par une approche lieu de retenir sa plasticité écologique et sa comparative qualitative entre les milieux phy- résistance à la salinité en plus de son intérêt siques et biologiques des sols sans Atriplex fourrager. Ces trois derniers paramètres ont (témoin) et des sols avec Atriplex. été à l’origine de la large utilisation de ce genre dans la mise en valeur des terres mar- ginales dans les zones arides et semi-arides. Parmi toutes les variétés d’Atriplex présentant Abridged English version des facultés intéressantes comme l’adaptation aux milieux arides, une acceptabilité de la The genus Atriplex halimus was studied in all salinité, une multiplication facile, un déve- its aspects as ecological, botanical, physio- loppement rapide avec une forte biomasse et logical, biochemical and genetic, but its sta- une palatabilité appréciée (Le Houerou 1992), tional ecology in Algeria is poorly known. All c’est la variété halimus qui est la plus utilisée the studies on the genus Atriplex underline its en Algérie. La tranche pluviométrique où se ecological plasticity and resistance to salinity développe le genre Atriplex oscille entre in addition to its interest as fodder. These last 100 mm et 150 mm sous des températures three features were responsible for the wide fluctuant entre – 12 oC et + 38 oC avec une use of this genus to restore marginal lands in capacité à résister aux embruns (Franclet & arid and semi-arid. Of all the varieties of Le Houérou 1971). Atriplex presenting interesting properties such as adaptation to arid environments, resistance L’Atriplex halimus est une espèce pérenne to salinity, an easy multiplication, rapid devel- ligneuse des zones steppiques et littorales opment with high biomass (Le Houérou inféodée à des sols épais, bien alimentés en 1992), A. halimus is the most widely used in eau par les nappes phréatiques ou par ruissel- Algeria. Rainfall where the genre Atriplex lement: autour des sebkhas, le long des grows ranges between 100 mm and 150 mm oueds, sur les affleurements géologiques gyp- with temperatures fluctuating between – 12 oC sosalines ou dans les zones d’épandage de to + 38 oC with an ability to withstand salt crue. Les peuplements naturels ou parfois spray (Franclet & Le Houérou 1971). postculturaux peuvent couvrir le sol de 10 % à 50 % voire 60 % ; ils se régénèrent naturel- A. halimus is a perennial woody steppe and lement par graines dès qu’ils sont soustraits coastal areas plant often found in thick soils, au pâturage (Kelly et al. 1982). En Oranie, les well supplied with water from groundwater or principales formations du genre Atriplex sont runoff around “Sebkhas” or (salt-flats), along localisées dans les environs d’El Bayadh, the wadis, on gypseous outcrops or in spread- Mecheria, Tissemsilt, Temouchent, Moham- ing areas. Natural stands or sometimes madia, Es-Sénia, Misserghine et Mostaganem postharvest can cover the ground from 10 to (Le Houérou 1971). 50 or even 60%, they naturally regenerate by seed when they are withdrawn from pasture Les impacts de l’Atriplex halimus sur les habi- (Kelly et al. 1982). In Western Algeria the tats et les biotopes notamment sur les carac- genus Atriplex is located in the vicinity of El téristiques physico-chimiques et biologiques Bayadh Mecheria, Tissemsilt Temouchent, des sols constituent un volet important à Mohammadia, Es-Senia, Misserghin and explorer dans la région. Comprendre la rela- Mostaganem (Le Houérou 1971). tion et les interactions entre les caractéris- tiques physico-chimiques et biologiques des The impacts of A. halimus on habitats and différents types de sols et le développement biotopes including the physico-chemical and d’Atriplex halimus est l’objectif assigné à biological properties of soil is an important cette étude. Il s’agit donc de répondre à la element to explore in this Region of Algeria. question suivante : le genre Atriplex halimus Understanding the relationship and interac- agit-il positivement ou négativement sur les tions between the physico-chemical and bio-

34 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-03:Mise en page 1 12/07/11 9:10 Page 35

Contribution élémentaire à l’étude de l’impact de l’Atriplex halimus sur les caractéristiques physico-chimiques et biologiques du sol en Algérie occidentale

logical properties of different soil types and the development of A. halimus is the objec- tive assigned to this study. Therefore the ques- tion raised was to know whether or not Atriplex halimus acts positively on the physico-chemical and biological properties of these soils. To adress this question, the method used was based on an ecological characterization of the studied areas and a pertinent identification of observation plots. Hence, accurate compara- isons were performed between soils with A. halimus and those of open spaces.

Matériel et méthodes

La région d’étude se trouve en Algérie occi- dentale septentrionale, en Oranie. C’est une zone qui se caractérise par son climat médi- terranéen semi-aride à variante tempérée. Les trois stations choisies sont localisées dans deux ensembles géographiques à savoir le Tell et la zone steppique (sud oranais). Cette sélec- tion est justifiée par les paramètres suivants : – aspects édaphiques et climatiques ; Figure 1 – Carte de localisation des stations d’étude. – la présence naturelle du genre Atriplex hali- Figure 1 – Map of Study sites. mus ; – la disponibilité des données sur le milieu. La carte (figure 1) indique la position géo- graphique des stations échantillonnées dans la 35o 28’ nord de latitude, 00o 23’ ouest de lon- région. gitude, à une altitude de 240 m et un taux de recouvrement moyen des touffes d’Atriplex Station 1 : la station littorale de Terga avoisinant 40 %. L’étude pédologique de la (Ain Temouchent) plaine de la M’leta à laquelle est rattachée cette station est très diversifiée. On rencontre Située au voisinage de la mer, elle se trouve à des sols peu évolués modaux et salins avec un 10 km au nord de la ville d’Ain Temouchent pH alcalin compris entre 7,7 et 8,6. Ceux avec des coordonnées géographiques : 35o 29’ localisés à proximité de la dépression saline nord de latitude, 01o 13’ ouest de longitude et (sebkha d’Oran) présentent des efflorescences à une altitude d’environ 96 m; le taux de salines dues à l’évaporation ; ces sols abritent recouvrement moyen des touffes d’Atriplex aussi une végétation halophile (Duchaufour halimus fluctue entre 65 % et 80 %. Cette sta- 1988). La texture est de type limono-sableux tion appartient aux terrains salés de dépres- avec une humidité de 11,07 %. sion salée dénommée la sebkha d’Oran (Durand 1954). Le sol est basique à pH com- Station 3 : la station dans les hauts pris entre 8 et 8,6, une teneur en calcaire total plateaux d’Ain Skhouna élevée fluctuant entre 18 % et 30 %, la texture est de type sablo-limoneux avec une humidité Ce site est à une altitude de 900 m, il relève de 11,52 %. de l’étage bioclimatique semi-aride inférieur à variante froide. La pluviométrie moyenne annuelle est de l’ordre de 190 mm avec un Station 2 : la station intérieure régime caractérisé par une tranche pluviomé- d’Oued Tlelat trique importante en hiver et au printemps. La Elle se localise dans le sud-est de la ville température moyenne minimale est de – 7 oC d’Oran à 5 km avec des coordonnées de au mois de décembre et la température

ecologia mediterranea – Vol. 37 (1) – 2011 35 ecol-med-37-1-03:Mise en page 1 12/07/11 9:10 Page 36

AMAN BOUZID,KHÉLOUFI BENABDELI

moyenne maximale atteint 37 oC au mois de mailles de 2 mm (Afnor 1987), séparant les juillet (Le Houérou et al. 1977). Les terres de éléments grossiers de la terre fine inférieure à cette région appartiennent aux sols déser- 2 mm. Les méthodes utilisées sont celles tiques, squelettiques et steppiques à texture exposées par Baize (1988) dans son manuel légère et légèrement saline ; ils sont couverts d’analyse des sols. d’une végétation dégradée représentée par d’immenses plages de salsolacées. Les sols sont de très faible teneur en matière organique Analyse physique et un pH légèrement basique. Le taux d’hu- Granulométrie midité est une caractéristique intéressante à noter puisqu’il ne dépasse pas les 9 %. La texture d’un sol est révélée par son analyse granulométrique. Son principe est basé sur la vitesse de sédimentation des particules sépa- Méthode d’échantillonnage rées et dispersées par destruction de leur et d’observation ciment (calcaire et matière organique). Le fractionnement de ces particules se fait par Les mois de mai et de novembre au cours de l’intermédiaire de la pipette de Robinson qui l’année 2009 ont été retenus pour réaliser les permet la détermination des fractions argi- observations et les analyses. En effet, la leuses et limoneuses fines. Ensuite, les sables période de mai correspond au moment où la fins et grossiers sont mesurés par tamisage. faune est la plus conséquente. Les dates de Les limons grossiers sont extrapolés par cal- prospection au cours des périodes choisies ont cul à partir des résultats obtenus (Baize 1988). été comprises dans des semaines ensoleillées, Ces résultats sont reportés en fonction des sans précipitation, avec un vent faible voire pourcentages des argiles, des limons et des nul. sables dans le triangle textural (Duchaufour Au niveau de chaque station ont été choisies 1997), pour déterminer cette dernière. des parcelles de 250 m2 (10 m × 25 m) qui ont été subdivisées en 10 carrés de 25 m2. Afin d’optimiser l’efficacité des prélèvements sur Analyses chimiques le terrain concernant la faune du sol, 1 kg de Dosage du calcaire total CaCO terre a été prélevé dans chaque carré de cette 3 parcelle soit un total de 10 kg. Les échan- Fondé sur la réaction caractérisée du carbo-

tillons ont été prélevés au hasard sous nate de calcium (CaCO3) avec l’acide chlor- ombrage d’Atriplex halimus, et d’autres hydrique (HCl), le dosage du calcaire total est échantillons témoins sans ombrage d’Atriplex réalisé à l’aide du calcimètre de Bernard halimus à proximité. d’après Baize (1988). Quant aux échantillons de sols pour l’analyse physico-chimique, ils ont été effectués à inter- Dosage du carbone valles de 10 cm jusqu’à une profondeur de et de la matière organique 100 cm, respectivement pour le site de Terga Le carbone de la matière organique est oxydé et Tlelat puis des profondeurs de 20 cm pour par bichromate de potassium en présence la station de Ain Skhouna (sol squelettique et d’acide sulfurique. En connaissant la quantité faible profondeur). Au niveau de chaque de bichromate nécessaire pour cette oxydation, relevé, un profil pédologique a été effectué on peut calculer le pourcentage de carbone jusqu’à la limite de l’appareil racinaire (rhi- organique et d’humus dans le sol (le rapport zosphère). Au niveau de chaque horizon iden- % humus/% COx = 1,724), (Baize 1988). tifié des échantillons ont été prélevés et conservés dans des sachets hermétiques puis Le pH : le principe consiste à mesurer la force acheminés au laboratoire pour l’analyse phy- électromotrice d’une solution aqueuse du sol sico-chimique. Les principales méthodes (rapport eau/sol) à l’aide d’un pH-mètre. d’analyses physiques et chimiques décrites La conductivité électrique est mesurée à l’aide ont été réalisées au niveau du laboratoire de d’un conductimètre en fonction de la concen- pédologie du département d’agronomie de tration en électrolytes dans une solution d’ex- l’Université de Mascara (Algérie). traction aqueuse au 1/5 (Richards 1954). Les échantillons du sol sont mis à sécher à Les compositions cationiques et anioniques l’air libre pendant quelques jours. Une fois de l’extrait des sols ont été réalisées selon la séchée, la terre est tamisée par un tamis à méthode décrite par Jackson (1962).

36 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-03:Mise en page 1 12/07/11 9:10 Page 37

Contribution élémentaire à l’étude de l’impact de l’Atriplex halimus sur les caractéristiques physico-chimiques et biologiques du sol en Algérie occidentale

Analyse des peuplements 2 % à 7 % alors que les sables sont très élevés (78 % à 87 %) ; ce sol possède des potentia- Plusieurs étapes ont été respectées à savoir : lités agronomiques intéressantes. Le sol de la – la première étape concerne l’inventaire et a station de Tlelat présente un horizon de sur- consisté en un prélèvement d’individus obser- face de 10 cm de profondeur, de texture limo- vés à vue et issus du tamisage de la terre végé- neuse avec une teneur en limons fins et gros- tale. Le tamis utilisé a été une passoire de siers de 81 %. 20 cm de rayon à mailles de 1 mm. Les indi- vidus relevés pouvant être déterminés à vue Le deuxième horizon présente une profondeur ont été notés et dénombrés ; ceux présentant de 12 cm, sa texture est argilo-limoneuse avec des difficultés d’identification ont été conser- un taux d’argile de 49%, 42% de limon et vés dans des éprouvettes afin d’être identifiés 4 % de sable. La texture dominante dans cet à la loupe binoculaire au laboratoire ; horizon est limono-argileuse à limoneuse. La – pour la seconde étape, l’appareil de Berlèse station d’Ain Skhouna se distingue par un sol a été utilisé ; il s’agit de prélever les bestioles de faible épaisseur imposée par un encroûte- à l’aide d’un petit pinceau et de les disposer ment calcaire caractéristique des sols step- entre lame et lamelle pour une observation au piques. La texture qui domine est sableuse microscope de grossissement de 100 X et avec un taux de plus de 95%. Tous les sols équipé d’un appareil photo ; sont basiques avec un pH qui varie entre 8 et 9, c’est une caractéristique commune à tous – les données ont été traitées par une analyse les sols de la région due à la présence de cal- de variance bifactorielle en randomisation caire. Tous les échantillons analysés présen- totale organisée en bloc, suivie d’une compa- tent des valeurs de salinité de plus en plus éle- raison des moyennes selon le test de Newman vées avec la profondeur du profil. Mais en et Keuls (logiciel Statbox 6-4). profondeur, au niveau de la rhizosphère (entre 20 et 60 cm), une légère diminution est notée. La salinité est évaluée à 1,60 % et 3,32 % res- pectivement pour les stations de Terga et Tle- Résultats obtenus lat (figures 2 et 3). Le taux de matière orga- nique suit une décroissance très régulière de Les résultats d’analyse des échantillons de sol la surface vers les horizons profonds. Dans sous Atriplex et sans Atriplex sont récapitulés certains profils, un accroissement brutal du dans les tableaux 1 et 2. Ils confirment les taux de matière organique au niveau de l’ho- observations faites sur le terrain ; presque tous rizon (B) est à signaler. La teneur en carbone les échantillons de sols ont une texture sablo- décroît avec la profondeur, néanmoins on limoneuse, limono-sableuse ou sableuse. observe une légère augmentation à partir de Le sol de la station de Terga est de texture 50 cm pour les stations de Terga et Tlelat. Les sablo-limoneuse, la teneur en argile varie de substrats sont généralement riches en carbo-

Tableau 1 – Résultats analytiques des sols sous Atriplex halimus. Table 1 – Analytical results of soils under Atriplex halimus.

Stations Terga Tlelat Ain Skhouna

Horizon (cm) 0-10 10-20 20-30 30-60 60-100 0-10 10-20 20-30 30-60 60-100 0-5 5-20 pH 8,06 8,62 8,38 8,05 8,15 8,12 8,26 7,97 7,92 7,90 89 Conductivité (mS/cm) 3,95 8,31 13,84 16,61 5,03 3,32 4,61 5,75 7,90 10,38 0,90 1,30 HCO3- (mEq/l) - 13,02 27,03 29,00 9,40 - 4,30 4,60 5,10 7,30 0,35 0,45 SO42- (mEq/l) - 30,00 24,00 13,37 11,40 - 33,30 24,40 27,03 35,50 7,29 4,77 Cl- (mEq/l) - 49,30 124,70 138,30 23,40 - 46,70 32,90 33,20 27,70 52,50 59,50 Ca2+ (mEq/l) - 44,50 52,00 56,30 26,60 - 46,70 32,90 34,00 29,10 11,52 88,35 Mg2+ (mEq/l) - 4,80 9,70 16,30 5,10 - 12,40 14,10 15,00 10,40 2,20 2,49 Na+ (mEq/l) - 25,30 76,70 89,70 14,00 12,50 17,70 16,30 15,20 10,96 37,87 K+ (mEq/l) - 4,30 5,30 2,50 4,03 - 1,30 2,10 3,01 4,10 1,30 1,50

CaCO3 (mEq/l) 19,48 21,14 21,73 25,63 18,45 21,94 24,81 28,91 22,14 20,09 23,80 24,45 Mat. org. (%) 1,46 0,64 0,40 0,26 0,89 3,84 2,25 1,85 1,01 1,31 1,80 1,35 Granulométrie Argile 57254 049 28 53 49 33 Limon 14 9 11 4 10 81 42 22 23 38 54 Sable 79 81 84 87 86 74719 8 92 93

ecologia mediterranea – Vol. 37 (1) – 2011 37 ecol-med-37-1-03:Mise en page 1 12/07/11 9:10 Page 38

AMAN BOUZID,KHÉLOUFI BENABDELI

Tableau 2 – Résultats analytiques des sols sans Atriplex halimus. Table 2 – Analytical results of soil without Atriplex halimus.

Stations Terga Tlelat Ain Skhouna

Horizon (cm) 0-10 10-20 20-30 30-60 60-100 0-10 10-20 20-30 30-60 60-100 0-5 5-20 pH 8,38 8,80 8,62 9,04 9,07 8,36 9,01 8,26 8,23 8,20 9,36 9,06 Conductivité (mS/cm) 4,01 9,20 15,60 17,61 6,05 4,36 5,20 7,60 9,50 11,35 2,70 1,80 HCO3- (mEq/l) - 2,80 3,00 3,70 1,80 - 2,00 4,00 10,50 6,50 2,50 1,00 SO42- (mEq/l) - 11,00 26,00 27,90 7,30 - 14,00 39,00 17,60 51,50 4,00 1,50 Cl- (mEq/l) - 75,00 157,00 161,40 51,00 - 46,00 44,00 57,00 105,00 23,00 14,50 Ca2+ (mEq/l) - 46,90 53,80 58,00 50,70 - 52,20 39,20 48,00 56,50 16,00 90,80 Mg2+ (mEq/l) - 24,50 44,80 46,20 15,80 - 15,80 34,60 24,60 27,30 2,80 0,60 Na+ (mEq/l) - 38,00 86,40 109,10 41,40 - 29,00 44,40 66,50 100,40 17,60 46,20 K+ (mEq/l) - 1,20 1,80 2,00 1,10 - 0,82 2,10 1,30 1,90 0,50 0,10

CaCO3 (mEq/l) 17,05 19,49 19,36 24,01 16,80 20,84 22,16 25,92 20,18 19,07 21,02 22,12 Mat. org. (%) 0,32 0,21 0,10 0,09 00,00 0,33 0,20 0,09 0,05 00,00 1,02 0,44 Granulométrie Argile 46132 045 43 50 46 21 Limon 13 7928 79 39 30 21 37 53 Sable 83 87 90 95 90 21 6 27 29 17 95 96

nate de calcium ; le pourcentage varie entre 18 % et 28 %. Cette forte teneur se trouve liée à la nature de la roche mère qui est calcaire, la capacité d’échange cationique est faible pour l’ensemble des stations et trouve son explication dans les basses proportions de l’humus et, par voie de conséquence, le faible taux de la matière organique (azote, carbone) et d’éléments fins (argile).

Discussion

L’observation à noter découlant de l’analyse Figure 2 – Évolution de la salinité et de la matière organique physico-chimique du sol au niveau des trois en fonction de la profondeur du sol. stations est la concentration d’éléments nutri- Figure 2 – Changes in salinity and organic matter with depth. tifs dans l’horizon superficiel du sol avec Atri- plex halimus ; elle décroît progressivement en profondeur. La teneur en matière organique est élevée sous Atriplex et diminue également d’une façon significative avec la profondeur dans les trois stations. C’est la décomposition des racines fines et des feuilles qui contribue à ces taux élevés de matière organique. La capacité d’échange cationique et la concen- tration de cations sont généralement plus éle- vées sous Atriplex. On note que l’accroisse- ment de la capacité d’échange cationique est positivement corrélé aux teneurs du sol en argile, en matière organique et au pH alcalin. Toutefois, son augmentation avec la profon- deur peut être liée à une accumulation du matériel argileux en profondeur sous l’effet Figure 3 – Évolution de la salinité et de la matière organique de la porosité et de la capacité d’infiltration. en fonction de la profondeur du sol. Selon (Janssen et al. 1990) : « Chaque pour- Figure 3 – Changes in salinity and organic matter with depth. centage en matière organique contribue à

38 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-03:Mise en page 1 12/07/11 9:10 Page 39

Contribution élémentaire à l’étude de l’impact de l’Atriplex halimus sur les caractéristiques physico-chimiques et biologiques du sol en Algérie occidentale

l’augmentation de la capacité d’échange espèces varie considérablement d’un site à cationique. » La teneur en argile semble éton- l’autre, selon les deux gradients retenus, alti- namment basse. C’est une conséquence de la tudinal et du nord vers le sud ; le nombre d’in- dispersion insuffisante en raison d’une pré- dividus observé sous Atriplex sont plus nom-

sence de quantité importante de CaCO3. breux que sur sol sans Atriplex halimus (figure 5). Analyse de la faune Le graphe de la figure 4 fait ressortir une dis- sous le couvert de l’Atriplex halimus proportion entre la diversité spécifique com- posant chaque famille étudiée. La station de Les tableaux qui suivent récapitulent les résul- Terga visuellement est la plus riche en diver- tats obtenus en matière de macro et de micro- sité spécifique. Elle est de loin la mieux repré- faune des sols sous Atriplex et dans un sol nu sentée, avec un taux de 49 % du total spéci- (tableaux 3a et 3b, 4a et 4b). La diversité en fique de 7 familles inventoriées ; la station de

Tableau 3a – Évaluation de la faune du sol sans Atriplex halimus sur un échantillon de 10 kg. Table 3a – Evaluation of soil fauna without Atriplex halimus from a sample of 10 kg.

observations Terga Tlelat Ain Skhouna total

Novembre Mai Novembre Mai Novembre Mai Nématodes 1 15 17 -- -- 32 2 09 21 -- -- 30 3 06 22 -- -- 28 moyenne 10 20 Vers annelés Lombricides 1 15 14 -- -- 29 2 22 11 -- -- 33 3 23 05 -- -- 28 moyenne 20 10 Arachnides Acariens 1 ------oribates 2 ------3 ------moyenne ------Aranéides 1-08 -- -35 43 2-16 -- -44 60 3-06 -- -41 47 moyenne - 10 -- -40 Insectes aptérigotes Collemboles 1-10 -- -- 10 2-16 -- -- 16 3-34 -- -- 34 moyenne - 20 -- -- Insectes ptérygotes Fourmis 1 03 12 02 32 06 63 118 2 07 38 15 20 17 29 126 3 20 40 13 68 07 58 206 moyenne 10 30 10 40 10 50 Larves 1 ------de coléoptères 2 ------3 ------moyenne ------Myriapodes Géophiles 1 11 - 19 ---30 2 27 - 12 ---39 3 22 - 29 ---51 moyenne 20 - 20 --- Cloportes 1 04 - 18 ---22 2 09 - 10 ---19 3 17 - 32 ---49 moyenne 10 - 20 --- Groupes secondaires Mollusques 1 06 36 16 72 -- 130 2 11 41 18 68 -- 138 3 13 43 26 40 -- 122 moyenne 10 40 20 60 --

ecologia mediterranea – Vol. 37 (1) – 2011 39 ecol-med-37-1-03:Mise en page 1 12/07/11 9:10 Page 40

AMAN BOUZID,KHÉLOUFI BENABDELI

Tableau 3b – Évaluation de la faune du sol sans Atriplex halimus sur un échantillon de 10 kg. Table 3b – Evaluation of soil fauna without Atriplex halimus from a sample of 10 kg.

Paramètres Interaction des facteurs (n = 03) Régions (n = 06) Périodes Analyse (n = 09) de variance mesures R1 R1 R2 R2 R3 R3 R1 R2 R3 P1 P2 F1 F2 Int P1 P2 P1 P2 P1 P2 F1×F2

Nématodes 10 20 0,00 0,00 0,00 0,00 15 0,00 0,00 3,33 6,67 ** * ** ±±±±±± ±±± ±± 4,58b 2,65a 0,00c 0,00c 0,00c 0,00c 3,35a 0,00b 0,00b 2,29b 1,32a Lombricides 20 10 0,00 0,00 0,00 0,00 15 0,00 0,00 6,67 3,33 *** ±±±±±± ±±± ±± 4,36a 4,58b 0,00c 0,00c 0,00c 0,00c 4a 0,00b 0,00b 2,18a 2,29b

Acariens 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 ns ns ns ±±±±±± ±±± ±± 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 Aranéides 0,00 10 0,00 0,00 0,00 40 5 0,00 20 3,33 13,33 *** ±±±±±± ±±± ±± 0,00c 5,29b 0,00c 0,00c 0,00c 4,58a 3,35b 0,00c 2,9a 2,65b 2,29a Collemboles 0,00 20 0,00 0,00 0,00 0,00 10 0,00 0,00 6,67 0,00 *** ±±±±±± ±±± ±± 0,00b 12,49a 0,00b 0,00b 0,00b 0,00b 7,9a 0,00b 0,00b 6,25a 0,00b Fourmis 10 30 10 40 10 50 20 25 30 10 40 ** ** ** ±±±±±± ±±± ±± 8,89d 15,62c 7d 24,98b 6,08d 18,36a 11,37c 16,41b 12,23a 6,42b 17,36a Larves 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 ns ns ns de coléoptères ±±±±±± ±±± ±± 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 Géophiles 20 0,00 20 0,00 0,00 0,00 10 10 0,00 13,33 0,00 *** ±±±±±± ±±± ±± 8,19a 0,00b 8,54a 0,00b 0,00b 0,00b 5,18a 5,40a 0,00b 5,92a 0,00b Cloportes 10 0,00 20 0,00 0,00 0,00 5 10 0,00 10 0,00 ns * ns ±±±±±± ±±± ±± 6,56b 0,00b 11,14a 0,00b 0,00b 0,00b 4,15b 7,04a 0,00c 6,46a 0,00b Mollusques 10 40 20 60 0,00 0,00 25 40 0,00 10 33,33 *** ±±±±±± ±±± ±± 3,61d 3,61b 5,29c 17,44a 0,00d 0,00d 3,23b 11,52a 0,00c 3,20b 8,90a F1 : effet du facteur régions ; F2 : effet du facteur étudié périodes ; Int F1XF2 : effet de l’interaction des deux facteurs étudiés ; n : nombre de répétition. * : probabilité significative à P < 0,01 ; ** : probabilité significative à P < 0,001 (analyse de variance).

Tlelat avec un taux de 32 % et Ain Skhouna de 19%. La station d’Ain skhouna s’indivi- dualise par une zoocenose réduite à deux espèces (aranéides et fourmis): ces deux espèces prospèrent cependant en altitude. Dans la station la plus basse en altitude (sta- tion de Terga), toutes les espèces sont pré- sentes. La distribution verticale du nombre d’individus vers la profondeur est moins significative. L’humidité du sol et les fluctua- tions de la matière organique – la présence des racines d’Atriplex, les exsudats racinaires et la production en surface (feuillage et défo- liation) – se traduisant par une productivité Figure 4 – Comparaison des résultats faunistiques entre les trois stations. accrue de la matière organique tout le long de Figure 4 – Comparaison of faunal results between three stations. la période d’étude nous ont permis de définir

40 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-03:Mise en page 1 12/07/11 9:10 Page 41

Contribution élémentaire à l’étude de l’impact de l’Atriplex halimus sur les caractéristiques physico-chimiques et biologiques du sol en Algérie occidentale

Tableau 4a – Évaluation de la faune du sol sous couvert Atriplex halimus sur un échantillon de 10 kg. Table 4a – Evaluation of soil fauna under cover Atriplex halimus from a sample of 10 kg.

observations Terga Tlelat Ain Skhouna total

Novembre Mai Novembre Mai Novembre Mai Nématodes 1 34 62 -- -- 96 2 27 40 -- -- 67 3 29 78 -- -- 107 moyenne 30 60 -- -- Vers annelés Lombricides 1 68 24 -- -- 92 2 72 30 -- -- 102 3 10 6 -- -- 16 moyenne 50 20 -- -- Arachnides Acariens 1 22 -----22 oribates 2 10 -----10 3 28 -----28 moyenne 20 ----- Aranéides 1 01 67 -- 09 102 154 2 04 11 -- 13 104 188 3 25 40 -- 08 94 138 moyenne 10 40 -- 10 100 Insectes aptérigotes Collemboles 1 28 61 -- -- 89 2 20 38 -- -- 58 3 12 81 -- -- 93 moyenne 20 60 -- -- Insectes ptérygotes Fourmis 1 11 72 10 101 25 160 379 2 18 58 17 107 18 152 370 3 31 80 33 92 17 138 391 moyenne 20 70 20 100 20 150 Larves 1 45 04 72 11 -- 132 de coléoptères 2 32 09 40 03 -- 84 3 43 17 38 46 -- 144 moyenne 40 10 50 20 -- Myriapodes Géophiles 1 77 05 45 06 -- 133 2 54 02 60 08 -- 124 3 79 23 15 16 -- 133 moyenne 70 10 40 10 -- Cloportes 1 34 07 32 02 -- 75 2 32 09 30 13 -- 84 3 54 14 58 15 141 moyenne 40 10 40 10 -- Groupes secondaires Mollusques 1 19 114 34 131 -- 298 2 17 106 22 145 -- 290 3 24 80 64 84 -- 252 moyenne 20 100 40 120 --

trois différents créneaux du micro-environne- L’humidité, l’altitude et la température sont ment : l’accumulation de la litière était pro- des facteurs déterminants de l’habitat optimal bablement l’un des facteurs déclencheurs de de la faune ; elles ont la capacité d’influencer la dynamique et de la composition biotique le taux de reproduction et de croissance des (faunistique). L’Atriplex halimus a la capacité individus et leur répartition vertical le long d’accumuler la matière organique principale- d’un profil. En effet, une diversité biologique ment dans les vingt premiers cm justifiant une assez significative est enregistrée au niveau de présence accrue d’individus. Le nombre d’in- la station de Terga; celle qui recèle les dividus est plus élevé dans les horizons super- meilleures potentialités édaphiques. En ficiels (profondeur de 20 cm). Par contre on période printanière (mois de mai), le nombre observe une diminution significative du d’individus est significativement plus abon- nombre total d’individus dans les sols sans dant qu’en période de saison froide Atriplex halimus. (novembre) pour les trois stations. Il est à

ecologia mediterranea – Vol. 37 (1) – 2011 41 ecol-med-37-1-03:Mise en page 1 12/07/11 9:10 Page 42

AMAN BOUZID,KHÉLOUFI BENABDELI

Tableau 4b – Évaluation de la faune du sol sous couvert Atriplex halimus sur un échantillon de 10 kg (analyse de variance). Table 4b – Evaluation of soil fauna under cover Atriplex halimus from a sample of 10 kg (variance analysis).

Paramètres Interaction des facteurs (n = 03) Régions (n = 06) Périodes Analyse (n = 09) de variance mesures R1 R1 R2 R2 R3 R3 R1 R2 R3 P1 P2 F1 F2 Int P1 P2 P1 P2 P1 P2 F1×F2

Nématodes 30 60 0,00 0,00 0,00 0,00 45 0,00 0,00 10 20 ** * ** ±±±±±± ±±± ±± 3,61b 19,08a 0,00c 0,00c 0,00c 0,00c 12,28c 0,00c 0,00c 1,80b 9,54a Lombricides 50 20 0,00 0,00 0,00 0,00 35 0,00 0,00 16,67 6,67 ** ns ns ±±±±±± ±±± ±± 34,67a 12,49b 0,00c 0,00c 0,00c 0,00c 23,32a 0,00c 0,00c 17,35a 6,25b Acariens 20 0,00 0,00 0,00 0,00 0,00 10 0,00 0,00 6,67 0,00 ** ** ** ±±±±±± ±±± ±± 9,17a 0,00c 0,00c 0,00c 0,00c 0,00c 5,8a 0,00c 0,00c 4,58a 0,00b Aranéides 10 40 0,00 0,00 10 100 25 0,00 55 6,67 46,67 ** ** ** ±±±±±± ±±± ±± 13,08c 28,05b 0,00c 0,00c 2,65c 5,29a 19,58b 0,00c 3,74a 6,67b 14,27a Collemboles 20 60 0,00 0,00 0,00 0,00 40 0,00 0,00 6,67 20 ** * ** ±±±±±± ±±± ±± 8b 21,52a 0,00b 0,00b 0,00b 0,00b 14,52a 0,00b 0,00b 4b 10,76a Fourmis 20 70 20 100 20 150 45 60 85 20 106,67 ** ** ** ±±±±±± ±±± ±± 10,15d 11,14c 11,8d 7,55b 4,36d 11,14a 9,53c 8,85b 7,56a 8,08b 8,73a Larves 40 10 50 20 0,00 0,00 25 35 0,00 30 10 ** * ns de coléoptères ±±±±±± ±±± ±± 7b 6,56d 19,08a 22,87c 0,00d 0,00d 6,07a 18,84a 0,00b 10,16a 11,9b Géophiles 70 10 40 10 0,00 0,00 40 25 0,00 36,67 6,667 ** ** ** ±±±±±± ±±± ±± 13,89a 11,36c 22,91b 5,29c 0,00c 0,00c 11,39a 14,87a 0,00b 13,4a 6,27b Cloportes 40 10 40 10 0,00 0,00 25 25 0,00 26,67 6,67 ** ** ** ±±±±±± ±±± ±± 12,17a 3,61b 15,62a 7b 0,00b 0,00b 8,03a 10,826a 0,00b 9,9a 3,94b Mollusques 20 100 40 120 0,00 0,00 60 80 0,00 20 73,33 ** ** ** ±±±±±± ±±± ±± 3,61b 17,78a 21,63b 31,95a 0,00b 0,00b 11,47a 24,41a 0,00b 10,97b 18,28a F1 : effet du facteur régions ; F2 : effet du facteur étudié périodes ; Int F1XF2 : effet de l’interaction des deux facteurs étudiés ; n : nombre de répétition. * : probabilité significative à P < 0,01 ; ** : probabilité significative à P < 0,001 (analyse de variance).

signaler que les différences entre stations semblent particulièrement marquées et indi- vidualisées dans la composition des commu- nautés. En revanche l’altitude est certaine- ment un facteur de diversification mais les données sont encore bien insuffisantes pour une étude écologique détaillée de ce pro- blème. L’Atriplex halimus, non seulement attire la faune mais elle est en mesure de fournir des conditions favorables pour la macro et méso- faune du sol à travers les exsudats des racines Figure 5 – Comparaison des résultats de la faune entre sol avec Atriplex et et l’apport de matière organique et de carbone sol sans Atriplex. garant de la présence d’une humidité. Figure 5 – Comparaison of results of fauna between a soil with Atriplex and soil without Atriplex.

42 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-03:Mise en page 1 12/07/11 9:10 Page 43

Contribution élémentaire à l’étude de l’impact de l’Atriplex halimus sur les caractéristiques physico-chimiques et biologiques du sol en Algérie occidentale

Conclusion Références

L’exploitation des résultats obtenus axés Afnor N., 1987. Qualité des sols. Méthodes d’analyses. Recueil des normes françaises. Paris, 135 p. essentiellement sur une approche comparative Baize D., 1988. Guide des analyses courantes en pédo- entre sol avec Atriplex halimus et sol témoin logie.INRA, Paris, 172 p. fait ressortir les observations suivantes : Duchaufour P.H., 1988. Abrégé de pédologie. 2e édition, – l’Atriplex halimus influence d’une manière Masson, Paris, 224 p. significative les caractéristiques physico- Duchaufour P.H., 1997. Pédologie et classification. chimiques du sol (structure, matière orga- Masson, Paris. 477 p. Durand J.H., 1954. Les sols d’Algérie. Ed. Sci. Gouv. nique, salinité…), attire la faune et consti- Pédologie, Alger, 1-244 p. tue un foyer d’activité biologique accrue. Franclet A., Le Houérou H.N., 1971. Les Atriplex en L’analyse des résultats obtenus permet éga- Tunisie et en Afrique du Nord. Document FAO. lement de souligner que la matière orga- Rome, 189 p. nique issue d’Atriplex halimus constitue un Jackson M.L., 1962. Soil chemical analysis. Constable indicateur potentiel d’amélioration des pro- and Comp. Ltd. England. Janssen B.H., Guiking F.C.T., Van der eijk D., Smaling priétés édaphiques et biologiques des sols. E. M. A., Wolf J. & Van reuler H., 1990. A system De ce fait, l’Atriplex halimus pourrait être for quantitative evaluation of the fertility of tropical recommandé pour la mise en valeur des sols soils (QUEFTS). Geoderma 46: 299-318. des zones arides et semi-arides ; Kelley B.D., Goodin J.R., Miller D.R., 1982. Biology – l’Atriplex halimus, au vue des résultats obte- of Atriplex. In: Contribution to the ecology of halo- phytes. Ed. Dr W. Junk, London: 79-107. nus dans des environnements salins et mar- Le Houérou H.N., 1971. Les bases écologiques de la ginaux en zone aride et semi-aride, améliore production pastorale et fourragère en Algérie. certaines caractéristiques physico-chi- F.A.O., Rome, 60 p. miques et biologiques des sols ; Le Houérou H.N., Claudin J. & Pouget M., 1977. Étude – l’Atriplex halimus possède un système raci- bioclimatique des steppes algériennes. Bull. soc. hist. afr. nord, 68 (3-4) : 33-74. naire qui se développe dans les couches pro- Le Houérou H.N., 1992. The role of saltbusches (Atri- fondes du sol et contribue à une mise en plex sp.) in arid land rehabilitation in the Mediter- place d’une rhizosphère, zone privilégiée ranean Basin: a review. Agroforestry Systems 18: des échanges de la matière et d’énergie ; il 107-148. agit sur la redynamisation de la matière Richards L.A., 1954. Diagnosis and improvement of saline and alkali soils. USDA Handbook no 60. organique, de la conductivité électrique et de l’activité biologique.

ecologia mediterranea – Vol. 37 (1) – 2011 43 ecol-med-37-1-04:Mise en page 1 12/07/11 9:10 Page 45

The diet of the Maghrebian mouse-eared bat Myotis punicus (Mammalia, Chiroptera) in Kabylia, Northern Algeria Régime alimentaire du Murin du Maghreb Myotis punicus (Mammalia, Chiroptera) en Kabylie, nord de l’Algérie

M. AHMIM and A. MOALI Laboratoiry of ecologie and environnment Faculty of nature sciences and life Abderrahmane MIRA University, Bejaia, Algeria E.mail: [email protected] [email protected]

Abstract rouge par l’IUCN comme une espèce manquant de données, alors qu’elles sont nécessaires pour This paper describes the composition of the diet sa classification dans la liste des espèces mena- of the Maghrebian mouse-eared bat species cées. Myotis punicus est une espèce dont les Myotis punicus in the North of Algeria. The connaissances des habitats de chasse et du Maghrebian mouse-eared bat, Myotis punicus régime alimentaire sont pratiquement incon- Felten, 1977 is classified by the IUCN Red List as nues en Algérie où à l’heure actuelle il n’est a species of missing data and it is a specie whose principalement connu que dans le nord du pays. knowledge of hunting habitat and diet are vir- Notre présente contribution consiste en l’ana- tually unknown in Algeria. In our contribution lyse du régime alimentaire de cette espèce, La we have studied the diet of the specie In the zone retenue pour l’étude est située dans la area located in the region of Kabylia Babors, in région de la Kabylie des babors plus exacte- wilayates (districts) of Bejaia and Jijel in Algeria ment, dans les wilayates de Bejaia et de Jijel. Le between the months of march 2007 and Janu- protocole mis en place a consisté en un prélè- ary 2008. The protocol used consisted of a sam- vement d’échantillons de guano, ainsi, durant pling of guano in the different sites used by the toute la période d’étude, 102 échantillons ont species and the identification of remains of été récoltés au cours de 43 sorties, chaque insects under microscope For analysis, samples échantillon étant représenté par 10 grains de of guano have been soaked at least one hour in guano donc 1 020 d’entre eux ont été analysés. 70% alcohol before being dissected using for- Kervyn (1998) stipule qu’un échantillon annuel ceps under a binocular magnification 400× and de 100 excréments est suffisant pour identifier the determination was made with a help of the les proies consommées. Les sorties ont été réa- identification key by Shiel et al. (1997). The lisées entre le mois de mars 2007 et le mois de results suggests that Myotis punicus in the stud- janvier 2008, au rythme d’une sortie tous les ied sites of Algeria consumed prey belonging to 15jours. Pour l’analyse, les échantillons de three groups of arthropods: insects (frequence guano récoltés ont été trempés au moins une 96.06%),chilopods (2.82%) and spiders (1.12%). heure dans de l’alcool à 70 % avant d’être dis- séqués à l’aide de pinces sous une loupe bino- culaire 10 X 40 et la détermination a été faite Résumé grâce à la clé de détermination de Shiel et al. (1997). Les résultats montrent que Myotis puni- Cet article décrit la composition du régime ali- cus consomme dans la zone étudiée en Algérie mentaire du murin du Maghreb Myotis punicus des proies appartenant à trois groupes d’arthro- dans le nord de l’Algérie. En effet le Murin du podes : insecta (fréquence 96,06 %), chilopoda Maghreb Myotis punicus est classé dans la liste (2,82 %) et Araneida (1,12 %).

Keywords: Myotis punicus, diet, guano, North Mots clés : Murin du Maghreb, Myotis punicus, Algeria, preys. Algérie du Nord, régime alimentaire, proies.

ecologia mediterranea – Vol. 37 (1) – 2011 45 ecol-med-37-1-04:Mise en page 1 12/07/11 9:10 Page 46

M. AHMIM, A. MOALI

Figure 1 – Specimen of Myotis punicus from Algeria.

Introduction Myotis punicus is classified by the IUCN Red List (Aulagnier et al. 2008) as a species of Knowledge of lifestyle and biology of bats is missing data. a preliminary step essential to assess envi- This species is especially cave-dweller and ronmental contributions particularly impor- only a limited number of colony roosts is tant for reproduction of plant species, refor- known (Aulagnier et al. 2008). It was deter- estation and the fight against pests. mined that its numbers are declining in Cor- The Maghrebian mouse-eared bat, Myotis sica, and probably it could be that this is the punicus Felten, 1977, is a species whose same case in Sardinia (Arlettaz et al. 1997). knowledge of hunting habitat and diet are vir- In Malta, the work of monitoring of the tually unknown in Algeria, and its present is species showed a decline estimated at 50% or mainly known in the north of the country. more in three generations. There are about = Myotis punicus is distributed in the Mediter- 10,000 individuals, found in colonies (300- ranean part of North Africa (Morocco, Alge- 500 individuals) and in Corsica, there are ria, Tunisia and Libya), and several West- approximately 4,000 individuals in four Mediterranean islands: Malta, Corsica colonies. The total size of the population in (France) and Sardinia (Italy) (Arlettaz et al. Corsica, Sardinia and Malta is estimated 1997). (Castella et al. 2000) and we have No between 7,000 and 9,000 individuals. results or data about its diet in italia (Agnelli This specie is listed as “Near Threatened” et al. 2004). (almost Meets Criteria Under A4cd VU) Tem- ple (2009).

46 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-04:Mise en page 1 12/07/11 9:10 Page 47

The diet of the Maghrebian mouse-eared bat Myotis punicus (Mammalia, Chiroptera) in Kabylia, Northern Algeria

Materials and Methods

Study area and habitat mapping The area selected for the study is located in the region of Kabylia Babors, in wilayates of Bejaia and Jijel. The protocol used consisted of a sampling of guano in the different sites used by the species and the identification of remains of insects under microscope. The grains of guano of Myotis punicus are greater than the other about other species of bat represented by Rhi- nolophidae and Miniopterus schreibersi. These are expressed as percentage of fre- quency to allow comparison with other stud- ies in other countries.

Our study area is located on the biogeo- Figure 2 – Guano of Myotis punicus. graphical east of the Great Kabylie (Kabylie of Djurdjura), which is a natural region of northeastern Algeria. It is a mountainous Collect and analysis region characterized by a series of coastal of the samples of guano links with an average elevation of 1000m, whose highlights are the Jebel Babor The trips were conducted between the months (2004m) and Jebel Tababor (1969m). The of March 2007 and January 2008, at a rate of topography of the region very rugged, with one event every 15 days or about every week slopes often exceeding 25%, provides general for each list according to the weather. guidance Southwest Northeast (Bellatreche Thus, throughout the study period, 102 sam- 1994). ples were collected after 43 outputs, each Ten sites were explored: the cave Taâssast, sample is represented by 10 pellets of guano, 4 caves Boukhiama, Fort Lemercier, Château so 1020 pellets were analyzed in total. Kervyn de la Comtesse, Aokas cave, the cave of the (1998) stated that a sample of 100 annual elephants in Bejaia and the Cave of Boubla- dung is sufficient to identify the prey con- tane in Jijel. sumed only to identify but not specify its

Figure 3 – Location of deposits sampled.

ecologia mediterranea – Vol. 37 (1) – 2011 47 ecol-med-37-1-04:Mise en page 1 12/07/11 9:10 Page 48

M. AHMIM, A. MOALI

Table 1 – Release Calendar and number of samples collected.

Month March Avr Mai June July Aug Sept Oct Nov Dec Jan Total

Number of Trips 03 03 07 04 04 03 05 04 05 01 04 43 Number of samples 28 03 10 03 03 04 13 10 16 06 06 102

composition and the annual changes of com- with Vaughan (1997); the results are position. expressed as percentage frequency of occur- For analysis, samples of guano have been rence, i.e. the number of taxa equals the num- soaked at least one hour in 70% alcohol ber of samples containing divided by the total before being dissected using forceps under a number of occurrences, multiplied by 100. binocular magnification 400× and the deter- mination was made with a help of the identi- fication key by Shiel et al. (1997). Several methods of expressing results are Results used by the authors but their definition is not always harmonized throughoy publications. I As shown in the table, Myotis punicus in the referred the diet composition in accordance studied sites of Algeria consumed prey belonging to three groups of arthropods: insects (frequence 96.06%), chilopods (2.82%) and spiders (1.12%). Table 2 – Frequencies (in %) of the prey parts found in the guano of Myotis punicus. Diet composition of the Maghrebian Order Effectif Percentage (prey parts) mouse-eared bat Myotis punicus Insecta Ephemeroptera 07 3.95 The most consumed insect prey were dipter- Dermaptera 03 1.69 Hemiptera 18 10.16 ans with a frequency approaching a half of Neuroptera 03 1.69 consumed taxa (46.32%). This percentage is Coleoptera 06 3.38 composed mainly by Culicidae (15.59%), of Siphonaptera 02 1.12 Chironomidae/Ceratopogonidae (9.68%) and Diptera 82 46.32 Tipulidae (6.45%). Lepidoptera 36 20.33 Trichoptera 13 7.34 The order Lepidoptera had also a good pro- Chilopoda spp. 05 2.82 portion in the diet of M. punicus; the butter- Arachnida Araneida 02 1.12 flies created 20.33%. Hemipterans occupied 177 9.68%.

Discussion

The food needs of bats are important. They must accumulate fats to the period of hiber- nation. The daily ration of bats is equivalent to a quarter or a third of their own weight. It stresses the importance bats in the fight against insect pests for human. The composition of diet is still very poorly known and we can study only analyzing the remains of food, since all species are pro- tected and it is impossible to examine the con- tents of their stomachs. Bats catch butterflies, beetles, flies as well as dragonflies, crickets, Figure 4 – Histogramme of the frequencies (in %) by Order grasshoppers and spiders. The wings and legs of prey parts found in the guano of Myotis punicus in Kabylia. of butterflies and other insects are not eaten,

48 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-04:Mise en page 1 12/07/11 9:10 Page 49

The diet of the Maghrebian mouse-eared bat Myotis punicus (Mammalia, Chiroptera) in Kabylia, Northern Algeria

Table 3 – Frequencies (in %) of prey parts found in the guano of Myotis punicus in Kabylia.

Class Order Suborder Superfamily Effectif Frequency or family (prey parts) (%)

Insecta Ephemeroptera 07 3,76 Dermaptera 03 1,61 Hemiptera Heteroptera Corixidae. 10 5,38 Homoptera Cercopedae 03 1,61 Aphidoidea 05 2,69 subtotal 18 9,68 Neuroptera Hemerobiidae 02 1,08 Chrysopidae 01 0,54 subtotal 03 1,61 Coleoptera Adephaga Carabidae 03 1,61 Polyphaga Scarabaeoidea 02 1,08 Scolytidae 01 0,54 subtotal 06 3,23 Siphonaptera 02 1,08 Diptera Nematocera Tipulidae 12 6,45 Anisopodidae. 06 3,23 Psychodidae. 05 2,69 Culicidae. 29 15,59 Chironomidae /Ceratopogonidae 18 9,68 subtotal 70 37,63 Cyclorrhapha Syrphidae 01 0,54 Sphaeroceridae. 06 3,23 Calliphoridae 02 1,08 Scathophagidae 02 1,08 Total 11 5,91 Brachycera Rhagionidae 01 0,54 subtotal 82 44,09 Lepidoptera 36 19,35 Trichoptera 02 1,08 Limnephilidae. 06 3,23 Hydropsychidae 05 2,69 subtotal 13 6,99 subtotal 179 96,24 Chilopoda 05 2,69 Arachnida Araneida 02 1,08

fall to the ground and hoard them thereby rial frombelow feeding perches, showed that detect the presence of bats. the main prey species were of three insect In Algeria 11 orders of 3 classes are presents orders: Orthoptera, Coleoptera and Lepi- in the diet of Myotis Punicus, Our study doptera (Borg 1998). showed that Myotis punicus diet in the study In Corsica we found 5 orders of Insecta area consisted predominantly of dipterans (Orthoptera, Coleoptera, Lepidoptera, with a frequency approaching a half of con- Diptera, and hymenoptera), the class of sumed taxa (46.32%) represented by Culici- Araneida is present too. dae (15.59%) Chironomidae/Ceratopogonidae In Corsica, Myotis punicus is hunting in open (9.68%) and Tipulidae (6.45%), The order of habitats where it captures Orthoptera, Lepidoptera 20.33% and Hemiptera 9.68%. Coleoptera and Lepidoptera (caterpillars). The diet of 71 female Myotis cf. punicus has been Comparison with Corsican and identified During the breeding season They Maltese diet of Myotis punicus feed mainly on Orthoptera (36%) of Coleoptera (33%), Lepidoptera (caterpillars) In the Maltese Islands, a study of the diet of (23%) and Diptera, Hymenoptera, and Myotis punicus, carried out using faecal mate- Araneida (Beuneux 2004).

ecologia mediterranea – Vol. 37 (1) – 2011 49 ecol-med-37-1-04:Mise en page 1 12/07/11 9:10 Page 50

M. AHMIM, A. MOALI

Table 4 – Comparison of the diet composition of the Maghrebian mouse- rumequinum), and possible insects may be eared bat Maghreb (Myotis punicus) in Algeria, Malta, and Corsica (France). caught in flight, or taken from vegetation, the ground, or water surfaces in a foraging style Country referred to as gleaning. Echolocation is gen- Algeria Malta) Corsica erally used to locate prey although some bats (Borg, 1998) (France) use passive listening’, homing in on the Order (Beuneux, 2004) sounds made by the prey themselves (Hutson Insecta Ephemeroptera X et al. 2001). Dermaptera X As second hypothesis concerning the absence Hemiptera X Neuroptera X of Orthoptera in the diet of Myotis punicus in Coleoptera XX XAlgeria, we suppose that it is due at the night- Siphonaptera X activity of dipterans, and that arthropods hide Diptera XXunder stones during the night when Chi- Lepidoptera XX Xroptera in activity. Trichoptera X Orthoptera XXAnd we also suppose that it is also du at the Hymenoptera X nearness of the sea where we find many Homoptera XXCuleidae, Chironomidae and Cerapogonidae. Chilopoda spp. X Arachnida Araneida XX Conclusion

Included in the diet of Myotis punicus, three classes of arthropods: Insecta, Chilopoda and Arachnida, including the predominance is A comparison of the composition of frequen- attributed to insects (96.24%). The taxa most cies of prey parts in the three countries see abundant insects (Lepidoptera, Diptera (Chi- that there is a similitude only in 2 orders ronomidae and Culicidae/Ceratopogonidae) (Coleoptera and Lepidoptera), in Malta we and Corixidae) are parasites and harmful. haven’t data about frequencies of the preys. It has this effect we can say that bats play a Between Corsica and Algeria the similitude is very important role in the ecological balance in 5 orders: Coleoptera represented by 3.38% in many ways, especially as regards the fight in Algeria and 33% in Corsica; Lepidoptera against harmful interference, and that analy- 20.33% in Algeria and 23% in Corsica, sis of the diet of these gives us very important Diptera and Arachnida respectively 46.32%, information on the limitations of numbers of 1.12% in Algeria, and no quotation for Cor- insects and their diversity. sica; and we found 36% of Orthoptera in Cor- sica but this order is not netted in Algeria, The According to Beuneux (2004) the Maghrebian analyse of the composition of the prey parts bat seems to be an opportunist gleaning bat. in the two countries see that there are simili- And Myotis punicus is protected by national tudes in 5 orders of insect with one great legislation in its European range states. There similitude about Lepidoptera (20.33% in are also international legal obligations for its Algeria and 23% in Corsica). protection through the Bonn Convention The prey who is largely consommed in Cor- (Eurobats) and Bern Convention, in parts of sica is represented by the Orthoptera (36%) its range where these apply. It is included in and in Algeria by the Diptera (46.32%). Annex IV of the EU Habitats and Species Directive, and some habitat protection may be Between the two islands Corsica and Malta provided through Natura 2000. There is an there are 3 orders in similitude (Orthoptera, ongoing project for the conservation of this Lepidoptera and Coleoptera) and between species. Appropriate conservation measures Malta and Algeria the comparison see that we include fencing cave entrances (but not gat- have 2 orders in similitude (Lepidoptera and ing) and obtaining legal protection for the Coleoptera). species. In North Africa further research into The absence of Orthoptera in the diet of population trends, establishment and man- Myotis punicus in Algeria suppose that there agement of protected areas, education, and is a concurrence with the other species of bats implementation of national-scale legislation eating insect > 10 mm (Rhinolophus fer- are needed (Aulagnier et al. 2008).

50 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-04:Mise en page 1 12/07/11 9:10 Page 51

The diet of the Maghrebian mouse-eared bat Myotis punicus (Mammalia, Chiroptera) in Kabylia, Northern Algeria

References Borg J.J., 1998. The Lesser Mouse-eared Bat Myotis blythi punicus Felten, 1977 in Malta. Notes on sta- tus, morphometrics, movements, and diet (Chirop- Agnelli P., Martinoli A., Patriarca E., Russo D., Scara- tera, Vespertilionidae). Naturalista Siciliano 22 (3- velli D. & Genovesi P. (a cura di), 2004. Guidelines 4): 365-374, 1998. for bat monitoring: methods for the study and Castella V., Ruedi M., Excoffier L., Ibanez C., Arlettaz conservation of bats in Italy. Quad. Cons. Natura, R. & Hausser J., 2000. Is the Gibraltar Strait a bar- 19, Min. Environment, National Wildlife Institute. rier to gene flow for the bat Myotis myotis (Chi- Arlettaz R., Ruedi M., Ibanez C., Palmeirim J. & Haus- roptera: Vespertilionidae), Mol. Ecol. 9: 1761-1772. ser J., 1997. A new perspective on the zoogeogra- Hutson A.M., Mickleburgh S.P. & Racey P.A. (comp.), phy of the sibling mouse-eared bat species Myotis 2001. Microchiropteran bats: global status survey myotis and Myotis blythii: morphological, genetical and conservation action plan. IUCN/SSC Chirop- and ecological evidence. J. Zool., Lond. 24 2: 45- tera Specialist Group. IUCN, Gland, Switzerland 62. and Cambridge, UK, X + 258 p. Aulagnier S., Juste J., Karata A., Palmeirim J. & Pau- Kervyn T., 1998. Méthodes de détermination du régime novi M., 2008. Myotis punicus. In: IUCN 2009. alimentaire des Chiroptères insectivores. Arvicola IUCN Red List of Threatened Species. Version 1998 6 Actes « Amiens 97 » : 53-56. 2009. 2. Shiel C. et al., 1997. Identification of Arthropod Frag- Bellatreche M., 1994. Écologie et biogéographie de ments in Bat Droppings – occasionnal publication l’avifaune nicheuse forestière de la Kabylie des no 17, The Mammals society, 53 p. Babors (Algérie), Thèse. doct. Université de Bour- gogne (France), 143 p. Vaughan N., 1997. The diets of British bats (Chirop- tera). Mammal. Rev. 27(2): 77-94. Beuneux G., 2004. Morphometrics and ecology of Myo- tis cf. punicus (Chiroptera,Vespertilionidae) in Cor- sica. Mammalia 68 (4): 269-273.

ecologia mediterranea – Vol. 37 (1) – 2011 51 ecol-med-37-1-05-b:Mise en page 1 12/07/11 9:11 Page 53

Habitat heterogeneity and soil-vegetation relations in south of the Nile Delta, Egypt Hétérogénéité des habitats et relations entre le sol et la végétation dans le sud du delta du Nil, Égypte

Monier M. ABD EL-GHANI*1, Maged M. ABOU-EL-ENAIN2, A. I. ABOEL-ATTA2 & Ethar A. HUSSEIN2 1. The Herbarium, Faculty of Science, Cairo University, P.C. 12613, Giza, Egypt 2. Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Roxy, Heliopolis, P.C.11757, Cairo, Egypt * Author for correspondence (e-mail: [email protected])

Abstract to the gradient of human interference. Canon- ical Correspondence Analysis (CCA) produced a Floristic composition and soil characters in rep- similar pattern to that of the floristic Detrended resentative habitats of the southern Nile Delta Correspondence Analysis (DCA) and revealed region in Qalyubia were analyzed in terms of that, the weed plants (i.e. vegetation group A) habitat variations and species diversity. A total were highly associated with organic matter, of 90 sites were surveyed and nineteen envi- phosphorus, potassium, saturation percentage, ronmental factors were recognized in four main potassium cations and pH; the Halo/Helophytic habitats: canal banks, cultivated lands, waste plants (group B) with bicarbonates, sulphates, lands and sandy plains. Basic statistical treat- calcium, magnesium and sodium; the xerophetic ments were established by using SPSS v. 10.0. plants (group C) with CaCO and pH. The produced data were subjected to cluster 3 analysis by using MVSP v. 3.1; indirect and direct ordination methods i.e. Detrended and Canon- ical Correspondence analyses, respectively by using CANOCO v. 4.5. A total of 164 species rep- Introduction resenting c. 7.7% of the Egyptian plant species were recorded and their life-form spectrum was identified. The majority of species were belong- Plant formations are the largest and most ing to the families: Gramineae, Compositae, complex units of vegetation and represent the Leguminosae and Cruciferae. The floristic simi- level at which most world maps are compiled. larity between the recognized habitats showed Their distribution is generally determined by a significant positive correlation between the climate and influenced by biotic factors and canal banks and cultivated lands. Cynanchum acutum subsp. acutum, Cynodon dactylon, soil characteristics (Parker 1991). The differ- Phragmites australis and Pluchea dioscoridis ences in soil conditions produced by interac- were of high ecological amplitude. Three main tion of climate, topography and vegetation vegetation groups (i.e. weeds, halo/ helophytes over the time have a profound effect on the and xerophytes) were recorded, and their con- plant communities and other biological sys- trolling ecological factors were identified. Ordi- tems that they support. In Egypt, the Nile sys- nation analysis reveled that, the three groups were well segregated along the DCA axis 1, and tem includes a number of soil types among were highly related to calcium carbonates, fer- different habitats, which are formed and/or tility and species diversity gradients in addition greatly influenced by the water of the River Nile. Some of these habitats are natural e.g. coastal dunes, salt marshes and brackish shal- Keywords: Weeds, Multivariate analysis, Plant low lakes. The others are man-made e.g. canal diversity, CCA, agro-ecosystem. banks of irrigation water and drains, roads and

ecologia mediterranea − Vol. 37 (1) − 2011 53 ecol-med-37-1-05-b:Mise en page 1 12/07/11 9:11 Page 54

MONIER M. ABD EL-GHANI,MAGED M. ABOU-EL-ENAIN, A. I. ABOEL-ATTA,ETHAR A. HUSSEIN

Figure 1 − Map of the Nile Delta region showing the study area.

railway lines, waste ground and the aban- main habitats of Qalyubia Governorate and doned and cultivated fields (Shaltout & Sharaf assessing the soil-vegetation relationships that El-Din 1988; Zahran & Willis 1992). affect plant species distribution in the area. Correlation of soil features and vegetation zones in natural or man made habitats of the Nile Delta region has been investigated by The study area many authors e.g. Shaltout & Sharaf El-Din The Nile Delta is a classic delta with a trian- (1988), Shaltout et al. (1992; 1994), Shaltout gular shape situated in North Egypt where the & El-Sheikh (1993), Hassan (2002) and Abd Nile River spreads out and drains into the Al-Azeem (2003). The aquatic ecosystems Mediterranean Sea. Its area is approximately vegetation in such region particularly that of 22,000 km2 and comprises about 63% of the irrigation and drain canal banks were also Egyptian agricultural area (Abu Al-Izz 1977). investigated by Shaltout et al. (1994), Serag The area chosen for the present study i.e. & Khedr (1996) and Mashaly et al. (2001; Qalyubia is located as a pear-shape at south- 2003; 2009). However, in Qalyubia the sub- ern of the Nile-Delta, east of Damietta branch ject matter of the present study, sporadic between 31o 5’, 31o 25’N and 30o 07’ and 30o works that almost restricted to one or two 35’E (Figure 1). It is bordered by each of habitats have been made e.g. Shams et al. Dakahliya and Menoufiya from the north, (1986) on the aquatic habitat; Shams et al. Sharkiah from the east, Menoufiya from the (1987a) on the uncultivated land; Shams et al. west and by each of Giza and Cairo from the (1987b) on the natural vegetation of Khanka- south (Abd-El-Aal 1983). The total cultivated Abu Zaabal areas; El-Sheikh et al. (2004) and area of Qalyubia is about 213456 Acres (Abd- Galal & Khalafallah (2007) on gardens and El-Wahab 2004). flowerbeds in each of El-Qanatir Public Park and Abu-Za’abal artificial wetland, respecti- Climatically the study area can be classified vely. On the other hand, only two studies as arid where the rainfall takes place only dur- (Hassan 2001; Shaltout et al. 2005) had ing the period from November to February. included a number of habitats in south Nile The annual mean temperature varies between Delta but none of them was intended for 14.1 oC and 19.4 oC during winter and 24.5 oC Qalyubia Governorate in the broad sense. The to 29.4 oC during summer. The mean relative present work aims at: analyzing the floristic humidity ranges from 45.7% in May, to 60% composition and soil characteristics of the in December. Evaporation is greater during

54 ecologia mediterranea − Vol. 37 (1) − 2011 ecol-med-37-1-05-b:Mise en page 1 12/07/11 9:11 Page 55

Habitat heterogeneity and soil-vegetation relations in South of the Nile Delta, Egypt

summer than in winter months; it ranged Materials and Methods between 5.2mm/day in December and 9.1 mm/day in August. The maximum amount Field data of the floristic composition was of total annual rainfall ranged between gathered following intensive field work dur- 16.3 mm in February and 28.45 mm in March. ing 2008-2010. A total of 90 plots were The average long-term of climatic data over selected to represent as much as possible the 10 years (from 1999-2009) for this region is variation of vegetation. In each plot with a obtained from Egyptian Meteorological size of 1/2 Acre (ca. 2100 m2), the species Department, Cairo. The area slopes gradually were recorded; their voucher specimens were from south to north-east where the elevation collected and identified at the herbarium of reaches 17 meters above sea level in the south Cairo University (CAI). Taxonomic nomen- and less gradually in north-east up to clature was according to Täckholm (1974), 10 meters. Generally, the relief is fairly uni- updated by Boulos (1995; 1999; 2000; 2002; form apart from the eastern edge of the Gov- 2005). Life-form categories were identified ernorate where it exceeds 20 meters above sea according to Raunkiaer’s system of classifi- level. cation (Raunkiaer 1934). Three geomorphologic units are found in the study area i.e. young alluvial plain, old allu- Four main habitats were considered: (1) Canal vial plain and structural plain; which are banks, consisted of the water course itself (the sometimes covered with sand (SMFL 1999). wetted channel), and the associated land or The young alluvial plains occupy most of the riparian zone viz. slope and embankment; Governorate and are characterized by the (2) Cultivated lands, represented by the arable presence of agricultural land and irrigation lands occupied by field crops and Citrus spp. network. Silt and deposits of the Holocene era orchards. Agriculture in the study area follows cover these plains whereas in some places the general Egyptian pattern i.e. summer and Pleistocene deposits are present which are winter crops (the seasonal sequence). The composed of sandy islands surrounded by main included crops were the Egyptian clover agricultural lands. Old alluvial plains are (Trifolium alexandrinum L.) and wheat located in the south-eastern part of Gover- (Triticum vulgare L.) as winter crops, maize norate and are covered with deposits of peb- (Zea mays L.) and Rice (Oryza sativa L.) as bles, sand and mud lenses of the Pleistocene summer crops; (3) Waste lands, represented era. These sediments appear as sandy islands by the barren or desolate areas of lands, not in a few areas inside the young alluvial plains. or no longer used for cultivation. The salt- The structural plains region located at the affected areas (not salt marshes) that found south-eastern edge of Governorate are cov- either adjacent to the farmlands or around the ered with deposits of triple era including sand, irrigation canals and may be saturated with pebbles and calcareous sand stone that are drainage water including a high amount of belonging to Miocene era and basalt rocks of soluble matter (Zahran 1972; Shaltout & El- Oligocene era. Sheikh 1993); (4) Sandy plains, consisted of sandy deposits that had low water retention Surface water in the study area includes capacity and low capillary power. Arid zones Damietta branch (east of Governorate), Al- are characterized by minimal precipitation Riah El-Tawfiki irrigation canals (Ismailia, and frequent droughts (Mabbutt 1977). Basosia, Sharkawia canals and others) and a group of drainage canals. Their water level For each sampled plot, three soil samples increases in summer and decreases in winter, were collected from profiles of 0-40 cm; and the direction of water movement is from pooled together to form one composite sam- south to north (SMFL 1999). The vegetation ple; air-dried and thoroughly mixed. Textures is strongly affected by soil fertility in relation were determined with the international pipette to precipitations of the organic matters and method, providing quantitative data on the minerals. These and other dissolved sub- percent sand, silt and clay. CaCO3 was deter- stances were found with large quantities in the mined by Collin’s calcimeter. Organic matter water of River Nile, but greatly decreased was estimated by the Walkley-Black method after the establishment of the High Dam (Upadhyay & Sharma 2002). Soil-water (Shams et al. 1986). extract (1: 2.5) w/v were prepared for the determination of electric conductivity (EC; mS cm-1) using conductivity meter, pH using pH-meter, whereas estimation of chlorides

ecologia mediterranea − Vol. 37 (1) − 2011 55 ecol-med-37-1-05-b:Mise en page 1 12/07/11 9:11 Page 56

MONIER M. ABD EL-GHANI,MAGED M. ABOU-EL-ENAIN, A. I. ABOEL-ATTA,ETHAR A. HUSSEIN

was carried out by titration methods using percentage, pH, electric conductivity (EC), - - 0,005 N silver nitrate (Hazen 1989; Kolthoff chlorides (Cl ), bicarbonates (HCO3 ), sul- -2 + + & Stenger 1974). Carbonates and bicarbon- phates (SO4 ), sodium (Na ), potassium (K ), ates were determined by titration against calcium (Ca++), magnesium (Mg++) and 0.1 N HCl (Allen et al. 1974). Sulphate con- macronutrients (N, P, K). All the default set- tent was calculated by difference between tings were used for CCA, and a Monte Carlo anions and cations. Determination of calcium permutation test (499 permutations; Ter Braak and magnesium were carried out by titration 1994) was used to test for significance of the methods with 0,01 N EDTA (Upadhyay & eigenvalues of the first canonical axis. Intra- Sharma 2002). Sodium and potassium were set correlations from the CCA’s were used to determined using flame photometer technique assess the importance of the environmental (Jackson 1962). Available nitrogen in the soil variables.

samples was extracted with 1% K2SO4, then analyzed using the Devarda’s alloy micro- Kjeldahl procedure and the steam distillation system (Page 1982), whereas available phos- Results phorus was determined calorimetrically by ascorbic acid method (Watanabe & Olsen In total, the recorded number of vascular 1965). Available potassium was determined plants in the present study is 164 species that by using flame-photometer according to belong to 133 genera and 48 families (Appen- Soltanpour (1985). dix 1). The most species-rich families are In order to obtain an effective analysis of the Gramineae (33 species), Compositae (15), vegetation and related environmental factors, Leguminosae (12), Cruciferae (10), Chenopo- both classification and ordination techniques diaceae (8), Convolvulaceae (5), Cyperaceae were employed. A floristic data matrix of 90 (5), Euphorbiaceae (5) and comprise about plots and 164 species was subjected to classi- 56.7% of the recorded species. fication by cluster analysis of the computer program MVSP version 3.1 (Kovach 1999) Analyzing the life form spectra (Figure 2; using squared Euclidean distance dissimilar- Appendix 1) in the study area revealed that, ity matrix with minimum variance (also called therophytes are the predominant life form and Ward’s method) as agglomeration criterion constituted 50% of the total flora. The other (Orlóci 1978). The computer program recorded forms with a descending arrange- CANOCO v. 4.5 (Ter Braak 2003) was used ment are cryptophytes (20.7%), hemicrypto- for all ordination analyses; whereas the com- phytes (10.4%), phanerophytes (9.1%), puter program SPSS v. 10.0 (SPSS 1999) was chamaephytes (8.5%) and parasites (1.2%). used for all the statistical treatments. The percentage of life-span in the present Detrended Correspondence Analysis (DCA), study (Figure 3) showed that, annuals − as an indirect gradient analysis technique, was expected − came on top with a percentage of used to identify the main gradients that influ- 55.5%, followed by perennial herbs, shrubs, ence species distribution. Preliminary analy- trees and biennials with percentage of 27.4%, ses were made by applying the default option 9.1%, 5.5% & 2.5%, respectively. of DCA (Hill & Gauch 1980) to check the The species distribution in the study area magnitude of change in species composition (Appendix 1) indicates that, some species along the first axis (i.e. gradient length in have been recorded in all or most of the habi- standard deviation (SD) units). In the present tats (e.g. Pluchea dioscoridis, Cynodon dacty- study, DCA estimated the compositional gra- lon and Phragmites australis). On the other dient in the vegetation data to be larger than hand, seventy-nine species (48.2% of the 4.0 SD-units for the first axis, thus, Canoni- total) are distributed as follows: 21 in the cal Correspondence Analysis (CCA) is the canal banks (e.g. Salix mucronata, Mentha appropriate ordination method to perform longifolia subsp. typhoides, Eichhornia cras- direct gradient analysis (Ter Braak 2003). Ter sipes, Phyla nodiflora and Ceratophyllum Braak (1986) suggests using DCA and CCA demersum), 23 in the cultivated lands (e.g. together to see how much of the variation in Lolium perenne, Fumaria densiflora, Lepid- species data was accounted for by the envi- ium sativum and Physalis angulata), 13 in the ronmental data. Nineteen environmental fac- waste lands (e.g. rigidus, J. acutus, tors were included: coarse sand, fine sand, Cyperus laevigatus, Cressa cretica and

silt, clay, CaCO3, organic matter, saturation Bacopa monnieri) and 22 in the sandy plains

56 ecologia mediterranea − Vol. 37 (1) − 2011 ecol-med-37-1-05-b:Mise en page 1 12/07/11 9:11 Page 57

Habitat heterogeneity and soil-vegetation relations in South of the Nile Delta, Egypt

Parasites 1,2 % Phanerophytes

9,1 % Chamaephytes 8,5 %

Hemicryptophytes Therophytes 50 % 10,4 %

20,7 %

Cryptophytes

Figure 2 − Life form spectra of the vascular flora of the study area.

Perennial trees and shrubs

9,1 %

27,4 % Perennial herbs Annuals 55,5 %

2,5 % Biennials

Figure 3 − Longevity (life span) of the vascular flora of the study area.

(e.g. Convolvulus lanatus, Fagonia arabica, Haloxylon salicornicum, Moltkiopsis ciliata and Panicum turgidum). Classification of the presence-absence data set of 164 species recorded in 90 plots using the cluster analysis yielded three vegetation groups i.e. A, B & C (Figure 4; Table 1; Appendix 1). These groups included three common species viz. Cynanchum acutum subsp. acutum, Pluchea dioscoridis and Phragmites australis. Group A included 50 plots from canal banks and cultivated lands less commonly species (P = 48-26%) Euphor- Figure 4 − and comprises 124 species, of which 114 are bia helioscopia, Amaranthus hybridus, The produced dendrogram based confined to this group; amongst others; Melilotus indicus and Polypogon monspelien- on cluster analysis Echinochloa colona, Euphorbia peplus, Tri- sis are reported. Sporadically recorded plants of the recognized folium resupinatum, Cyperus difformis and included 87 species e.g. Brassica tournefor- 90plots in the study area, showing the Acacia nilotica. The leading dominant species tii, Euphorbia forsskaolii, Sida alba, Azolla three separated (P = 76%) are Convolvulus arvensis and Dig- filiculoides and Ranunculus marginatus. It vegetation groups itaria sanguinalis. Thirteen common species also characterized by occurrence of water-lov- (A-C). are also observed (P = 74-52%); e.g. Portu- ing species, such as Echinochloa colona, laca oleracea, Sonchus oleraceus, Oxalis cor- Cyperus rotundus, Paspalidium geminatum niculata and Cynodon dactylon. Among 22 and Phragmites australis, and salt-tolerant

ecologia mediterranea − Vol. 37 (1) − 2011 57 ecol-med-37-1-05-b:Mise en page 1 12/07/11 9:11 Page 58

MONIER M. ABD EL-GHANI,MAGED M. ABOU-EL-ENAIN, A. I. ABOEL-ATTA,ETHAR A. HUSSEIN

Table 1 − Mean values, standard deviations (± SD) and ANOVA F-values of the soil variables of the three vegetation groups obtained by cluster analysis. CS = coarse sand, FS = fine sand, O.M. = organic matter, S.P. = saturation percentage, pH = soil reaction, - - -2 +2 +2 E.C. = electrical conductivity, Cl = chlorides, HCO 3 = bicarbonates, SO 4 = sulphates, Ca = calcium, Mg = magnesium, Na+ = sodium, K+ = potassium, N = available nitrogen, P = available phosphorus and K = available potassium. * = P ≤ 0.05 and ** = P ≤ 0.01.

Soil Units Total mean Vegetation groups F-ratio P variables ABC CS % 20.33 ± 13.60 10.90 ± 10.49 30.38 ± 6.88 33.84 ± 1.83 69.21 0.000** FS 27.39 ± 11.11 19.49 ± 8.28 36.02 ± 4.88 38.53 ± 2.15 79.07 0.000** Silt 28.83 ± 10.21 35.70 ± 8.41 21.12 ± 4.63 19.39 ± 2.0 58.77 0.000** Clay 23.45 ± 14.54 33.91 ± 10.37 12.50 ± 7.16 8.25 ± 2.13 85.92 0.000** O.M. 0.27 ± 0.09 0.33 ± 0.07 0.20 ± 0.03 0.18 ± 0.02 71.43 0.000**

CaCO3 4.42 ± 1.04 3.97± 0.80 4.83 ± 1.35 5.13 ± 0.62 13.90 0.000** S.P. 39.34 ± 15.32 50.50 ± 11.76 25.50 ± 2.08 25.27 ± 0.71 88.83 0.000** pH - 7.91 ± 0.38 7.90 ± 0.33 7.83 ± 0.50 8.03 ± 0.33 1.50 0.229 E.C. mS cm-1 5.46 ± 4.09 4.31 ± 1.70 10.42 ± 6.0 3.39 ± 1.04 33.04 0.000** - HCO3 meq/l 3.67 ± 1.41 3.24 ± 1.15 5.40 ± 1.21 3.04 ± 0.67 33.26 0.000** Cl- 48.18 ± 38.88 37.40 ± 15.48 94.57 ± 58.33 28.76 ± 9.64 31.39 0.000** -2 SO4 2.78 ± 1.17 2.51 ± 1.04 4.15 ± 0.92 2.10 ± 0.31 30.82 0.000** Ca+2 8.03 ± 4.33 6.58 ± 2.69 13.16 ± 5.66 6.51 ± 1.18 29.79 0.000** Mg+2 5.11 ± 2.62 4.07 ± 1.53 8.39 ± 3.27 4.44 ± 0.92 36.17 0.000** Na+ 40.55 ± 34.07 31.40 ± 13.33 81.36 ± 50.88 22.61 ± 8.74 32.20 0.000** K+ 0.97 ± 0.53 1.12 ± 0.39 1.25 ± 0.59 0.33 ± 0.15 32.95 0.000** N ppm 41.51 ± 32.26 64.08 ± 24.86 16.16 ± 15.44 10.42 ± 2.73 71.75 0.000** P 8.32 ± 5.76 12.44 ± 4.29 3.55 ± 2.48 2.80 ± 1.0 80.14 0.000** K 133.18 ± 48.55 166.20 ± 41.96 93.48 ± 3.82 90.33 ± 5.03 61.36 0.000** Species richness (SR) 16.68 ± 9.41 24.44 ± 3.92 7.60 ± 2.54 6.35 ± 3.30 273.22 0.000** Shannon’s index (H’) 2.57 ± 0.80 3.18 ± 0.16 1.96 ± 0.40 1.66 ± 0.73 129.75 0.000**

species such as Cynanchum acutum subsp. (P=50-30%). Also, seventeen sporadic acutum and Beta vulgaris subsp. maritima. species are recorded e.g. Aeluropus Canal banks’ vegetation is very rich, and with lagopoides, Bacopa monnieri and Silybum noticeable stratification. It is inhabited by marianum. Their soil exhibited the highest some trees and shrubs such as Acacia nilot- values of E.C., bicarbonates, chlorides, sul- ica, Salix mucronata and Pluchea dioscoridis, phates, Ca+2, Mg+2, Na+ and K+ and the low- perennial herbs such as Verbena officinalis, est value of pH. Oxalis corniculata, Phragmites australis and Group C comprises 31 species and 20 plots Phyla nodiflora and annual herbs such as from sandy plains. It is characterized by the Conyza bonariensis, Ranunculus sceleratus dominance of Haloxylon salicornicum and Eclipta prostrata. This group is charac- (P=95%). Commonly recorded species terized by soil with highest content of silt, (P = 55%) are Convolvulus lanatus, Cornu- clay, organic matter, saturation percentage, laca monacantha and Echiochilon fruticosum. nitrogen, phosphorus and potassium and the Less common recorded species (P = 45-30%) lowest values of coarse sand, fine sand, are Heliotropium digynum, Tamarix nilotica, +2 CaCO3 and Mg . Cynanchum acutum subsp. acutum and Group B included 20 plots from waste habi- Moltkiopsis ciliata. Twenty-three species are tats and comprises 27 species from which 13 occasionally recorded e.g. Bassia muricata, are confined to this group e.g. Juncus acutus, Calligonum polygonoides, Centaurea calci- Cressa cretica, Pulicaria undulata and trapa and Tribulus bimucronatus var. bispin- Sonchus maritimus. The leading dominant ulosus. The group is characterized by the soil species in group B is Alhagi graecorum of highest values of coarse sand, fine sand, (P=100%), whereas commonly recorded CaCO3 and pH, and the lowest values of silt, species (P=65-60%) are Juncus rigidus, clay, organic matter, saturation percentage, +2 Phragmites australis, Desmostachya bipin- E.C., bicarbonates, chlorides, sulphates, Ca , + + nata, Pluchea dioscoridis and Tamarix nilot- Na and K , nitrogen, phosphorus and potas- ica. On the other hand, Cyperus laevigatus, sium. Conyza bonariensis, Bassia indica and Typha Soil characteristics of each of the three vege- domingensis showed less common presence tation groups are given in Table 1. The corre-

58 ecologia mediterranea − Vol. 37 (1) − 2011 ecol-med-37-1-05-b:Mise en page 1 12/07/11 9:11 Page 59

Habitat heterogeneity and soil-vegetation relations in South of the Nile Delta, Egypt

lations between the measured soil variables are given in Table 2. The ordination graph of the recorded species in the recognized 90 plots along the first two axes of the DCA is illustrated in Figure 5. The first (Eigenvalue = 0.922) and the second (Eigenvalue = 0.394) axes accounted for 9.292% and 3.967%, respectively of the overall floristic variance. CCA draw showing distribution of the recog- nized 90 plots in relation to their vegetation groups and soil variables is illustrated in Fig- N P K SR ure (7). The results of ordination for the three

CCA axes, inter-set correlation of the soil + K variables, together with Eigen values and species-environment correlation are given in +

Table 3. Na +2 Mg Discussion +2 Floristic composition Ca - The species recorded (164 in 4 SO total) in the study area represent about 7.7% of the Egyptian flora (Boulos 1995). The fam- -

ilies with the highest richness recorded by this Cl study are compatible with the data of Quezel - (1978) who reported that, Gramineae, Com- 3 0.01.

positae, Leguminosae, Cruciferae, Chenopo- ≤

diaceae, Convolvulaceae, Cyperaceae and = P

Euphorbiaceae are among the most common ** families in the Mediterranean North African flora. On the other hand, the relatively high 0.05 and

number of species recorded in the families ≤

Gramineae, Compositae, Leguminosae and = P Cruciferae are in accordance with the study *

by Abd El-Ghani & El-Sawaf (2004) who S.P. pH E.C. HCO considered these to be the main families as they include the majority of alien plant 3 species in the agro-ecosystem either in Egypt (48.9%) or in adjacent countries. A compari- son of the families in terms of the largest species number in the present investigation and in other previous studies; e.g. Mashaly (1987) on the North-East Nile Delta, Abd Al- Azeem (2003) on the Nile Delta region and Abd Alla (2007) on the Sharkiya Governorate, corroborate this conclusion. Dominance of the therophytes among the recorded life form spectrum (Appendix 1) of the studied flora seems to be a response to hot-dry climate, topographic variation and NSNS NS NS NS NS NS -.249* NS .299** NS NS .221* NS NS .793** 1.000 NS .774** .814** .754** 1.000 NSNS NS NS NS NS NS NS NS NS .247* .438** NS -.225* .356** 1.000 1.000 NS NSNS NS NS NS NS NS NS .443** -.226* NS .363** .999** .424** .772** -.218* 1.000 .367** .998** .774** .999** .760** .914** .924** 1.000 .984** 1.000 .551** .500** -.553** -.509** -.500** 1.000 .227*.309** .230* .310** -.256* -.331** -.294** -.208* -.352** -.300** .495** .504** -.337** -.236* .271** .284** .940** .935** .806** .836** .936** .929** .758** .799** .936** 1.000 1.000 -.989** -.988**-.993** 1.000 -.991**-.789** -.789** .977** 1.000 .774** .798** 1.000 -.734** -.747**-.649** -.659** .704** .620** .763** .675** .768** -.465** .664** -.472** .774** .702** NS NS -.279** -.263* -.238* -.278** -.217* NS -.238* NS -.345** -.429** -.292** -.263* -.381** .314** -.223* .726** .316** .750** .640** .740** .655** 1.000 .677** .937** -.931** -.926** .919** .933** .780** -.498** 1.000 biotic influence that characterize the study -.394** -.393**-.978** -.962** .357**-.964** -.955** .965** .418**-.926** -.935** .948** .973** .330** .929** .966** .803** NS .928** -.548** .785** -.493** .950** .755** .348** -.521** .944** NS .229* .940** NS .700** NS NS .534** NS .699** NS NS .591** NS .626** NS NS .559** NS .701** -.207* 1.000 NS NS NS -.229* -.251* -.226* -.308** -.329** -.313** NS NS NS .405** 1.000 .351** .394** .942** .975** 1.000 .933** 1.000 For abbreviations, see Table 1. NS = non-significant values. area. Heneidy & Bidak (2001) reported that 3 - 3 - +2 4 + +2

“the short life cycles of field crops (the most - + K Silt Clay O.M. CaCO Soilvariables CSFS FS Silt Clay O.M. CaCO SR H’ Cl Ca S.P. pH E.C. HCO Mg Na N P K prominent land use in the study area) in addi- SO Table 2 − Summary of Pearson’s correlations between soil variables, species richness (SR) and Shannon’s index (H’).

ecologia mediterranea − Vol. 37 (1) − 2011 59 ecol-med-37-1-05-b:Mise en page 1 12/07/11 9:11 Page 60

MONIER M. ABD EL-GHANI,MAGED M. ABOU-EL-ENAIN, A. I. ABOEL-ATTA,ETHAR A. HUSSEIN

8.6

6.9

5.2 C B 3.4 A

1.7 DCA axis 2 (eigenvalue = 0.394)

0.0 0.0 1.7 3.4 5.2 6.9 8.6 DCA axis 1 (eigenvalue = 0.922)

Figure 5 − The Detrended Correspondence Analysis (DCA) ordination draw of the recognized 90 plots in the study area, represent the three cluster groups (A-C) superimposed. Figure 6 − Canonical Correspondence Analysis (CCA) biplot of axes 1 and 2 showing the distribution of the recognized 90 plots in the study area, with their vegetation groups and soil variables.

Table 3 − The results of ordination for the three CCA axes, inter-set correlation of the soil variables, together with Eigen values and species−environment correlation. For abbreviation and units see Table 1. Figures in bold indicate gradient of axis.

Ordination DCA axis CCA axis Parameter 12 3 1 23

Eigen values 0.922 0.394 0.288 0.697 0.431 0.193 Species-environment co. 0.819 0.285 0.380 0.904 0.795 0.862 O.M. -0.6800 -0.1397 -0.0643 -0.6972 0.2326 -0.0098

CaCO3 0.4417 0.1031 0.0709 0.4365 -0.1101 0.5429 S.P. -0.6696 -0.1777 -0.0071 -0.7206 0.2131 0.2234 pH 0.0303 0.0460 0.1642 -0.0154 -0.1525 0.0677 - HCO3 0.2302 0.0422 -0.0938 0.3782 0.3729 0.0969 -2 SO4 0.1629 0.0202 -0.0817 0.3077 0.3816 0.1271 Ca+2 0.2633 0.0024 -0.1333 0.4237 0.3749 0.2001 Mg+2 0.3421 0.0798 -0.0920 0.5099 0.3938 0.1737 Na+ 0.2222 0.0292 -0.1213 0.4235 0.5214 0.1818 K+ -0.3569 -0.0799 -0.1077 -0.2264 0.5515 -0.0031 P -0.7012 -0.2185 -0.0078 -0.7419 0.2280 0.1622 K -0.6138 -0.1682 -0.0181 -0.6527 0.2007 0.1460

tion to the adverse climatic conditions and explained in term of the plant habit, where moisture deficiency probably lead to the fre- almost all of these plants are rhizomatous (e.g. quent occurrence of therophytes during the Cynodon dactylon, Juncus rigidus and Phrag- favourable seasons” which supports the pres- mites australis), which are believed to be ent conclusion. On the other hand, inspection more resistant to decomposition under water of the life form spectrum in relation to habi- submergence. Similar conclusion has been tat types revealed that, at the time in which reached by El-Demerdash (1984), Mashaly therophytes are reported in almost all the (1987), Shaltout & Sharaf El-Din (1988) and studied habitats, cryptophytes are the most Shaltout et al. (1994). common in waste lands (Appendix 1). This is compatible with the report of Zahran (1982) Abd El-Razik et al. (1984) reported that, the who clarified that, cryptophytes are among dominant perennials in arid desert regions the most abundant life forms in halophytic were trees, shrubs (or subshrubs) and peren- vegetation of Egypt. This finding can be nial herbs. Some of these perennials are

60 ecologia mediterranea − Vol. 37 (1) − 2011 ecol-med-37-1-05-b:Mise en page 1 12/07/11 9:11 Page 61

Habitat heterogeneity and soil-vegetation relations in South of the Nile Delta, Egypt

Table 4 − The floristic similarity between the different habitats in the study area. CB = canal banks, CL = cultivated lands, WL = waste lands and SP = sand plains.

Habitats CB CL WL SP

CB CL .801** WL NS -.163* SP -.224** -.182* NS Total number of species 100 97 27 31

drought enduring plants in which the photo- but also they are the least diversified habitats. synthetically and transpiring organs were Thus, the present data are further confirming maintained at nearly constant proportion. In the reports of El-Gharably et al. (1982) and accordance with this report, the composition Abd El-Ghani et al. (2010). of life span (Figure 3) in the recognized habi- Ramakrishnan & Singh (1966) and Täckholm tats of the study area (Appendix 1) revealed (1974) pointed out that, the high ecological that, perennials represent majority of recorded amplitude of a certain species could be species in the sand plains and waste land habi- explained due to presence of ecological races tats, whereas annuals are the most common in suited to specific habitat conditions and the canal banks and cultivated lands. Abd El- very effective vegetative spread by runners, in Ghani & Abd El-Khalik (2006) explained addition to seed production of these species. these relationships based on the extensive root Shaltout & Sharaf El-Din (1988) supported systems of the trees and shrubs that are capa- this view and reported that, the flourishing of ble of utilising water stored at different soil some species in many of habitats is related to depths; which is further supported based on their great plasticity under different situations. the present data. These explanations are strongly supported by the present investigation based on habits of El-Gharably et al. (1982) reported an increas- the recorded species in each of the recognized ing spread of aquatic weeds in the irrigation habitats. The species distribution of the study and drainage canals of the Nile Delta and area (Appendix 1) indicated that, some attributed this finding to some ecological fac- species e.g. Pluchea dioscoridis, Cynodon tors e.g. increasing pollution from agricultural dactylon and Phragmites australis have been practices, industrial centers and human activ- recorded in all or most of the habitats (i.e. ity along canals and drains. In a recent study have a wide ecological range of distribution) on macrophytic vegetation in the Nile Delta and at the same time they have very effective region, Abd El-Ghani et al. (2010) supported vegetative spread. On the other hand, because such view as they recorded presence of Cu, of the adaptations to definite habitats; sev- Fe, Hg and Pb traces in the water samples. enty-nine species (48.2% of the total) demon- They monitored significant levels (P < 0.001) strated a certain degree of consistency, where of variation in both Hg and Fe concentrations, they are exclusively recorded or confined to a and attributed it to the industrial activities that certain habitat and do not occur elsewhere. took place through many factories, which had These species are distributed in percentages disposed such harmful and poisonous ele- of 34.44%, 37.72%, 21.32% & 36.08% in ments as waste products to the surrounding each of the canal banks, cultivated lands, Nile water. In the present study, the floristic waste lands and sand plains, respectively. similarity between recognized habitats (Table 4) revealed a frequent spread of the aquatic weeds in all canals and showed a sig- Classification of vegetation nificant positive correlation between the canal banks and cultivated lands habitats. They are Vegetation group A of the present study (Fig- the more diversified habitats with high species ure 4; Table 1; Appendix 1) is dominated by richness (Appendix 1). This may be due to the weed plants with some trees and shrubs. It is fact that water of irrigation canals may seep characterized by the occurrence of water-lov- the canal borders and hence increase the soil ing species and salt-tolerant species. Similar moisture availability. On the other hand, not group has previously been recognized by Abd only the waste lands and sand plains have sig- El-Ghani (1998) in southern Sinai; Shaltout nificant positive correlations with each other, & El-Halawany (1992) in the perennial grassy

ecologia mediterranea − Vol. 37 (1) − 2011 61 ecol-med-37-1-05-b:Mise en page 1 12/07/11 9:11 Page 62

MONIER M. ABD EL-GHANI,MAGED M. ABOU-EL-ENAIN, A. I. ABOEL-ATTA,ETHAR A. HUSSEIN

communities of Saudi Arabia; Shaltout et al. rus and available potassium. Calcium, mag-

(1992) in the winter weeds associations in the nesium and CaCO3 correlated negatively with Nile Delta region. This indicates the consid- organic matter, saturation percentage, N, P erable homology in soil characteristics and and K. Also significant negative correlations plant distribution in the study area and in such are occurred between the other soil variables locations. such as chlorides with potassium, and satura- Group B (Figure 4; Table 1; Appendix 1) is tion percentage with E.C., chlorides and mainly dominating by Halophytic and Helo- sodium. phytic plants. Five growth forms can be dis- e.g. tinguished: (a) rhizomatous growth form Ordination of plots Juncus rigidus, Typha domingensis and Cype- rus laevigatus; (b) stoloniferous growth form The species-environment correlation is high as in Aeluropus lagopoides and Phragmites (0.819 and 0.285) for DCA axes 1 and 2 (Fig- australis; (c) non-succulent perennial herb ure 5) indicating that, the species data are growth form e.g. Cressa cretica; (d) non-suc- strongly related to the measured environmen- culent frutiscents as in Tamarix nilotica and tal variables. Draw scores of DCA axis 1 and Alhagi graecorum; (e) succulent frutiscents as 2 are positively correlated (0.4417, 0.1031 in Zygophyllum simplex. These data are in respectively) with CaCO3, and negatively accordance with those of Ayyad & El-Gha- (− 0.7012, − 0.2185 respectively) with phos- reeb (1982) and Sheded & Hassan (1998) in phorus. The vegetation groups identified in connection that, this group has analogues in the present study area are well segregated the northern and southern parts of the West- along the DCA axis one; which reflects the ern Desert of Egypt, respectively. calcium carbonates, fertility and species Group C (Figure 4; Table 1; Appendix 1) is diversity gradients. It also are represented the mainly dominated by xerophytic plants espe- gradient of human interference, where the full cially Haloxylon salicornicum and character- man-made vegetation (canal banks and culti- ized by a frequent distribution of Alhagi vated lands) occupied the left negative end of graecorum in each of waste land and sand this gradient, where the less disturbed vege- plain habitats. Twenty-two species showed a tation (waste moist lands) is in the middle and certain degree of fidelity, they do not occur in no man-made vegetation (sand plains) is in other groups e.g. Zygophyllum album, Pan- the right positive end. This finding agrees icum turgidum, Fagonia Arabica and Erodium with those of previous studies on habitats laciniatum. In general, distribution of this types and plant communities in Nile Delta group in the study area is consistent with region (Shaltout & Sharaf El-Din 1988) and reports of Batanouny (1979) and Zahran & in Sharkiya Governorate (Abd Alla 2007). Willis (1992) regarding the distribution of such plants in waste land and sand plain habi- tats. The frequent distribution of Alhagi Soil-vegetation relationships graecorum might support the reports of Kas- sas (1952) and Girgis (1972) whose consid- In CCA data (Figure 6), the successive ered this species as a groundwater-indicating decrease of Eigenvalues of the four CCA axes plant, which needs further investigation. (0.697, 0.431, 0.193 and 0.173 for axes 1, 2, 3 and 4, respectively) reveals a well-structured data set Table (3). The species-environment Soil characteristics correlations are higher for the four axes, explaining 67.5% of the cumulative variance. All of the measured soil variables (Table 1); Due to high inflation factor of coarse sand, except pH; showed highly significant differ- fine sand, silt, clay, E.C., chlorides and nitro- ences between the three vegetation groups. gen, they are removed from the analysis. The correlations between the measured soil Therefore, CCA is performed using 12 soil

variables (Table 2) indicated that calcium, variables (organic matter, CaCO3, saturation magnesium, CaCO3 and potassium cations percentage, pH, bicarbonates, sulphates, cal- had the highest number of correlations. Soil cium, magnesium, sodium, potassium cations, texture (coarse and fine sand, silt and clay) phosphorus and potassium). These results showed highly significant positive or negative reveal an association between vegetation and correlations with each other, and with organic the measured soil variables presented in the +2 + matter, CaCO3, Mg ,K , nitrogen, phospho- biplot. From the inter-set correlations of the

62 ecologia mediterranea − Vol. 37 (1) − 2011 ecol-med-37-1-05-b:Mise en page 1 12/07/11 9:11 Page 63

Habitat heterogeneity and soil-vegetation relations in South of the Nile Delta, Egypt

soil variables and the first three axes of CCA, species richness of group A is related to the it can be inferred that CCA axis 1 is positively increase of soil fertility (organic matter, nitro- correlated with magnesium and negatively gen, phosphorus and potassium). On the other with phosphorus, so this axis can be inter- hand, the low species richness of waste lands preted as magnesium-phosphorus gradient, and sand plains may due to the fact that, most while the second axis is defined by K+ and of its species are highly specific to these habi- pH. A test for significance with an unre- tats of the severe environment (e.g. severe stricted Monte Carlo permutation test (499 aridity and salinity). Whittaker (1972) and permutation) for the Eigenvalue of axis 1 Poole (1974) reported that, communities found to be significant (P = 0.002), indicating occurring in severe environment have a good that the observed patterns did not arise by fit to the geometric series of the niche-pre- chance. The ordination diagram produced by emption that characterizes the communities CCA in Figure (7) showed that the pattern of with low species diversity, which is further ordination is similar to that of the floristic support the present inference. Shaltout (1985) DCA (Figure 5), with most of the plots had reached a similar conclusion concerning remaining in their respective vegetation the communities under stress of aridity and groups. Clearly, weed plants group (Group A) salinity in the Western Mediterranean region is highly associated with organic matter, phos- of Egypt. phorus, potassium, saturation percentage, potassium cations and pH; the Halo/Helo- phytic plants (group B) with bicarbonates, sulphates, calcium, magnesium and sodium, Conclusion while the xerophetic plants (group C) with CaCO3 and pH. It can be concluded that clustering, ordination and statistical approaches in this paper were useful in establishing a scale for classification Species diversity and environment of vegetation in relation to soil characteristics in the most representative habitats of Qalyu- Species diversity (species richness and Shan- bia governorate. This study confirmed the cor- non’s index) varied significantly among the relation between spread of weeds and pollu- recognized vegetation groups (Table 2). Gen- tion that occurs indirectly due to increasing of erally, weed plants showed the highest species urbanization activities on the cultivated lands. richness (24.44 ± 3.92) and Shannon’s index Most of the reported weed plants herein were (3.18 ± 0.16), whereas xerophetic plants water-loving and salt-tolerant species. All of showed the lowest species richness (6.35 ± the measured soil variables except pH; 3.30) and Shannon’s index (1.66 ± 0.73). showed highly significant differences and the Regarding the effect of soil variables on the correlations between the measured soil vari- species diversity (Table 3), both species diver- ables indicated that calcium, magnesium, sity measurements showed similar trend: pos- CaCO and potassium cations had the highest itive correlation with each other, and with silt, 3 number of correlations in affecting the plant clay, organic matter, saturation percentage, distribution. Furthermore, the recognized veg- potassium cations, nitrogen, phosphorus and etation groups were affected by species diver- potassium, and negative correlation with sity gradients and the gradient of human inter- coarse sand, fine sand, CaCO , E.C., bicar- 3 ference. The weed plants showed the highest bonates, chlorides, calcium, magnesium and species richness and diversity in contrary to sodium. xerophytic plants that showed the lowest val- Nilsson et al. (1991) stated that, increasing ues. The high species richness and diversity habitat heterogeneity increases species diver- of the weed plants was related to the increase sity. Comparison of the soil characters in dif- of soil fertility (organic matter, nitrogen, ferent habitats of the study area indicates that phosphorus and potassium). The low species silt, clay, organic matter, nitrogen, phospho- richness and diversity of waste lands and sand rus and potassium increases in the canal banks plains habitats was due to the fact that, most and cultivated lands i.e. dominated by weed of their species were highly specific the plants group (A), while decrease in the waste severe conditions (e.g. aridity and salinity). lands i.e. Halo/Helophytic plants group (B) Most of these habitats included fragile com- and sand plains i.e. xerophytic plants group munities of the urgent need for restoration and (C). Thus, the high species diversity and conservation.

ecologia mediterranea − Vol. 37 (1) − 2011 63 ecol-med-37-1-05-b:Mise en page 1 12/07/11 9:11 Page 64

MONIER M. ABD EL-GHANI,MAGED M. ABOU-EL-ENAIN, A. I. ABOEL-ATTA,ETHAR A. HUSSEIN

Appendix 1 − List of vascular plant species recorded in the study area. Life forms: Ph = phanerophytes, Ch = chamaephytes, H=hemicryptophytes, Cr = cryptophytes, Th = therophytes, P = parasites. Habitats abbreviations: CB = canal banks, CL = cultivated lands, WL = waste lands, SP = sand plains. Figures represent the presence values (P%) for each species.

Species Life-span Life-form Habitats CB CL WL SP

Azollaceae Azolla filiculoides Lam. Ann. Cr 50 0 0 Marsileaceae Marsilea aegyptiaca Willd. Per. Herb H50 0 0 Casuarinaceae Casuarina stricta Miq. ex Aiton Tree Ph 20 000 Salicaceae Salix mucronata Thunb. Tree Ph 35 000 Salix tetrasperma Roxb. Tree Ph 30 000 Moraceae Morus alba L. Tree Ph 15 000 Urticaceae Urtica urens L. Ann. Th 10 36.6 00 Polygonaceae Calligonum polygonoides L. Shrub Ph 00 010 Emex spinosa (L.) Campd. Ann. Th 0 6.6 05 Persicaria salicifolia (Brouss. ex Willd.) Assenov Per. Herb Cr 35 3.3 00 Rumex dentatus L. Ann. Th 70 50 00 Molluginaceae Glinus lotoides L. Ann. Th 00 0 5 Aizoaceae Trianthema portulacastrum L. Ann. Th 45 70 00 Portulacaceae Portulaca oleracea L. Ann. Th 65 80 00 Caryophyllaceae Silene rubella L. var. rubella Ann. Th 15 20 00 Stellaria media (L.) Vill. Ann. Th 45 26.6 00 Polycarpaea repens (Forssk.) Asch. & Schweinf. Per. Herb H00 0 5 Chenopodiaceae Beta vulgaris L. subsp. maritima (L.) Arcang. Ann. Th 35 40 00 Chenopodium ambrosioides L. Ann. Th 50 0 0 Chenopodium murale L. Ann. Th 50 73.3 00 Chenopodium album L. Ann. Th 25 60 00 Bassia muricata (L.) Asch. Ann. Th 00 020 Bassia indica (Wight) A. J. Scott Ann. Th 0030 15 Haloxylon salicornicum (Moq.) Bunge ex Boiss. Shrub Ch 00 095 Cornulaca monacantha Delile Shrub Ch 00 055 Amaranthaceae Amaranthus hybridus L. Ann. Th 35 40 00 Amaranthus lividus L. Ann. Th 25 43.3 00 Alternanthera sessilis (L.) DC. Ann. Cr 15 000 Ranunculaceae Ranunculus sceleratus L. Ann. Th 15 000 Ranunculus marginatus Urv. Ann. Th 0 3.3 00 Ceratophyllaceae Ceratophyllum demersum L. Per. Herb Cr 50 0 0 Fumariaceae Fumaria densiflora DC. Ann. Th 0 3.3 00 Cruciferae Sisymbrium irio L. Ann. Th 0 3.3 00 Rorippa palustris (L.) Besser Ann. Th 25 6.6 00 Brassica tournefortii Gouan Ann. Th 5 13.3 00 Brassica nigra (L.) Koch Ann. Th 15 13.3 00 Eruca sativa Mill. Ann. Th 0 16.6 00 Raphanus sativus L. Ann. Th 10 3.3 00 Lepidium sativum L. Ann. Th 0 3.3 00 Coronopus squamatus (Forssk.) Asch. Ann. Th 40 50 00 Coronopus didymus (L.) Sm. Ann. Th 5 13.3 00 Capsella bursa-pastoris (L.) Medik. Ann. Th 30 33.3 00 Neuradaceae Neurada procumbens L. Ann. Th 00 0 5 Leguminosae Medicago polymorpha L. Ann. Th 0 6.6 00 Medicago intertexta (L.) Mill.var. ciliaris (L.) Heyn Ann. Th 20 20 00 Melilotus indicus (L.) All. Ann. Th 25 36.6 00 Trifolium resupinatum L. Ann. Th 35 13.3 00 Lotus glaber Mill. Ann. H53.3 00 Sesbania sesban (L.) Merr. Tree Ph 10 3.3 00 Alhagi graecorum Boiss. Per. Herb H00 100 5 Vicia faba L. Ann. Th 0 3.3 00 Vicia sativa L. Ann. Th 25 6.6 00 Pisum sativum L. subsp. sativum Ann. Th 0 3.3 00 Acacia nilotica (L.) Delile Tree Ph 50 0 0 Acacia tortilis (Forssk.) Hayne Tree Ph 00 015 Oxalidaceae Oxalis corniculata L. Per. Herb Cr 60 73.3 00 Geraniaceae Geranium dissectum L. Ann. Th 0 3.3 00 Erodium laciniatum (Cav.) Willd. Ann. Th 00 0 5 Zygophyllaceae Fagonia arabica L. Shrub Ch 00 010 Zygophyllum simplex L. Ann. Th 0010 0 Zygophyllum album L. f. Shrub H00 0 25

64 ecologia mediterranea − Vol. 37 (1) − 2011 ecol-med-37-1-05-b:Mise en page 1 12/07/11 9:11 Page 65

Habitat heterogeneity and soil-vegetation relations in South of the Nile Delta, Egypt

Species Life-span Life-form Habitats CB CL WL SP

Tribulus bimucronatus Viv. var. bispinulosus (Kralik) Hosni Ann. Th 00 0 5 Euphorbiaceae Ricinus communis L. Per. Herb Ph 15 000 Euphorbia forsskaolii J.Gay Ann. H513.3 00 Euphorbia heterophylla L. Ann. Th 15 10 00 Euphorbia helioscopia L. Ann. Th 35 56.6 00 Euphorbia peplus L. Ann. Th 30 66.6 00 Tiliaceae Corchorus olitorius L. Ann. Th 0 6.6 00 Malvaceae Malva parviflora L. Ann. Th 65 63.3 00 Sida alba L. Ann. Th 0 6.6 00 Hibiscus trionum L. Ann. Th 0 10 00 Tamaricaceae Tamarix nilotica (Ehrenb.) Bunge Shrub Ph 0060 35 Myrtaceae Eucalyptus camaldulensis Dehnh. Tree Ph 20 000 Onagraceae Ludwigia stolonifera (Guill.& Perr.) P. H. Raven Per. Herb Cr 0020 0 Umbelliferae Ammi majus L. Ann. Th 15 16.6 00 Petroselinum crispum (Mill.) A. W. Hill Bi. Th 0 3.3 00 Anethum graveolens Bi. Th 5 10 00 Primulaceae Anagallis arvensis L. var. arvensis Ann. Th 20 16.6 00 Anagallis arvensis L. var. caerulea Gouan Ann. Th 65 70 00 Asclepiadaceae Cynanchum acutum L. subsp. acutum Per. Herb H533.3 25 30 Convolvulaceae Convolvulus lanatus Vahl Shrub Ph 00 055 Convolvulus arvensis L. Per. Herb H 70 80 00 Ipomoea carnea Jacq. Shrub Ch 3.3 000 Ipomoea purpurea (L.) Roth Ann. H05 0 0 Cressa cretica L. Ann. H00 20 0 Cuscutaceae Cuscuta pedicellata Ledeb. Ann. P56.6 00 Boraginaceae Heliotropium digynum (Forssk.) Asch. ex C. Chr. Per. Herb Ch 00 045 Arnebia hispidissima (Lehm.) DC. Ann. Ch 00 5 0 Moltkiopsis ciliata (Forssk.) I. M. Johnst. Shrub Ch 00 030 Echiochilon fruticosum Desf. Shrub Ch 00 055 Verbenaceae Lantana camara L. Shrub Ph 5 3.3 00 Phyla nodiflora (L.) Greene Per. Herb H 10 000 Verbena officinalis L. Per. Herb Th 15 000 Labiatae Mentha sativa L. Per. Herb Cr 20 6.6 00 Mentha longifolia (L.) Huds. subsp. typhoides (Briq.) Harley Per. Herb Cr 20 000 Lamium amplexicaule L. Ann. Th 30 43.3 00 Solanaceae Solanum nigrum L. Ann. Ch 20 43.3 00 Physalis angulata L. Ann. Ch 0 3.3 00 Withania somnifera (L.) Dunal Shrub Ch 5 6.6 00 Datura innoxia Mill. Ann. Th 0 3.3 00 Scrophulariaceae Bacopa monnieri (L.) Pennell Per. Herb Cr 00 5 0 Veronica polita Fr. Ann. Cr 20 40 00 Veronica anagallis-aquatica L. Per. Herb Cr 30 3.3 00 Orobanchaceae Orobanche crenata Forssk. Ann. P03.3 00 Plantaginaceae Plantago major L. Per. Herb H 70 33.3 00 Compositae Silybum marianum (L.) Gaertn. Bi. H00 5 0 Centaurea calcitrapa L. Bi. Ch 00 0 5 Pluchea dioscoridis (L.) DC. Shrub Ph 30 6.6 60 5 Conyza bonariensis (L.) Cronquist Ann. Th 5035 0 Pseudognaphalium luteoalbum (L.) Hilliard & B. L. Burtt Ann. Th 10 000 Pulicaria undulata (L.) C. A. Mey. Shrub Ch 0010 0 Xanthium strumarium L. Ann. Th 5 40 00 Eclipta prostrate (L.) L. Ann. Th 35 13.3 00 Galinsoga parviflora Cav. Ann. Th 0 3.3 00 Bidens pilosa L. Ann. Th 35 43.3 00 Senecio glaucus L. subsp. coronopifolius (Maire) C. Alexander Ann. Th 0015 10 Cichorium endivia L. subsp. divaricatum (Schousb.) P. D. Sell Ann. Th 40 50 00 Launaea nudicaulis (L.) Hook. f. Per. Herb H00 5 10 Sonchus maritimus L. Per. Herb Ch 00 5 0 Sonchus oleraceus L. Ann. Th 75 66.6 00 Pontederiaceae Eichhornia crassipes (C. Mart.) Solms Per. Herb Cr 10 000 Juncus acutus L. Per. Herb Cr 0025 0 Juncus rigidus Desf. Per. Herb Cr 0065 0

ecologia mediterranea − Vol. 37 (1) − 2011 65 ecol-med-37-1-05-b:Mise en page 1 12/07/11 9:11 Page 66

MONIER M. ABD EL-GHANI,MAGED M. ABOU-EL-ENAIN, A. I. ABOEL-ATTA,ETHAR A. HUSSEIN

Species Life-span Life-form Habitats CB CL WL SP

Gramineae Lolium perenne L. Ann. Th 0 3.3 00 Poa annua L. Ann. Th 55 53.3 00 Avena fatua L. Ann. Th 15 26.6 00 Avena sterilis L. Ann. Th 5 6.6 00 Rostraria cristata (L.) Tzvelev Ann. Th 50 0 0 Phalaris minor Retz. Ann. Th 25 13.3 00 Ammophila arenaria (L.) Link Per. Herb Cr 00 015 Polypogon monspeliensis (L.) Desf. Ann. Th 40 23.3 00 Polypogon viridis (Gouan) Breistr. Per. Herb H 25 16.6 00 Bromus catharticus Vahl Ann. Th 15 16.6 00 Arundo donax L. Per. Herb Cr 15 0 10 0 Phragmites australis (Cav.) Trin. ex Steud. Per. Herb Cr 15 0 65 5 Stipagrostis plumose (L.) Munro ex T. Anderson Per. Herb Th 00 015 Aeluropus lagopoides (L.) Trin. ex Thwaites Shrub Cr 00 5 0 Leptochloa fusca (L.) Kunth Per. Herb Cr 5 3.3 00 Dinebra retroflexa (Vahl) Panz. Ann. Th 5 23.3 00 Eleusine indica (L.) Gaertn. Ann. Th 10 3.3 00 Dactyloctenium aegyptium (L.) Willd. Ann. Th 0 6.6 00 Desmostachya bipinnata (L.) Stapf Per. Herb Cr 15 0 60 0 Cynodon dactylon (L.) Pers. Per. Herb Cr 60 56.6 20 0 Panicum turgidum Forssk. Per. Herb Cr 00 020 Panicum repens L. Per. Herb Cr 70 6.6 00 Echinochloa crusgalli (L.) P. Beauv. Ann. Th 20 33.3 00 Echinochloa colona (L.) Link Ann. Th 65 53.3 00 Paspalum distichum L. Per. Herb Cr 75 26.6 00 Setaria pumila (Poir.) Roem. & Schult. Ann. Th 35 26.6 00 Paspalidium geminatum (Forssk.) Stapf. Per. Herb Cr 15 10 00 Digitaria sanguinalis (L.) Scop. Ann. Th 80 73.3 00 Cenchrus ciliaris L. Per. Herb H00 0 15 Imperata cylindrica (L.) Raeusch. Per. Herb H56.6 00 Sorghum halepense (L.) Pers. Per. Herb Cr 0 3.3 00 Sorghum virgatum (Hack.) Stapf Ann. Cr 0 6.6 00 Dichanthium annulatum (Forssk.) Stapf Per. Herb Cr 20 10 00 Palmae Phoenix dactylifera L. Tree Ph 00 0 5 Lemnaceae Lemna gibba L. Per. Herb Cr 10 000 Typhaceae Typha domingensis (Pers.) Poir. ex Steud. Per. Herb Cr 5030 0 Cyperaceae Cyperus alopecuroides Rottb. Per. Herb Cr 15 0 15 0 Cyperus articulatus L. Per. Herb Cr 00 5 0 Cyperus rotundus L. Per. Herb Cr 65 43.3 00 Cyperus difformis L. Ann. Th 0 30 00 Cyperus laevigatus L. Per. Herb Cr 0050 0

66 ecologia mediterranea − Vol. 37 (1) − 2011 ecol-med-37-1-05-b:Mise en page 1 12/07/11 9:11 Page 67

Habitat heterogeneity and soil-vegetation relations in South of the Nile Delta, Egypt

References Galal T.M. & Khalafallah A.A., 2007. Floristic compo- sition and environmental characteristics of Abu- Za’abal artificial wetland, Egypt. Egy. J. Aqu. Res. Abd Al-Azeem D., 2003. Currrent situation of the flora 33:122-139. and vegetation of Nile Delta region. Unpublished M.Sc. Thesis, Tanta University, Egypt. Girgis W.A., 1972. Plant indicators in the Egyptian deserts. Bull. Desert Inst. 21:511-525. Abd Alla R., 2007. Ecological and Floristic Studies of Sharkiya Governorate. M. Sc. Thesis, Faculty of Hassan L.M., 2001. Habitat diversity and flora of Gebel Science, Benha University, Egypt. El Asfar area, Egypt. Bull. Fac. Sci. Assiut Univ. Abd El-Ghani M.M., 1998. Environmental correlates of 30:285-293. species distribution in arid desert ecosystems of Hassan L.M., 2002. Plant life along Ismailia irrigation eastern Egypt. J. Arid Envir. 38: 297-313. canal, Egypt. Bull. Fac. Sci. Assiut Univ. 31:55-65. Abd El-Ghani M. M. & Abd El-Khalik L., 2006. Floris- Hazen A., 1989. On determination of chloride in water. tic diversity and phytogeography of the Gebel Elba Amer. J. Chem. 2: 409-425. national park, south-east Egypt. Turk. J. Bot. 30: Heneidy S.Z. & Bidak L.M., 2001. Multipurpose plant 121-136. species in Bisha, Asir region, south western Saudi Abd El-Ghani M.M. & El-Sawaf N., 2004. Diversity Arabia. J. King Saud Univ. 13: 11-26. and distribution of plant species in agro-ecosystems Hill I.M.O. & Gauch H.G., 1980. Detrended Corres- of Egypt. Syst. Geogr. Pl. 74: 319-336. pondence Analysis: An improved ordination tech- Abd El-Ghani M.M., El-Fiky A.M., Soliman A. & Khat- nique. Vegetatio 42: 47-58. tab A., 2010. Environmental relationships of aquatic Jackson M.L., 1962. Soil chemical analysis. Prentica- vegetation in the fresh water ecosystem of the Nile Hall. Inc., Inglewood Cliffs, London. 486 p. Delta, Egypt. Afr. J. Ecol. (In Press). Kassas M., 1952. On the distribution of Alhagi mauro- Abd El-Razik M., Abdel-Aziz M. & Ayyad M., 1984. rum in Egypt. Proc. Egyp. Acad. Sci. 8: 140-151. Environmental gradients and species distribution in a transect at Omayed (Egypt). J. Arid Envir. 7: 337- Kolthoff I.M. & Stenger V.A., 1974. Volumetric Analy- 352. sis, 2nd Edn. Outfy Interscience Publishers, New Abd-El-Aal N.H., 1983. Chemical and physical studies York: 242-245. on some soils of Qaleobiya Governorate. M. Sc. Kovach W. L., 1999. MVSP, A Multivariate Statistical Thesis, Fac. Sci., Zagazig University, Egypt. Package for Windows, ver. 3.1. Kovach computing Abd El-Wahab A.E., 2004. Qalyubia Governorate, services, Pentraeth, Wales, U. K. series of Egyptian Governorates, Center for Politi- Mabbutt J.A., 1977. Desert landforms. Cambridge, MA: cal and Strategic studies, Al-Ahram, Cairo. MIT press. Abu Al-Izz M.S., 1977. Land Forms of Egypt. The Ame- Mashaly I.A., 1987. Ecological and floristic studies of rican University of Cairo Press, Dar Al Mearef, the Dakahlia-Damietta region. Unpublished Ph.D. Cairo. 81 p. Thesis, Mansoura University, Egypt. Allen S.E., Grimshaw H.M., Parkinson J.A. & Quarmby Mashaly I.A., El-Halawany E.F. & Omar G., 2001. Vege- C., 1974. Chemical Analysis of Ecological Materi- tation analysis along irrigation and drain canals in als. Blackwell Scientific Publication, Oxoford. Damietta Province, Egypt. J. Biol. Sci. 1: 1183-1189. 565 p. Mashaly I.A., Khedr A.A., Barakat N. & Serag M.S., Ayyad M.A. & El-Ghareeb R., 1982. Salt marsh vege- 2003. On the ecology of water hyacinth community tation of the western Mediterranean desert of Egypt. in the river Nile system in Egypt. J. Envir. Sci. 26: Vegetatio 49: 3-19. 229-248. Batanouny K.H., 1979. The desert vegetation in Egypt. Mashaly I.A., El-Habashy I.E., El-Halawany E.F. & Cairo University, African Studies Review, Special Omar G., 2009. Habitat and plant communities in Publication 1: 9-37. the Nile Delta of Egypt II. irrigation and drainage Boulos L., 1995. Flora of Egypt, Checklist. Al Hadara canal bank habitat. Pak. J. Bio. Sci. 12: 885-895. Publishing, Cairo, Egypt. Nilsson C., Ekblad A., Gradfjell M. & Carlberg B., Boulos L., 1999. Flora of Egypt. vol. 1 (Azollaceae − 1991. Long-term effects of river regulation on river Oxalidaceae). Al-Hadara Publishing, Cairo, Egypt. margin vegetation. J. Appl. Ecol. 28: 963-976. Boulos L., 2000. Flora of Egypt. vol. 2 (Geraniaceae − Orlóci L., 1978. Multivariate Analysis in Vegetation Boraginaceae). Al-Hadara Publishing, Cairo, Egypt. Research. 2nd ed. W. Junk B.V. Publishers. The Boulos L., 2002. Flora of Egypt. vol. 3 (Verbinaceae − Hague, Boston. Compositae). Al-Hadara Publishing, Cairo, Egypt. Page A.L., 1982. Methods of soil analysis part II che- Boulos L., 2005. Flora of Egypt. vol. 4 (Monocotyle- mical and microbiological properties. 2nd ed., dons: Alismataceae − Orchidaceae). Al Hadara Agron. Madison, Wisconsin. USA. Publishing, Cairo, Egypt. Parker K., 1991. Topography, Substrate, and vegetation El-Demerdash M.A., 1984. Ecological studies on Jun- patterns in the northern Sonoran Des. J. Biogeo. 18: cus plants. Unpublished Ph. D. Thesis, Mansoura 151-163. University, Egypt. El-Gharably Z., Khattab A.F. & Dubbers F.A., 1982. Poole R.W., 1974. An Introduction to Quantitative Eco- Experience with grass carps for the control of aqua- logy. McGraw-Hill Book Co. New York. 543 p. tic weeds in Irrigation canals in Egypt. Proc. 2nd Int. Quézel P., 1978. Analysis of the flora of Mediterranean Symp. Herb. Fish, EWRS Wageningen Netherlands: and Saharan Africa. Ann. Miss. Bot. Gard. 65: 479- 17-26. 534. El-Sheikh M.A., El-Halawany E.F. & Shaltout K.H., Ramakrishnan P.S. & Singh V. K., 1966. Differential 2004. Flora and vegetation of Qanatir public Park, response of the edaphic ecotypes in Cynodon dacty- southern Nile Delta, Egypt. J. Environ. Sci. 27: 137- lon (L.) Pers. to soil calcium. New Phytol. 65: 100- 158. 108.

ecologia mediterranea − Vol. 37 (1) − 2011 67 ecol-med-37-1-05-b:Mise en page 1 12/07/11 9:11 Page 68

MONIER M. ABD EL-GHANI,MAGED M. ABOU-EL-ENAIN, A. I. ABOEL-ATTA,ETHAR A. HUSSEIN

Raunkiaer C., 1934. The plant life forms and statistical SMFL, 1999. Soil mechanics and foundation labora- plant geography. Clarendon Press, Oxford. tory, Cairo University. Project of expertise system, Serag M.S. & Khedr A.A., 1996. The shoreline and financed by the General Authority of Educational aquatic vegetation of El-Salam canal, Egypt. Buildings. J. Environ. Sci. 11: 141-163. Soltanpour P.N., 1985. Use of ammonium bicarbonate Shaltout K.H., 1985. On the diversity of the vegetation DTPA soil test to evaluate elemental availability and in the western Mediterranean coastal region of toxicity. Commune. Soil Sci. Plant Anal. 16: 323- Egypt. Proc. Egyp. Bot. Soc. 4: 1355-1376. 338. Shaltout K.H. & Sharaf El-Din A., 1988. Habitat types SPSS, 1999. SPSS Interactive Graphics 10.0, a com- and plant communities along a transect in the Nile prehensive system for analyzing data, SPSS Incor- Delta region. Fedd. Repert. 99: 153-162. poration, Chicago, Illinois, USA. Shaltout K.H. & El-Halawany E.F., 1992. Weed com- Täckholm V., 1974. Students, Flora of Egypt, 2nd ed. munities of date palm orchards in eastern Arabia. Cairo University Herbarium, Giza, Egypt. Qat. Univ. Sci. 12: 105-111. Ter Braak C.J.F., 1986. Canonical correspondence ana- Shaltout K.H., Sharaf El-Din A. & El-Fahar R.A., 1992. lysis: a new eigenvector technique for multivariate Weed communities of the common crops in the Nile direct gradient analysis. Ecology 67: 1167-1179. Delta region. Flora 187: 329-339. Ter Braak C.J.F., 1994. Canonical community ordina- Shaltout K.H. & El-Sheik M.A., 1993. Vegetation-envi- tion. Part 1. Basic theory and linear methods. Ecos- ronment relations along water courses in the Nile cience 1: 127-140. Delta region. J. Veg. Sci. 4: 567-570. Ter Braak C.J.F., 2003. CANOCO, version 4.52. Wage- Shaltout K.H., Sharaf El-Din, A. & El-Sheikh M.A., ningen University and Research Centre, Wagenin- 1994. Species richness and phenology of vegetation gen, The Netherlands. along irrigation canals and drains in the Nile Delta, Upadhyay R.M. & Sharma N.L., 2002. Manual of soil, Egypt. Vegetatio 112: 35-43. plant, water and fertilizer analysis. Kalyani Publi- Shaltout K.H., Hassan L.M. & Farahat E.A., 2005. shers, New Delhi. Vegetation-environment relationships in south Nile Watanabe F.S. & Olsen S.R., 1965. Test of an ascorbic Delta. Taeckholmia 25: 15-46. acid method for determining phosphorus in water Shams H.M., Olama H.Y. & Shehata M.N., 1986. Notes and NaHCO3 extracts from soil. Soil Sci. Amr. Proc. on the vegetation of aquatic habitats in Qalubiya 29: 677-678. Province. Delta J. Sci. 10: 955-978. Whittaker R.H., 1972. Evolution and measurement of Shams H.M., Olama H.Y. & Shehata M.N., 1987a. The species diversity. Taxon 21: 213-251. vegetation of the uncultivated land of Qalubiya Pro- Zahran M.A., 1972. On the ecology of Siwa Oasis, vince. Delta J. Sci. 11: 363-388. Egypt. Egy. J. Bot. 15: 223-242. Shams H.M., Olama H.Y. & Shehata M.N., 1987b. Stu- Zahran M.A., 1982. Ecology of the halophytic vegeta- dies on the natural vegetation of Khanka-Abuzaabal tion. In: D.N. Sen & K.S. Rajpurhit (eds). Contri- area. Delta J. Sci. 11: 389-411. bution to the ecology of halophytes, tasks for vege- Sheded M.G. & L.M. Hassan, 1998. Vegetation of Kur- tation Science 2: 3-20. kur Oasis in southwest Egypt. J. Union Arab Biol. Zahran M.A. & Willis A. J., 1992. The Vegetation of 6: 129-144. Egypt. Chapman and Hall, London.

68 ecologia mediterranea − Vol. 37 (1) − 2011 ecol-med-37-1-06:Mise en page 1 12/07/11 9:11 Page 69

Seasonal variability and phenology of dwarf rush communities in Southern Spain Patrons de la dynamique saisonnière de la végétation des mares temporaires au sud de l’Espagne

Klara DOLOS1 and Michael RUDNER2 1. Biogeographical Modelling, BayCEER, University of Bayreuth, [email protected] (corresponding author) 2. Faculty of Biology, Department of Geobotany, University of Freiburg, [email protected]

Summary ers of phenological development and seasonal In the southwest of the Iberian Peninsula dwarf species turnover. Species turnover was largest rush communities belong to the class Isoëto- when dry periods occurred. A differentiated Nanojuncetea and constitute the ephemeral examination of the flowering phases of Radiola wetland vegetation. The hydrological conditions linoides and Solenopsis laurentia revealed a con- are determined by the Mediterranean precipi- siderable time lag of 10 days correlated to dif- tation regime and therefore vary with the sea- ferences in the soil moisture content at the sons. Previous studies found this vegetation growing sites. These findings suggest that soil type to be highly dynamic in time and space, moisture is an important driver of the temporal but until now drivers of this dynamic are not dynamics. The parallel temporal development of well known. Nonetheless, this dynamic should the vegetation in the permanent plots indicates be considered in evaluating the current state of that no independent ecophases exist. Overlap- dwarf rush communities protected by the EU ping flowering phases of species of the Isoëto- Habitats Directive. For that reason we aim a) to Nanojuncetea and Helianthemetea (rock rose describe and to clarify the influence of the tem- communities) support earlier findings that the perature sums and soil water balance on the temporal replacement of Isoëto-Nanojuncetea seasonal dynamic and the phenological devel- species by Helianthemetea species is marked by opment and b) to decide whether separate phe- a gradual turnover rather than an abrupt shift. nological or ecological phases exist. Vegetation was surveyed in permanent plots and selected environmental parameters were Résumé measured in the study region Campo de Gibral- Les gazons de joncs nains des Isoëto-Nanojun- tar (Spain) in spring 2008. Multivariate ordina- cetea constituent la végétation des mares tem- tion, variation partitioning, calculation of poraires du sud-ouest de la péninsule Ibérique. turnover rates and examination of the flower- Les conditions hydriques de ces communautés ing phases were employed to characterise the éphémères sont régies par le régime de précipi- vegetation dynamics and to separate the influ- tations méditerranéennes et elles varient selon ence of temperature sums and the soil water les saisons. Ce type de végétation est connu balance on phenological development. pour avoir une forte variabilité temporelle et We show that the variability of ephemeral spatiale, cependant les patrons de cette dyna- dwarf rush communities was high and equally mique restent inconnus. L’évaluation de l’état partitioned in time and space. Temperature de conservation actuel de ces communautés à sums and soil water balance were the main driv- joncs nains n’est possible qu’en considérant

Keywords: temporary pools, phenology, turnover, Mots clés : mares temporaires, phénologie, chronocoenosis, variation partitioning, arch effect, changement d’espèces, chronocénose, partition de intra-annual variability. variance, effet d’arc.

ecologia mediterranea – Vol. 37 (1) – 2011 69 ecol-med-37-1-06:Mise en page 1 12/07/11 9:11 Page 70

KLARA DOLOS,MICHAEL RUDNER

cette dynamique. Cette étude vise donc (a) à In the southwest of the Iberian Peninsula décrire et clarifier l’influence des sommes de ephemeral wetland vegetation is represented températures et de la balance de l’eau du sol sur by dwarf rush communities of the class la dynamique saisonnière et le développement phénologique et (b) à détecter si des phases Isoëto-Nanojuncetea. In the study region phénologiques ou écologiques bien séparées dwarf rush communities are spatially and existent. temporally associated with rock rose commu- Au printemps 2008, nous avons d’abord étudié nities (Helianthemetea), a thermomediter- la végétation sur des placettes permanentes au ranean vegetation type of dry habitats (Rivas- Campo de Gibraltar (Espagne), puis nous avons Goday 1970; Pietsch 1973; Brullo & mesuré des paramètres environnementaux Minissale 1998; Molina 2005; Pinto-Cruz et sélectionnés. Afin d’analyser ces données, nous al. 2009). On the landscape level dwarf rush avons utilisé des méthodes d’ordination multi- variée, la partition de variance, le calcul des taux communities are interspersed in gaps of de changement saisonnier des espèces. Ceci grazed heathland and matorral (Rudner 2004; nous a permis de caractériser la dynamique de 2011). In regions with a Mediterranean cli- végétation et de séparer l’influence de sommes mate, hydrological conditions are determined de température, le régime de l’eau du sol et by the precipitation regime and therefore vary l’avancement temporel dans leurs effets sur le développement phénologique. Nous montrons strongly with the seasons, from autumn to que la variabilité des gazons de joncs nains est spring the soil is water-saturated whereas the repartie également dans le temps dans l’espace. summer is associated with extreme drought. Nos résultats montrent que le plus fort change- In addition, the distribution and amount of ment saisonnier des espèces se déroule dans les precipitation vary from year to year and phases de sécheresse incluses dans des phases within the same growing season (Junta de stables. L’étude détaillée des phases de floraison Andalucía-Consejería de Medio Ambiente de Radiola linoides et de Solenopsis laurentia 2011). montre un délai considérable de dix jours dû au régime de l’humidité du sol des sites étudiés. Dwarf rush communities in Mediterranean Ceci suggère que le régime de l’humidité du sol regions are highly dynamic in time and space est déterminant pour la dynamique temporelle. (Rhazi et al. 2001; Zacharias et al. 2007; Le développement parallèle de la végétation sur Rhazi et al. 2009; Ghosn et al. 2010). Their les placettes permanentes montre qu’il n’y a pas de découplage d’écophases. phenological development depends on the soil water balance and on temperature sums (Rud- Les phases de floraison confirment des résultats antérieurs, indiquant que le remplacement tem- ner 2005b). In this paper, we aim to increase porel des espèces des Isoëto-Nanojuncetea par our knowledge about the intra-annual vari- les espèces des Helianthemetea se déroule plu- ability of dwarf rush communities. Only the tôt régulièrement que par de brusques change- consideration of this variability allows evalu- ments. ating the current state of this vegetation type, which is protected by the EU Habitats Direc- tive 92/43/EEC (Pinto-Cruz et al. 2009). Knowledge about the seasonal variability will Introduction also facilitate and support the classification and evaluation of vegetation surveyed only Ephemeral wetlands constitute an azonal once (Brullo & Minissale 1998; Molina habitat type with a worldwide distribution in 2005). Therefore, we aim to a) describe and non-arid and non-arctic areas sheltering clarify the influence of the temperature sums specifically adapted vegetation (Deil 2005; and soil water balance on the phenological Pignatti & Pignatti 2005). This habitat type is development and b) decide if there are sepa- characterised by a temporal alternation rate phenological or ecological phases (Hejný between aquatic and terrestrial growing con- 1962; Barkman 1973). ditions (Moor 1936; Grillas et al. 2004; Deil 2005). Plant species forming ephemeral veg- etation must tolerate anoxic conditions in the root zone in spring and must be adapted phe- nologically to the drought period. Hence, this vegetation type mainly consists of thero- phytes, hemicryptophytes, and geophytes and is characterised by high inter- and intra- annual variability in species composition (Lampe 1996; Rudner 2005b).

70 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-06:Mise en page 1 12/07/11 9:11 Page 71

Seasonal variability and phenology of dwarf rush communities in Southern Spain

Methodology the study. The three sites were chosen at dif- ferent topographic positions so as to represent a soil water gradient. One site was close to the Study region valley bottom, one site was on the lower slope The study region is situated in the southwest and one site on the upper slope. Within each of the Iberian Peninsula (Campo de Gibraltar, 10 m x 10 m site, four permanent plots (50 cm province of Cadiz, Spain; 36o10’ N, 5o40’W). x 50 cm) were established, randomly select- The region possesses a Mediterranean-type ing from eight previously specified plots. The climate with oceanic influence. Pools with plots could not be chosen entirely at random temporal water logging constitute the typical because of the patchy distribution of the tar- habitat of Mediterranean dwarf rush commu- get vegetation type. nities (Deil 2005). In the study region, this The 12 permanent plots were surveyed every habitat is formed by planosols in sandstone ten days. A 2.5 cm-grid comprising 400 cells debris above clay. Typical relief positions are was put in each permanent plot, and fre- lower slopes, where surface near clay layers quency data collected for each phenological retain rainwater. Another frequent relief posi- stage of each species within the plots. Each tion is flattening at midslope containing a clay permanent plot was surveyed eight times layer (Rudner 2004; 2005a). resulting in 96 inventories. The vegetation data set consists of frequency values of 73 taxonomical species that were differentiated Weather conditions by their phenology resulting in 307 pheno- during the survey period logical species. The phenological stages were based on Dierschke (1994). A simplified set The winter preceding the survey period (18/03 of phenological stages was used where only to 31/06/2008) was mild. During the survey generative phenological stages could be dis- period temperatures as well as precipitation tinguished. This reduced expenditure of time were above average (Agencia Estatal de per vegetation inventory, and allowed the Meteorología 2008). Whereas the mean pre- planned plot numbers and short repetition cipitation during this period is about 125 mm intervals (see Appendix 1). (climate station Tarifa, Cadiz, Junta de Andalucía-Consejería de Medio Ambiente For plant names, we follow Valdés (1987). A 2011), the precipitation during the study species list is given in Table 3. period amounted to 261 mm, indicating favourable conditions in terms of water sup- Environmental parameters – ply. At the beginning of the study period the measurements soil was water-saturated and it rained heavily. A second precipitation event took place in For the phenological development of dwarf mid April which resulted in the soil being rush vegetation the near-ground temperature waterlogged. Between the 21st of April and is relevant (Snyder et al. 2001). Therefore, the the 25th of May, the weather was dry, after temperature was measured at each site 30 cm that there were more intensive rainfall events, above ground. Soil moisture sensors the last within the study period. Monthly (ThetaProbe ML2x) were installed at the mar- mean temperatures increased continuously gins of the permanent plots. The soil moisture from 15 oC in March to 25 oC in July. and temperature were measured continuously and the values automatically saved (Unidata ProLogger). Additionally, soil moisture was Vegetation surveys measured with a portable sensor in 0-5cm The vegetation was surveyed in spring 2008. soil depth at each vegetation survey (8x12 Individual-based vegetation inventories were measurements). conducted at three sites of 10 m x 10 m. The sites were chosen at the beginning of March, Environmental parameters – analysis when most of the character species of the Isoëto-Nanojuncetea were in an early devel- Using the recorded temperature data, temper- opmental stage. Occurrences of early species ature sums (TS) were calculated for each of Isoetes histrix, Scirpus pseudosetaceus, Jun- the three sites on the basis of hourly mean val- cus hybridus, Juncus capitatus and Radiola ues (from 10min measurements) with an linoides were used to select suitable sites for upper threshold of 35 oC and a lower thresh-

ecologia mediterranea – Vol. 37 (1) – 2011 71 ecol-med-37-1-06:Mise en page 1 12/07/11 9:11 Page 72

KLARA DOLOS,MICHAEL RUDNER

old of 5 oC (Snyder 1999). Together with the Artificial data current soil moisture (SM) and soil moisture residuals (RES), these temperature sums were If the vegetation composition is mainly influ- used to interpret the results of the ordination. enced by one or two strong environmental The RES were calculated because the soil gradients, then this would lead to an artefact moisture decreases strongly with time and in the ordination results. In such cases, the therefore masks differences between sites. As third and any further axes are not independ- reference values for the RES the means of the ent of the preceding axes. This fact distorts continuous measurements over all plots were the ordination diagram (“arch”, Legendre & used. The RES consist of the differences of Legendre 2006). The arch effect causes diffi- the soil moisture at each permanent plot at culties in the interpretation of the results par- each inventory to the reference values. As ticularly of the variation partitioning because residuals the differences for each permanent the eigenvalues of the higher axes are plot to those base values were calculated for increased and do not represent the real varia- each date of a vegetation inventory. tion of the data (gradient-caused variation and noise). This effect increases the estimated To be able to separate the influence of SM and total variation of the data and seemingly TS in the ordination, it was necessary to decreases the explanatory power of variables detect differences between sites. Therefore that correlate with the first axes. Since we repeated measure anovas were calculated for wanted to test the explanatory power of time daily increments of TS, SM and RES. and site, and particularly the power of the environmental variables TS and SM on the Ordination total variation of the vegetation data, this con- stitutes a basic challenge. To determine the transitions in the vegetation, To deal with this issue an artificial data set was a correspondence analysis (CA) was created, formed of two defined gradients of employed on the phenological data using R equal length, equal contribution and without (v. 2.10.1) and vegan (v. 1.17-3) (Legendre & random influences. This setting was chosen in Legendre 2006). Only phenological species the assumption that time and site constitute that occur more than five times in the entire two strong and independent gradients which data set were included in the analysis (218 out comprise almost all possible environmental of 307 phenological species). Afterwards the variability between inventories (see results data were square root-transformed to down- section). For this artificial data set two axes weight the influence of high abundances should be enough to represent the variation of (Legendre & Gallagher 2001). the data. Folding should occur on the higher An environmental fit with site (factor with axes when applying the ordination analysis. three levels) and time (day of the year) as well Similar analyses as used for the vegetation as current SM, TS, and RES were applied on data were employed on this artificial data set, the result of the CA. and the results were compared. This way, we could separate the fraction of total inertia Variation partitioning caused by the arch effect from the data-inher- ent variation. We could derive an estimate for Partial ordination and variation partitioning the explanatory power of the environmental were used to estimate how much of the vari- variables within the vegetation data set. ation of the response variable can be attrib- uted exclusively to one factor, once the effect Turnover of another factor has been taken into account (Legendre & Legendre 2006; Legendre To assess the influence of the soil moisture on 2008). We used variation partitioning to relate the vegetation dynamics, the temporal species the vegetation dynamic to the four variables turnover was correlated with the course of soil time, site, TS, and RES, and to reveal shared moisture. We used a formula analogue to the portions of variation. Partial canonical corre- Sørensen similarity coefficient to calculate the spondence analysis (CCA) was employed. turnover (Russel et al. 1995). Two different The significance of the ordinations was tested data sets were created, the first without and by an anova-like permutation test. the second with phenological differentiation. The vegetation data of the permanent plots were pooled at the site level. The resulting

72 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-06:Mise en page 1 12/07/11 9:11 Page 73

Seasonal variability and phenology of dwarf rush communities in Southern Spain

data sets were differentiated by site and by Results survey interval. We calculated the turnover between the first Temperature and soil moisture and the last survey interval for each site. These intervals were chosen because they rep- The repeated measure anova of daily incre- resent the two extremes in the environmental ments of the temperature sums resulted in a conditions that have been observed in this p-value of 0.91, allowing the conclusion that study. Additionally, we calculated the species sites did not differ. However, the sites differed turnover for each consecutive survey interval, significantly in soil moisture (p < 0.001) and resulting in turnover values for seven survey soil moisture residuals (p < 0.001). The great- pairs. The resulting curves show the develop- est differences in soil moisture were observed ment of species turnover over the study period during the middle of the vegetation period and were compared with the development of (Figure 1). soil moisture. Ordination Flowering phases The first two axes of the indirect ordination Flowering phases are a crucial stage in the life represented 18.5% of the variation of the data history of annual and ephemeral plants since (Table 1). The ordination separated the inven- they require a lot of energy and are indispen- tories along the first diagonal into the three sable for the species’survival due to the lack of sites (Figure 2). A further separation occurred vegetative proliferation and persistence in the direction of the second diagonal that (Larcher 2003). That is why we chose flower- followed the time trajectories. The species ing periods in an attempt to estimate the influ- were arranged along the second diagonal ence of time and temperature sums respectively according to progressing phenological stages. soil moisture on the phenological development. This resulted in a parallel development of the For Isoetes histrix the phase when the individ- plots throughout the entire study period. Plot- uals were green and not fading was used. ting the third axis against the first axis showed Concerning the question whether Isoëto-Nano- a pronounced arch pattern. The cloud of the juncetea species coexist with species of the inventories in the diagram formed an arch. class Helianthemetea, phenogroups were com- piled depending on synchronous flowering phases. We used generalized linear models of the quasi-poisson family with a quadratic term to estimate flowering phases from observations (model formula: log (n) = a + bt + ct2). Sub- sequently we subjected the modelled flower- ing periods (predicted frequency per observa- tion date) to a cluster analysis to define phenological groups (data transformation: division by total sum of abundance, distance measure: Bray-Curtis, cluster algorithm: group average). In a second approach, we examined the flowering periods of three exemplary species (Radiola linoides, Solenopsis lauren- tia, Exaculum pusillum) in more detail and Figure 1 – Course of soil moisture residuals for the three study sites, compared the data from the three study sites. each with four measurements near the permanent plots.

Table 1 – Cumulative fraction of variation explained by the ordinations and comparison with the analysis of the artificial data set.

Analysis/Data set Relevés Species Total inertia Cumulated explained variation in %

Axis 1 Axis 2 Axis 3 Axis 4 CA CA1 CA2 CA3 CA4

Vegetation data 96 218 4.34 10.5 18.5 24.1 28.2 Artificial data set 400 134 9.58 9.4 18.7 27.2 34.0

ecologia mediterranea – Vol. 37 (1) – 2011 73 ecol-med-37-1-06:Mise en page 1 12/07/11 9:11 Page 74

KLARA DOLOS,MICHAEL RUDNER

The environmental fits of time and site on the ordination had high coefficients of determi- nation (Table 2) and were uncorrelated with each other (Pearson r = − 0.05). In addition, the environmental fits of soil moisture, tem- perature sums and soil moisture residuals are displayed. TS correlated strongly positively (Pearson r = 0.99) with time while for soil moisture this correlation was strongly nega- tive (Pearson r = − 0.80). Site and RES corre- lated with r = 0.40, which indicates that soil moisture is one driver of the differences between the sites.

Variation partitioning The CCA with the covariates time, site, tem- perature sums and soil moisture residuals was significant (p<0.005). An arch effect occurred along the first non-canonical axis. Figure 2 – Correspondence analysis of the vegetation data with The variation explained by all four variables environmental overlays and time trajectories. amounted to 24.5% of the total variation (Fig- Time: day of the year; TS: temperature sum; RES: soil moisture ure 3). Time and site together explained residuals; SM: current soil moisture. 20.3% due to overlaps between time and tem- perature sums (5.9%) and between site and soil moisture residuals (1.93%). The environ- mental variables temperature sums and soil moisture residuals (without time and site) explained 12.7% of the total variation (it should be noted that these calculations did not work out completely due to some negative overlaps). Figure 3 – Variation partitioning of the phenological data set. Explained variation is given as percentage of the total variation (total inertia of correspondence analysis). Negative overlaps are set to zero. Artificial data The ordination of the artificial data set showed higher inertia than the ordination of the observed data set due to the larger sample size (Table 1). The plot of the first two CA axes showed the same pattern as the one of the vegetation data. The arch effect occurred on the third axis analogous to the vegetation data. The fractions of variation explained by the first two axes were similar in the vegeta- tion data and the artificial data (Table 1). Environmental fits of the two gradients were very good (Table 2). Variation partitioning Figure 4 – Species turnover between pairs of consecutive survey intervals was employed for the two implemented gra- site differentiated.

Table 2 – Pearson r of environmental fits of the indirect ordination (first against second axis).

Analysis Data set Site Time TS SM RES

CA Vegetation data 0.44 0.89 0.90 0.65 0.32 Variable 1 Variable 2

CA Artificial data 0.98 0.98

74 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-06:Mise en page 1 12/07/11 9:11 Page 75

Seasonal variability and phenology of dwarf rush communities in Southern Spain

dients. In the analysis they only explained Table 3 – Species list and abbreviations. 18.6% of the total variation (each variable explained 9.3% with no overlap). Species name Abbreviation Species name Abbreviation

Aira caryophyllea Aca Lavandula stoechas Lst Turnover Allium roseum Aro Linum bienne Lbi Anagallis crassifolia Acr Linum tenue Lte Species turnover between the first and the last Anagallis arvensis Aar Logfia gallica Lga survey interval was 0.33, 0.35 and 0.49 for the Anthoxanthum ovatum Aov Lotus parviflorus Lpa three sites. The calculated species turnover of Aphanes microcarpa Ami Lythrum hysoppifolia Lhy Asphodelus aestivus Aae Myrtus communis Mco seven inventory pairs showed that the species Asterolinon linum-stellatum Ali Ophioglossum lusitanicum Olu turnover did not happen continuously (Fig- Bellis annua Ban Ornithogalum broteroi Obr ure 4). The maximal turnover of the three sites Bellis sylvestris Bsy Ornithopus compressus Oco took place during different time intervals. Brachypodium distachyon Bdi Ornithopus pinnatus Opi However considering the entire course of Briza maxima Bma Pinguicula lusitanica Plu Briza minor Bmi Plantago coronopus Pco turnover, similarities appeared and three max- Carex flacca Cfl Plantago serraria Pse ima could be found, at the beginning, in the Centaurium maritimum Cma Plantago bellardii Pbe middle and at the end of the study period. The Chamaemelum mixtum Cmi Pulicaria odora Pod turnover in the first half of the study period Cicendia filiformis Cfi Radiola linoides Rli was caused by an appearance of species, Crassula tillaea Cti Ranunculus paludosus Rpa Echium plantagineum Epl Romulea bulbocodium Rbu while the turnover in the second half was Eleocharis multicaulis Emu Rumex bucephalophorus Rbu caused by a disappearance of species. Species Erica scoparia Esc Sanguisorba minor Smi responsible for the high turnover in the mid- Eryngium dilatatum Edi Scabiosa atropurpurea Sat dle of the study period (May) were e.g. Ana- Euphorbia exigua Eex Scandix pecten-veneris Spe gallis crassifolia, Crassula tillaea, Isoetes Evax pygmaea Epy Scirpus pseudosetaceus Sps Exaculum pusillum Epu Scorpiurus vermiculatus Sve histrix, and Ophioglossum lusitanicum (pre- Fumana ericoides Fer Serapias parviflora Spa sent only in the first half) and Brachypodium Galium parissiense Gpa Solenopsis laurentia Sla distachyon, Chamaemelum mixtum, Gaudinia Gastridium ventricosum Gve Stachys arvensis Sar fragilis, and Linum tenue (occurring only in Gaudinia fragilis Gfr Tolpis barbata Tba the second half). Genista tridens Gtr Trifolium campestre Tca Hypochaeris radicata Hra Trifolium cherleri Tch Looking at phenological stages rather than Illecebrum verticillatum Ive Trifolium angustifolium Tan species presence and absence only, a contin- Isoetes histrix Ihi Trifolium glomeratum Tgl uous course of turnover with an increase at Juncus tenageia Jte Tuberaria guttata Tgu Juncus hybridus Jhy Urginea maritima Uma the end of the vegetation period could be Juncus capitatus Jca Vulpia myuros Vmy observed. Juncus bulbosus Jbu

Flowering phases ing phases the course of soil moisture is We were able to fit models to the flowering shown (Figure 5). The first group flowered in phases of 15 species (Figure 5). There was an a period with good water supply and finished early group consisting of Isoetes histrix, Ille- this phase with the beginning of the first des- cebrum verticillatum, Ornithogalum broteroi iccation at the beginning of May. Groups two and Serapias parviflora. These species, three and three flowered with medium water sup- of them geophytes, had their flowering optima ply while the last group flowered at the begin- in mid April. A second group consisted of ning of the summer drought. Anagallis arvensis, Plantago coronopus, Because the species Radiola linoides, Radiola linoides, Plantago bellardii and Evax Solenopsis laurentia and Exaculum pusillum pygmaea. This second group was the largest occurred at all three sites, their flowering group characterised by long flowering peri- phases at the three sites could be compared ods. Centaurium maritimum, Chamaemelum (Figures 6 and 7). Radiola linoides and mixtum, Solenopsis laurentia and Trifolium Solenopsis laurentia had their flowering campestre were grouped together based on optima earlier at site 1, followed by site 2, and the fact that they flowered in mid May and with the latest optimum at site 3. The flower- vanished before June. The latest species were ing behaviour of Exaculum pusillum did not Exaculum pusillum and Tolpis barbata, which differ among sites. We related the flowering flowered when most other species had already phases to the course of soil water. For Radi- finished flowering. Together with the flower- ola linoides, the optimum of site 1 was the

ecologia mediterranea – Vol. 37 (1) – 2011 75 ecol-med-37-1-06:Mise en page 1 12/07/11 9:11 Page 76

KLARA DOLOS,MICHAEL RUDNER

Figure 5 – Species are grouped into four clusters according to similar flowering periods. The four flowering groups can be interpreted in conjunction with the soil water balance. For abbreviation of species names see Table 3.

27th of May, at site 2 the 12th of May and et al. 2010) are higher than seasonal turnover at site 3 the 23th of May 2008 (Figure 6). values but nevertheless the latter were con- The soil water content was 0.33 m3/m3, siderable. 0.22 m3/m3 and 0.28 m3/m3, respectively. We detected three phases of high turnover in Solenopsis laurentia only occurred at two the entire study period (Figure 3). The maxi- sites with higher abundances so that no mum at the beginning of the study period in regression model was calculated for site 1. early April was explained by germination and The optimum of its flowering phase at site 2 sprouting of the species. The maximum in the was the 9th of May with a soil water content second half of May coincided with an of 0.26 m3/m3 and at site 3 the 19th of May extended dry spell that was ended with a pre- 2008 with 0.28 m3/m3 (Figure 7). cipitation event. At the end of June many species vanished because of the beginning of summer drought. The high turnover in May lead to the assumption that the vegetation Discussion dynamics of dwarf rush communities was driven by strong desiccation leading to phases Turnover of high species turnover embedded in rela- tively stable phases. This would mean that Similar values for the species turnover in the processes controlling vegetation dynamics same target vegetation between the first and change with environmental conditions the last survey interval were also found in pre- (resource limitation, Lampe 1996; Larcher vious studies (Ballesteros 1984; Espirito 2003; Yuan et al. 2007; Svoray et al. 2008). Santo & Arsenio 2005; Rudner 2005b). Inter- Employing the same analysis on the pheno- annual turnover values measured in Spain, logically differentiated data set resulted in an Portugal and Greece (Rudner 2005b; Ghosn evenly distributed turnover. This indicates

76 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-06:Mise en page 1 12/07/11 9:11 Page 77

Seasonal variability and phenology of dwarf rush communities in Southern Spain

either that the phenological development of species took place continuously or that the turnover occurred on a shorter time scale.

Flowering groups and ecophases

Phenological groups were not separated clearly. A continuous replacement of species in flower over time took place. Illecebrum verticillatum, Isoetes histrix, Anagallis arven- sis, Radiola linoides, Centaurium maritimum, Solenopsis laurentia and Exaculum pusillum belong to the Isoëto-Nanojuncetea species pool (Rivas-Goday 1970; Brullo & Minissale 1998; Rivas-Martínez et al. 2001; Molina 2005). Plantago bellardii, Evax pygmaea, Tri- folium campestre and Tolpis barbata belong Figure 6 – Flowering period of Radiola linoides and the course to the Helianthemetea species pool (Rivas- of soil water content for each site. The flowering phases Martínez et al. 2002). These species were are time delayed according to the course of soil water. found in all defined phenological groups. This confirms earlier findings by Rudner (2005b), although they differ a lot in their water sup- ply demands. A chronocoenosis sensu Bark- man (1973) of dwarf rush communities (Isoëto-Nanojuncetea) and rock rose commu- nities (Helianthemetea) definitely does not exist. The definition of flowering groups was con- cerned with the small scale effect of soil mois- ture on the phenological progress. Time lags of flowering phases between sites as shown for Radiola linoides and Solenopsis laurentia lead to fuzziness when we aggregated the data for the regression model of flowering phases and the subsequent clustering to phenological groups. Fuzziness was higher for species in the intermediate flowering groups than for the Figure 7 – Flowering period of Solenopsis laurentia and the course early and late groups. This coincided with of soil water content for each site. The flowering phases their longer flowering periods as calculated are time delayed according to the course of soil water. by the regressions. In order to achieve better results for the influence of soil moisture, future approaches should aggregate data only over a very small spatial extent or should pre- Drivers of the phenological cisely measure soil moisture and temperature development for each growing site. The directions of the time trajectories in the Most studies on the phenology of dwarf rush ordination diagram were parallel though dif- community species and its drivers deal with ferentiated due to the soil moisture gradient. the germination (Lampe 1996; Pietsch 1999; This makes it unlikely that the temporal veg- Deil 2005). The flowering time of some etation development was independent of its ephemeral species depends on germination former states (Austin 1977). Together with the conditions (first winter rains) and the energy constant rates of change between inventories balance (Steyn et al. 1996). In temperate cli- of consecutive surveys the parallel course of mates, the energy balance and the day length the time trajectories indicated that no inde- are the best predictors for annual as well as pendent ecophases as defined by Hejný perennial species (White 1995). Water stress (1962) exist in this vegetation type. can accelerate the transition to flowering

ecologia mediterranea – Vol. 37 (1) – 2011 77 ecol-med-37-1-06:Mise en page 1 12/07/11 9:11 Page 78

KLARA DOLOS,MICHAEL RUDNER

depending on species and ecotype (Aronson third axis we concluded that the data set con- et al. 1992; Fernández et al. 2010). Within the sisted of two strong gradients, which were a present study the site-differentiated examina- proxy for environmental variables actually tion of the flowering phases of Radiola influencing the vegetation. linoides and Solenopsis laurentia revealed a considerable time lag of 10 days between the The temperature sums and soil moisture sites according to the soil moisture gradient. changed systematically with time and could Together with a similar soil moisture content therefore be considered as the drivers of tem- measured at the flowering peak, this fact poral transitions in the vegetation (Rudner strongly indicated that the soil moisture is a 2005b). Since temperature sums and soil main driver of the phenological development moisture correlated strongly, it was not possi- in dwarf rush communities in terms of plant ble by this approach to distinguish how each response to decreasing soil water potential of the two variables contributed to the pheno- (Steyn et al. 1996). The plant response to pre- logical development. Within the presented cipitation events is known to be delayed study, the role of soil moisture as a driver for depending on the plant functional type and the the phenological development was examined plant species (Ogle & Reynolds 2004). The by consulting the species turnover and flow- slope position of the site (physiographic unit) ering phases of exemplary species. is an essential factor which influences soil The floristic differences between the sites cor- water availability and thus the plant response related with the soil moisture residuals. Dif- (Svoray & Karnieli 2011). Our soil moisture ferences in soil moisture were therefore measurements suggested that for the two assumed to be one of the main factors influ- species Radiola linoides and Solenopsis lau- encing the species composition. The lower rentia there might even be a threshold below Pearson coefficient of the fit of the residuals which flowering of the plant individuals is was caused by their non-linear development induced. However, this conclusion is only (Figure 1). At the beginning of the survey valid for species of the intermediate flower- period, the soil was water-saturated, therefore ing group where soil moisture differs most no differences existed between the sites. In the between sites. For species such as Exaculum course of spring during periods of a lack of pusillum which belong to the late group, when precipitation, the soil dried up depending on soil moisture was very similar between sites the soil properties and relief position. In the due to progressed desiccation, a relation early summer this process had advanced so between flowering and soil moisture could that no differences in soil moisture content not be detected. To understand conclusively were detected any more. the effect of soil moisture on the phenologi- cal development and particularly in order to Variation partitioning showed that both, time estimate soil moisture thresholds, data must and site, explained approximately half of the be collected with a higher temporal and spa- total variation explained. This means that dif- tial resolution. ferences in the vegetation between the sites and during the growing period in spring were We interpreted the results of the ordination of similar dimensions. This should be taken analyses (CA and variation partitioning) with into account when surveying this vegetation respect to a real arch effect constituting a type particularly in cases where nature con- mathematical artefact (Nobis 1999 and own servation issues are concerned. artificial data set). We inferred from the arch effect at the third axis that two gradients rep- Applying variation partitioning on the vege- resented by the first two axes of the indirect tation data and the artificial data enabled an ordination were sufficient to explain the vari- estimation of the relevance of environmental ation within the vegetation. variables. The explanatory power of time and site (20.3%) within the vegetation data The environmental overlays employed on the amounted to the same portion as the two indirect ordination showed that ephemeral implemented gradients within the artificial rush communities were highly dynamic in data (18.6%). Comparing these two analyses, time and differed between sites. Furthermore, we concluded that the explained percentage the high coefficients of determination of these of total inertia could not be interpreted proxy-variables showed that they represented directly as a rating of the explanatory power the variation of the data to a high degree. With of the involved variables. Therefore the respect to the arch-effect occurring on the explanatory power of two variables can only

78 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-06:Mise en page 1 12/07/11 9:11 Page 79

Seasonal variability and phenology of dwarf rush communities in Southern Spain

be compared within one data set (e.g. time impact of the soil seed bank compared to and site, time and TS). short-term growing conditions has to be The second pair of variables (temperature examined (Diaz-Villa et al. 2003; Mcnicoll & sums and soil moisture residuals) explained Augspurger 2010). A candidate for a relevant only 12.2% of the entire variation in the data environmental variable is the soil temperature, set, leaving a gap to the amount of variation which actually influences the vegetation. Soil explained by time and site. With 8.6%, the temperatures significantly differ from air tem- temperature sums had the strongest explana- peratures (own exemplary measurements). In tory power. We interpreted the large overlap the study period this fact could be explained of time and temperature sums as an indication by different heat capacities of moist and dry that most of the variation caused by time soils at the three sites. Soil and air tempera- could also be absorbed by temperature sums. tures differed most in the middle of the study Soil moisture residuals could only explain period when differences in soil moisture were 3.5%, leading to a difference of the portion also greatest. Additionally, variables such as explained by site. This difference is due to the grazing intensity (Bouahim et al. 2010), land non-linear course of the soil water residuals. use (Espirito Santo & Arsenio 2005), shrub Additionally it indicated that environmental density and shrub species composition could variables which would explain particularly the be significant and should be examined in fur- spatial vegetation dynamics were missing. ther studies. Besides, an extended study period including the autumnal vegetation sea- son would contribute to the understanding of processes which control the species composi- Conclusion tion and especially the spatial heterogeneity.

The variability of ephemeral dwarf rush com- munities was high and equally partitioned in Acknowledgements time and space. The parallel time trajectories in the indirect ordination allow the conclusion We would like to acknowledge the permission that there were no independent ecophases. and help of the Parque Natural los The definition of flowering groups excluded Alcornocales. Sincere thanks are given to the existence of a chronocoenosis with rock Ulrich Deil (University of Freiburg, Institute rose communities. In addition, the seasonal of Biology II – Department of Geobotany) dynamics were explained by temperature who enabled the study and to Andrés Vicente sums and the soil water balance. Pérez Latorre (Universidad de Málaga, The documented species turnover showed that Departamento de Biología Vegetal) who gave the temperature sums mainly determined the us local support. We are grateful to Arne replacement of dominant species, while the Saatkamp for linguistically checking the water supply was no limiting environmental French summary and to Jonas Müller for thor- factor. When periods of drought occurred, the ough language editing of the manuscript. The high species turnover suggested that soil research was facilitated by the DAAD. water surpassed the temperature sums as driver for this turnover. Time lags of flower- ing phases between sites with different soil water balance showed that the phenology of the two character species of dwarf rush com- munities Radiola linoides and Solenopsis lau- rentia are closely linked to soil water and that a threshold inducing flowering could exist. We were unable to conclusively elucidate within this study the basis for the spatial dif- ferentiation of the vegetation. Besides the soil moisture gradient we suggest that differences in the soil seed bank due to differences in the water regime in the long term influence the vegetation composition (Bliss & Zedler 1998; James et al. 2007). To trace this topic the

ecologia mediterranea – Vol. 37 (1) – 2011 79 ecol-med-37-1-06:Mise en page 1 12/07/11 9:11 Page 80

KLARA DOLOS,MICHAEL RUDNER

Appendix 1 – Phenological stages

Own Dierschke (1994) Description

g0 g0 Individual without flower buds g3 g1-g3 Flower buds detectable but closed g6 g4-g7 One or more flower buds are opening or already opened g9 g8-g9 Fading or withered g10 g10 Individual is fruiting g11 g11 Dissemination of seeds, thereby no lower phenological stage as g10 on the individual g12 - Empty infrutescence, thereby no lower phenological stages on the individual

Appendix 2 – Results of variation partitioning based on correspondence analysis for the variables “time”, “site”, “temperature sums” (TS) and “soil moisture residuals” Appendix 3 – Species responsible for the turnover in May. (RES). For the artificial data set the two 4: present in interval four, variables used to create it are reused. absent in interval five. Variation is given in percent 5: absent in interval four, of total inertia. present in interval five.

Components % total inertia Species name Site 1 Site 2 Site 3

Phenological data Ophioglossum lusitanicum 4 RES ∪ Time ∪ Site ∪ TS 24.5 Anagallis crassifolia 4 Time | Site ∪ TS ∪ RES 2.82 Scirpus pseudosetaceus 5 Site | Time ∪ TS ∪ RES 9.03 Gaudinia fragilis 5 TS | Time ∪ Site ∪ RES 2.83 Gastridium ventricosum 5 RES | Time ∪ Site ∪ TS 1.42 Anthoxanthum ovatum 5 Time ∩ Site | TS ∪ RES 0.32 Brachypodium distachyon 5 Time ∩ TS | Site ∪ RES 5.86 Urginea maritima 5 Time ∩ RES | TS ∪ Site 0.00 Linum tenue 5 Site ∩ TS | Time ∪ RES 0.25 Trifolium glomeratum 5 Site ∩ RES | Time ∪ TS 1.93 Isoetes histrix 44 RES ∩ TS | Time ∪ Site 0.00 Briza minor 45 Time ∩ Site ∩ TS | RES -0.26 Bellis sylvestris 4 Time ∩ Site ∩ RES | TS 0.23 Vulpia myuros 4 Time ∩ TS ∩ RES | Site 0.07 Aphanes microcarpa 54 RES ∩ Site ∩ TS | Time 0.24 Crassula tillaea 4 RES ∩ Time ∩ Site ∩ TS -0.5 Trifolium cherleri 4 Time ∪ Site 20.25 Linum bienne 4 TS ∪ RES 12.65 Chamaemelum mixtum 5 Artificial data Briza maxima 5 Var1 ∪ Var2 18.56 Var1 9.28 Var2 9.28 Var1 ∩ Var2 0.00

80 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-06:Mise en page 1 12/07/11 9:11 Page 81

Seasonal variability and phenology of dwarf rush communities in Southern Spain

References Makrophytengesellschaften in den mitteleuropäi- schen Gewässern. Preslia 34: 359-367. Agencia Estatal de Meteorologia, 2008. Resumen Esta- James C.S., Capon S.J., White M.G., Rayburg S.C. & cional Climatológico: Primavera 2008. Gobierno Thoms M.C., 2007. Spatial variability of the soil de España, Ministerio de Medio Ambiente y Medio seed bank in a heterogeneous ephemeral wetland Rural y Marino, Madrid. Online in Internet: URL: system in semi-arid Australia. Plant Ecol. 190: 205- http://www.aemet.es/documentos/es/elclima/datos_ 217. climat/resumenes_climat/estacionales/2008/Est_pri- Junta de Andalucía – Consejería de Medio Ambiente, mavera_2008.pdf Accessed 22 February 2011. 2011. El CLIMA: Subsistema de Información de Aronson J., Kigel J., Shmida A. & Klein J., 1992. Adap- Climatología Ambiental. Online in Internet: URL: tive phenology of desert and mediterranean popula- http://www.juntadeandalucia.es/medioambiente/ser tions of annual plants grown with and without vtc5/WebClima/?lr = lang_es. Accessed 18 January water-stress. Oecologia 89: 17-26. 2011. Austin M.P., 1977. Use of ordination and other multi- Lampe M.V., 1996. Wuchsform, Wuchsrhythmus und variate descriptive methods to study succession. Verbreitung der Arten der Zwergbinsengesellschaf- Vegetatio 35: 165-175. ten. Cramer, Berlin, 353 p. Ballesteros I., 1984. Structure and dynamics of humid Larcher W., 2003. Physiological Plant Ecology: Eco- therophytic summer plant communities of Isoeto- physiology and Stress Physiology of Functional Nanojuncetea and the meadow plants Ophiglossum Groups. Springer, Berlin, 513 p. lusitanicum of the Massif of Cadiretes and the Legendre P., 2008. Studying beta diversity: ecological nearby plain of La Selva Girona Northeastern Spain. variation partitioning by multiple regression and Collect. Bot. 15: 39-58. canonical analysis. J. Plant Ecol.-UK 1: 3-8. Barkman J.J., 1973. Synusial approaches to classifica- Legendre P. & Gallagher E.D., 2001. Ecologically mea- tion. In: Whittaker R.H., Tüxen R. & Lieth H. (eds), ningful transformations for ordination of species Ordination and classification of communities. Junk data. Oecologia 129: 271-280. Publishers, The Hague: 437-491. Legendre P. & Legendre L., 2006. Numerical ecology. Bliss S.A. & Zedler P.H., 1998. The germination pro- Elsevier, Amsterdam, 853 p. cess in vernal pools: sensitivity to environmental Mcnicoll M.B. & Augspurger C.K., 2010. A compari- conditions and effects on community structure. son of vegetation and seed bank community struc- Oecologia 113: 67-73. ture in a sand prairie in Illinois, USA. Am. Midl. Bouahim S., Rhazi L., Amami B., Sahib N., Rhazi M., Nat. 164: 136-150. Waterkeyn A., Zouahri A., Mesleard F., Muller S.D. Molina J.A., 2005. The vegetation of temporary ponds & Grillas P., 2010. Impact of grazing on the species with Isoetes in the Iberian Peninsula. Phytocoeno- richness of plant communities in Mediterranean logia 35: 219-230. temporary pools (western Morocco). Comptes ren- dus Biologies 333: 670-679. Moor M., 1936. Zur Soziologie der Isoëtetalia. Huber, Bern, 148 p. Brullo S. & Minissale P., 1998. Considerazioni sintas- sonomiche sulla classe Isoeto-Nanojuncetea. Itinera Nobis M., 1999. Sukzessionslinien in der Pioniervege- Geobot.: 263-290. tation auf Lockersedimentböden – Eine auf multi- Deil U., 2005. A review on habitats, plant traits and variater Ordination basierende Analyse von Bei- vegetation of ephemeral wetlands – a global pers- spielen aus der Oberrheinebene. Diss. Univ., pective. Phytocoenologia 35: 533-705. Freiburg i. Br., 147 p. Diaz-Villa M.D., Marañon T., Arroyo J. & Garrido B., Ogle K. & Reynolds J.F., 2004. Plant responses to pre- 2003. Soil seed bank and floristic diversity in a cipitation in desert ecosystems: integrating functio- forest-grassland mosaic in southern Spain. J. Veg. nal types, pulses, thresholds, and delays. Oecologia Sci. 14: 701-709. 141: 282-294. Dierschke H., 1994. Pflanzensoziologie: Grundlagen Pietsch W., 1973. Beitrag zur Gliederung der europäi- und Methoden. Ulmer, Stuttgart, 683 p. schen Zwergbinsengesellschaften (Isoeto-Nanojun- cetea Br.-Bl. & Tx. 1943). Vegetatio 28: 401-438. Espirito Santo M. D. & Arsenio P., 2005. Influence of land use on the composition of plant communities Pietsch W., 1999. Zum Keimverhalten ausgewählter from seasonal pond ecosystems in the Guadiana Arten mitteleuropäischer Zwergbinsengesellschaf- Valley Natural Park (Portugal). Phytocoenologia 35: ten. Mitt. Bad. Landesver. Naturkd. Naturschutz NF 267-282. 17: 261-274. Fernandez M.D., Hueso J.J. & Cuevas J., 2010. Water Pignatti E. & Pignatti S., 2005. Ephemeral wetland stress integral for successful modification of flowe- vegetation of Western Australia. Phytocoenologia ring dates in `Algerie‘ loquat. Irrig. Sci. 28: 127- 35: 201-218. 134. Pinto-Cruz C., Molina J.A., Barbour M., Silva V. & Ghosn D., Vogiatzakis I.N., Kazakis G., Dimitriou E., Espirito-Santo M.D., 2009. Plant communities as a Moussoulis E., Maliaka V. & Zacharias I., 2010. tool in temporary ponds conservation in SW Portu- Ecological changes in the highest temporary pond gal. Hydrobiologia 634: 11-24. of western Crete (Greece): past, present and future. Rhazi L., Grillas P., Tan Ham L. & El Khyari D., 2001. Hydrobiologia 648: 3-18. The seed bank and the between years dynamics of Grillas P., Gauthier P., Yaverkovski N. & Perennou C., the vegetation of a Mediterranean temporary pool 2004. Mediterranean Temporary Pools: 1. Issues (NW Morocco). Ecol. Med. 27: 69-88. relating to conservation, functioning and manage- Rhazi L., Grillas P., Rhazi M. & Aznar J.-C., 2009. Ten- ment. Arles. year dynamics of vegetation in a Mediterranean Hejný S., 1962. Über die Bedeutung der Schwankungen temporary pool in western Morocco. Hydrobiologia des Wasserspiegels für die Charakteristik der 634: 185-194.

ecologia mediterranea – Vol. 37 (1) – 2011 81 ecol-med-37-1-06:Mise en page 1 12/07/11 9:11 Page 82

KLARA DOLOS,MICHAEL RUDNER

Rivas-Goday S., 1970. Revisión de las comunidades his- Snyder R.L., 1999. Determining degree-day thresholds panas de la clase Isoëto-Nanojuncetea Br.-Bl, Tx. from field observations. Int. J. Biometeorol. 42: 177- 1943. Anales Inst. Bot. Cavanilles 23: 91-119. 182. Rivas-Martínez S., Díaz T.E., Fernández-Gonzáles F., Snyder R.L., Spano D., Duce P. & Cesaraccio C., 2001. Izco J., Loidi J., Lousa M. & Penas A., 2002. Vas- Temperature data for phenological models. Int. cular plant communities of Spain and Portugal: J. Biometeorol. 45: 178-183. addenda to the syntaxonomical checklist of 2001. Steyn H.M., van Rooyen N., van Rooyen M.W. & The- Itinera Geobot. 15: 5-922. ron G.K., 1996. The prediction of phenological Rivas-Martínez S., Fernández-Gonzáles F., Loidi J., stages in four Namaqualand ephemeral species Lousa M. & Penas A., 2001. Syntaxonomical check- using thermal unit indices. Israel J. Plant Sci. 44: list of vascular plant communities of Spain and Por- 147-160. tugal to association level. Itinera Geobot. 14: 5-341. Svoray T., Shafran-Nathan R., Henkin Z. & Perevo- Rudner M., 2004. Zwergbinsenrasen im Südwesten der lotsky A., 2008. Spatially and temporally explicit Iberischen Halbinsel – eine Analyse räumlicher und modeling of conditions for primary production of zeitlicher Vegetationsmuster. Diss. Univ., Freiburg annuals in dry environments. Ecol. Model. 218: 339- i. Br., 144 p. Online in Internet: 353. http://www.freidok.uni-freiburg.de/volltexte/1413. Svoray T. & Karnieli A., 2011. Rainfall, topography and Accessed 22 February 2011. primary production relationships in a semiarid eco- Rudner M., 2005a. Environmental patterns and plant system. Ecohydrology 4: 56-66. communities of the ephemeral wetland vegetation Valdés B., Talavera S. & Fernández-Galiano E. (eds), in two areas of the Southwestern Iberian Peninsula. 1987. Flora vascular de Andalucía occidental. Phytocoenologia 35: 231-265. Ketres, Barcelona. Vol. 1-3, 485 p., 640 p., 555 p. Rudner M., 2005b. Seasonal and interannual dynamics White L.M., 1995. Predicting flowering of 130 plants at in dwarf rush vegetation in the Southwestern Ibe- 8 locations with temperature and daylength. rian Peninsula. Phytocoenologia 35: 403-420. J. Range Manage. 48: 108-114. Rudner M., 2011. Ephemeral wetland vegetation in Yuan W., Zhou G., Wang Y., Han X. & Wang Y., 2007. Mediterranean heathland and maquis communities. Simulating phenological characteristics of two Wetlands 31: 551-562. dominant grass species in a semi-arid steppe eco- Russel G.J., Diamond J.M., Pimm S.L. & Reed T.M., system. Ecol. Res. 22: 784-791. 1995. A century of turnover – community dynamics Zacharias I., Dimitriou E., Dekker A. & Dorsman E., at 3 timescales. J. Anim. Ecol. 64: 628-641. 2007. Overview of temporary ponds in the Medi- terranean region: Threats, management and conser- vation issues. J. Environ. Biol. 28: 1-9.

82 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-07:Mise en page 1 12/07/11 9:11 Page 83

Effet de la durée de conservation, de la couleur et de la période de récolte des semences sur la germination de Diplotaxis harra (Forssk.) Boiss., plante envahissante en Tunisie méridionale Effect of storage period, color and collection period on seed germination of Diplotaxis Harra (Forssk.) Boiss., an invasive plant species of Southern Tunisia

Tahar TLIG, Mustapha GORAI, Mohamed NEFFATI Laboratoire d’écologie pastorale, Institut des régions arides, 4119 Médenine, Tunisia Auteur correspondant : Mustapha GORAI E-mail : [email protected]

Résumé Abstract Les semences de Diplotaxis harra (Forssk.) Boiss., Seeds of Diplotaxis harra (Forssk.) Boiss., an espèce envahissante de la Tunisie méridionale, invasive plant species of Southern Tunisia, were ont été récoltées en juillet 2007, janvier 2008 et collected in July 2007, January 2008 and, April avril 2008 et ensuite conservées dans les condi- 2008 and stored under laboratory conditions. tions ambiantes du laboratoire. À la récolte, et Directly after collection and each three months, tous les trois mois, des essais de germination ont germination experiments were conducted in été conduits à l’obscurité et à 15 oC, ce qui cor- darkness at 15 oC, which corresponds to the respond à l’optimum thermique pour la germi- thermal optimum for the germination of this nation de cette espèce. Les résultats obtenus species. The results show that seed color did not montrent que la couleur des semences n’a pas significantly affect the germination pattern of d’effet significatif sur les aptitudes germinatives D. harra. Seeds, notably those collected in sum- de cette espèce. Les semences, notamment mer, maintained a high germination rate even celles collectées en été, gardent un taux de ger- after 18-month storage period. These germina- mination très élevé même après une conserva- tion characterisitics could partly explain the tion de 18 mois. Ces aptitudes germinatives invasive behaviour of this species. expliquent, du moins en partie, le caractère envahissant de cette espèce.

Mots clés : Diplotaxis harra, espèce envahissante, Keywords: Diplotaxis harra, invasive species, Tunisie méridionale, germination, conservation. Southern Tunisia, germination, conservation.

ecologia mediterranea – Vol. 37 (1) – 2011 83 ecol-med-37-1-07:Mise en page 1 12/07/11 9:11 Page 84

TAHAR TLIG,MUSTAPHA GORAI,MOHAMED NEFFATI

Introduction nombre d’espèces, et la variation de la capa- cité germinative est interprétée comme une adaptation aux conditions écologiques Diplotaxis harra (Forssk.) Boiss. (Brassica- (Navarro & Guitlan 2003). D’après la littéra- cées) est une espèce annuelle, parfois ture, certains facteurs comme la durée de pérenne, caractérisée par des tiges dressées, conservation, la couleur de l’enveloppe et la rameuses, de 20 à 60 cm, indurées frutes- date de récolte peuvent influencer la germi- centes à la base (Pottier-Alapetite 1979). Les nation des semences. Chez certaines espèces, fruits sont des siliques pendantes et stipitées les semences les plus anciennes possèdent le de 2 à 4 mm de longueur (Molino 2005), libé- taux de germination le plus élevé (Ouled Bel- rant à leur déhiscence des semences jaunes gacem et al. 2004). Les semences d’autres (91,5%) et grises (8,5%) (Tlig 2007). Cer- espèces végétales voient, au contraire, leur tains attributs biologiques propres à cette germination significativement abaissée suite espèce (aptitudes germinatives, vigueur repro- à leur conservation (Jiofack & Dondjang ductive) expliquent, du moins en partie, son 2007 ; Noba et al. 2009). Selon Liu et al. envahissement des milieux (Tlig 2007 ; Tlig (2008), les semences brunes d’Atriplex cen- et al. 2008 ; Gorai et al. 2009). tralasiatica ont une capacité germinative plus Les plantes envahissantes représentent la élevée que celle des semences noires. La seconde cause d’érosion de la biodiversité à variabilité du comportement germinatif en l’échelle mondiale, après la destruction des fonction de la date de récolte des semences a habitats naturels (Simberloff 2003) et consti- été signalée chez Portulaca oleracea L. (El- tuent, entre autres, une composante significa- Keblawy & Al-Ansari 2000), Vincetoxicum tive des changements globaux (Sakai 2001 ; rossicum (DiTommaso et al. 2005) et Sporo- Saccone 2007). Beaucoup d’études se sont bolus spicatus (El-Keblawy et al. 2009). intéressées aux caractéristiques des espèces C’est dans ce contexte que s’intègre ce travail végétales envahissantes mais se sont focali- dont l’objectif est de répondre aux trois ques- sées pour la plupart sur les attributs physiolo- tions suivantes : (i) la durée de conservation giques, génétiques et écologiques des plantes des semences de D. harra aurait-elle un effet adultes. Or, le stade semence est extrêmement sur leur germination ? (ii) les semences jaunes important dans le cycle de vie des plantes sur- et les semences grises auront-elles les mêmes tout chez les espèces végétales annuelles comportements germinatifs ? (iii) la date de (Müller-Schärer et al. 2004). Une banque de récolte des semences influence-t-elle leur ger- graines de grande longévité est importante mination ? dans la régénération des populations végétales (Saatkamp et al. 2011). Ces auteurs rappor- tent que la présence de semences dormantes dans la banque semencière permet à l’espèce Matériel et méthodes de se protéger contre les contraintes environ- nementales et la présence de semences non dormantes permet l’exploitation rapide du Site de collecte des semences milieu si les conditions sont favorables. Les La collecte des semences de Diplotaxis harra semences dormantes constituent un mode de a été faite au mois de juillet 2007, janvier et résistance contre l’extinction d’une espèce si octobre 2008 à partir d’un site localisé dans une perturbation exceptionnelle, naturelle ou la région de Boughrara (10o 39’N, 33o 30’E ; anthropique détruit l’ensemble des parties sud-est de la Tunisie). Ce site est situé dans et al végétatives (Bationo . 2001). Baskin et l’étage bioclimatique aride avec une pluvio- Baskin (1998, 2004) ont proposé une classi- métrie moyenne annuelle de 144 mm et une fication incluant 5 catégories de dormance évapotranspiration moyenne annuelle de chez les semences : physiologique (PD), mor- l’ordre de 1096 mm. La température phologique (MD), morphophysiologique moyenne annuelle est de 20,5 oC avec un (MPD), physique (PY) et combinée (PY minimum en janvier (6,2 oC) et un maximum + PD). D. harra peut avoir une dormance en août (36,8 oC) (Tlig et al. 2008). Pour s’ap- physiologique à la récolte et une dormance procher davantage des conditions naturelles secondaire (Hegazy 2001 ; Tlig et al. 2008 ; (in situ), les semences de D. harra ont été pla- Gorai et al. 2009). cées dès leur collecte dans des sachets en La germination des semences est une phase papier kraft et conservées dans les conditions critique dans le cycle reproductif d’un grand ambiantes du laboratoire.

84 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-07:Mise en page 1 12/07/11 9:11 Page 85

Effet de la durée de conservation, de la couleur et de la période de récolte des semences sur la germination de Diplotaxis harra (Forssk.) Boiss., plante envahissante en Tunisie méridionale

Essais de germination : Analyse statistique conditions expérimentales Les données de la germination sont transfor- Les essais de germination ont été effectués à mées (arcsinus) avant l’analyse statistique par l’obscurité et à 15 oC qui correspond à la tem- le logiciel SPSS, 11.5 (SPSS 2002). Une ana- pérature optimale de germination de l’espèce lyse de la variance (ANOVA) à un facteur et à (Tlig et al. 2008). Avant la mise en germina- deux facteurs a été effectuée pour tester les tion, les graines de D. harra ont été désinfec- effets de la couleur, la période et la durée de tées à l’hypochlorite de sodium, puis rincées conservation des semences sur les paramètres à l’eau distillée. Deux expériences ont été de germination. Le test de Tukey a été utilisé menées afin de tester les effets de la couleur pour comparer les moyennes. Le seuil de (jaune et grise), de la période de récolte (hiver, significativité est fixé à 5 %. printemps et été) et de la durée de conserva- tion des semences (semences fraîchement récoltées, 3, 6, 9, 12, 15 et 18 mois) sur le comportement germinatif de cette espèce. Les Résultats semences ont été disposées sur deux couches de papier-filtre humectées avec 5 ml d’eau Les résultats relatifs à la variation de la capa- distillée dans des boîtes de Pétri en verre, avec cité germinative finale des semences de quatre répétitions à raison de 25 graines par D. harra collectées en été (juillet) en fonction boîte. La périodicité des observations des de la couleur à différentes périodes de conser- semences est de 2 jours sur une période de vation sont rapportés dans la figure 1. L’ana- 20 jours. lyse de la variance à deux facteurs a montré Expérience 1 : effet de la couleur et de la durée de conservation des semences sur la germination

D. harra produit deux types de semences, 100 jaunes et grises. Les essais de germination ont été effectués tous les trois mois et ont porté 80 sur des semences jaunes et des semences grises collectées en été (mois de juillet 2007). 60 Expérience 2 : effet de la période de récolte et de la durée de conservation des semences 40 sur la germination 20 Afin d’évaluer l’effet de la période de récolte Germination finale (%) des graines sur le comportement germinatif 0 de cette espèce, on a récolté des graines en 036912 15 18 hiver (janvier), au printemps (avril) et en été Durée de conservation des semences (mois) (juillet). Les essais de germination ont été effectués tous les trois mois. Jaune Grise Figure 1 – Variation de la capacité germinative finale des semences de Diplotaxis harra en fonction de leur couleur (grise ou jaune) à différentes durées de conservation (semences fraîchement récoltées, 3, 6, 9, 12, 15 et 18 mois). Les moyennes et les intervalles de confiance sont calculés au seuil de 5 % (n = 4).

Tableau 1 – Résultats d’analyse de la variance (ANOVA) à deux facteurs montrant l’effet de la couleur (C), de la durée de conservation (D) et de leur interaction sur la capacité germinative finale des semences de Diplotaxis harra.

Source ddl CM F Sig.

Couleur (C) 1 0,014 0,395 0,533 Durée de conservation (D) 6 1,667 47,436 0,000 C×D 6 0,043 1,222 0,314 Erreur 42 0,035 Les abréviations utilisées : ddl : degré de liberté, CM : carrés moyens, F : statistique de Fisher et Sig. : signification (= probabilité que le facteur étudié soit sans effet).

ecologia mediterranea – Vol. 37 (1) – 2011 85 ecol-med-37-1-07:Mise en page 1 12/07/11 9:11 Page 86

TAHAR TLIG,MUSTAPHA GORAI,MOHAMED NEFFATI

Tableau 2 – Résultats d’analyse de la variance à deux facteurs montrant l’effet de la période de récolte (R), la durée de conservation (D) et de leur interaction sur la capacité germinative finale des semences de Diplotaxis harra.

Source ddl CM F Sig.

Période de récolte (R) 2 1,404 15,135 0,000 Durée de conservation (D) 6 2,224 23,961 0,000 R×D 12 0,491 28,936 0,000 Erreur 75 0,093 Les abréviations utilisées : ddl : degré de liberté, CM : carrés moyens, F : statistique de Fisher et Sig. : signification (= probabilité que le facteur étudié soit sans effet).

sentent des taux de germination très élevés de l’ordre de 96 % et 98 %, respectivement, pour 100 les semences grises et jaunes (figure 1). Au- delà de cette période de conservation, on 80 assiste à des légères variations enregistrant des pourcentages de germination de l’ordre de 60 92 % pour les deux types de graines.

40 La figure 2 illustre l’évolution de la germina- tion finale des semences de D. harra en fonc- 20 tion de la période de leur récolte à différentes Germination finale (%) durées de conservation. La période de récolte 0 des semences, leur conservation et l’interac- 036912 15 18 tion entre ces deux facteurs ont un effet hau- Durée de conservation des semences (mois) tement significatif sur la germination (tableau 2). À la collecte, la germination est Janvier Avril Juillet de l’ordre de 3% et 11%, respectivement, Figure 2 – Variation de la capacité germinative finale des semences de pour les semences du printemps (avril) et Diplotaxis harra en fonction de leur période de collecte (janvier, d’été (juillet). Elle est nulle pour les semences avril et juillet) à différentes durées de conservation (semences fraîchement récoltées, 3, 6, 9, 12, 15 et 18 mois). Les moyennes et collectées en hiver (janvier). Celles-ci mon- les intervalles de confiance sont calculés au seuil de 5 % (n = 4). trent les pourcentages les plus élevés suite à leur conservation durant 6, 9, 12 et 15 mois. La germination des semences du printemps augmente avec la durée de conservation pour atteindre sa valeur maximale (96%) après des effets hautement significatifs de la durée 9 mois. Au-delà de cette période, la germina- de conservation des semences. Au contraire, tion diminue au fur et à mesure de leur durée aucune différence significative n’a été prou- de conservation. Après 18 mois de conserva- vée pour la couleur des semences et l’inter- tion, le pourcentage de germination est signi- action couleur × durée de conservation ficativement plus élevé pour les graines récol- (tableau 1). Les semences fraîchement col- tées en été. En effet, celles-ci gardent une lectées ont eu le taux de germination le plus capacité germinative relativement élevée faible soit 11% et 14% pour les semences (92 %), alors que les semences d’hiver et du jaunes et grises, respectivement. Conservées printemps voient leur germination chuter à durant 3 mois, les semences de D. harra pré- 32 % et 38 %, respectivement.

86 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-07:Mise en page 1 12/07/11 9:11 Page 87

Effet de la durée de conservation, de la couleur et de la période de récolte des semences sur la germination de Diplotaxis harra (Forssk.) Boiss., plante envahissante en Tunisie méridionale

Discussion (Dubreucq et al. 2001). La dormance s’op- pose à une germination groupée et homogène. Cela évite les fortes mortalités des plantules Un taux de germination de plus de 92 % après lorsque la germination in situ est suivie d’une 18 mois de conservation dans les conditions période de sécheresse (Bationo et al. 2001). ambiantes sans précaution particulière, traduit D. harra peut avoir une dormance physiolo- la bonne conservation des semences jaunes de gique à la récolte et une dormance secondaire D. harra collectées en été. La faible teneur en (Hejazy 2001 ; Tlig et al. 2008). Cette der- eau exprimée en pourcentage du poids frais nière dormance est acquise au cours de l’hi- (14%) et calculée par la formule de Willan ver par un passage au froid et qui résulte en (1992) est sans doute l’un des principaux la dormance accrue pour la date de récolte en paramètres qui favorise une longue durée de janvier. conservation de ces semences. Selon la clas- sification établie par Côme & Corbineau D. harra produit des semences jaunes et (1992), les semences de D. harra collectées grises. Cette variabilité de la couleur des en été peuvent être qualifiées d’orthodoxes. semences n’est pas accompagnée d’une dif- Elles sont capables de supporter une déshy- férence significative de leurs performances dratation plus poussée. Cette propriété est germinatives. Nos résultats diffèrent de ceux d’ailleurs mise à profit pour prolonger leur de Liu et al. (2008) sur Atriplex centralasia- viabilité lorsqu’elles gagnent le sol et enrichir tica montrant que la germination est influen- ainsi le stock semencier. Celui-ci constitue cée par la couleur des semences. Chez cette une réserve qui va intervenir dans le méca- dernière, et à des températures moyennes, les nisme de régénération (Hélion 2005). semences brunes ont une capacité germinative Nos résultats relatifs aux semences de plus élevée que celle des semences noires. D. harra collectées en été corroborent ceux Mais ces dernières germent mieux à des tem- trouvés par d’autres auteurs chez d’autres pératures élevées. Dans notre étude, la ger- espèces. Chez Stipa lagascae L. & Sch., mination a été effectuée à la température opti- o espèce d’un grand intérêt pastoral ayant dis- male (15 C). D. harra aurait peut-être eu un parue de nombreux sites de la Tunisie, les comportement différent vis-à-vis de la couleur anciennes semences (30 mois) ont eu le taux des semences si cette espèce avait été testée de germination le plus élevé (Ouled Belgacem sous d’autres températures en raison de la et al. 2004). Selon Chadoeuf-Hannel & Bar- forte interaction entre ces deux facteurs évo- rallis (2006), les graines d’Amaranthus quée par Liu et al. (2008). retroflexus . L présentent des pourcentages de La période de récolte des semences de D. germination voisinant les 100% suite à leur harra a montré, au contraire, un effet signifi- conservation durant 60 jours. Comparées aux catif sur leur germination. Les semences pro- D. harra semences de collectées en été, celles duites en été paraissent les plus performantes d’hiver et du printemps atteignent les teneurs dans la mesure où elles gardent une capacité en eau les plus élevées (22% et 33%, res- germinative relativement élevée après 18 mois pectivement). Ces semences ainsi que celles de conservation. Au contraire, les semences d’autres espèces végétales voient leur germi- du printemps et d’hiver voient leur taux de nation significativement abaissée suite à leur germination chuter considérablement. Il paraît conservation (Jiofack & Dondjang 2007; ainsi que les conditions climatiques qui et al Noba . 2009). Cette baisse pourrait être règnent au moment de la maturation des expliquée par un vieillissement des semences semences influencent leurs performances ger- suite à une perte d’intégrité membranaire qui minatives. Une telle variabilité du comporte- engendre une augmentation de fuite d’élec- ment germinatif en fonction de la période de et al trolytes (Geol . 2003). Elle peut être attri- maturation des semences a été signalée chez buée aussi à des inhibitions tégumentaires Portulaca oleracea L. (El-Keblawy & Al- et al et/ou à une dormance secondaire (Noba . Ansari 2000), Vincetoxicum rossicum (DiTo- 2009). mmaso et al. 2005), quatre espèces du genre La faible capacité germinative des semences Lamium (Karlsson & Milberg 2008) et Spo- de D. harra à la collecte peut être due à une robolus spicatus (El-Keblawy et al. 2009). insuffisance de maturité physiologique ou que Plusieurs auteurs pensent que la température les semences fraîchement récoltées sont en et la photopériode qui règnent au moment de dormance conditionnelle acquise sur la plante maturation des semences sur la plante mère mère et qui se lève progressivement influencent leur germination. Les semences

ecologia mediterranea – Vol. 37 (1) – 2011 87 ecol-med-37-1-07:Mise en page 1 12/07/11 9:11 Page 88

TAHAR TLIG,MUSTAPHA GORAI,MOHAMED NEFFATI

produites à des températures élevées possè- Références dent la capacité germinative la plus impor- tante. Ceci est vérifié chez plusieurs espèces Baskin C.C. & Baskin J.M., 1998. Seeds: ecology, bio- comme Onopordum acanthium (Qaderi et al. geography and evolution of dormancy and germi- 2003) et Sporobolus spicatus (El-Keblawy et nation. Academic Press, San Diego, 666 p. ISBN 0- 12-080260. al. 2009). De la même manière, El-Keblawy Baskin J.M. & Baskin C.C., 2004. A classification sys- & Al-Ansari (2000) et Munir et al. (2001) ont tem for seed dormancy. Seed Sci. Res. 14: 1-16. montré que l’exposition de la plante mère à Bationo B.A., Ouedraogo S.J. & Guinko S., 2001. Lon- des courtes journées pendant la maturation gévité des graines et contraintes à la survie des plan- des semences favorise une augmentation de tules d’Afzelia africana Sm. dans une savane boisée leur germination. Toutefois, chez Prosopis du Burkina Faso. Ann. For. Sci. 58 : 69-75. juliflora (El-Keblawy & Al-Rawai 2006) et Bewley-Black M., 1994. Seed, physiology of develop- Sporobolus spicatus (El-Keblawy et al. 2009), ment and germination. Plenum Press, New York, London. 445 p. le rôle de la photopériode excède celui de la Chadoeuf-Hannel R. & Barrallis, G., 2006. Comporte- température. Dans le cas de D. harra, ce serait ment germinatif des graines d‘Amaranthus plutôt la température qui jouerait le rôle le retroflexus L. récoltées dans les conditions natu- plus déterminant dans la mesure où les relles. Weed Res. 22 : 361-369. semences qui mûrissent en été (saison la plus Côme D. & Corbineau F., 1992. Les végétaux et le froid. chaude et à plus longue photopériode) sont les In : Côme D. (ed.), Les semences et le froid. Her- plus performantes. Selon El-Keblawy et al. mann Éd., Paris : 401-461. DiTommaso A., Brainard D. & Webster B., 2005. Seed (2009), l’effet des conditions climatiques, qui characteristics of the invasive alien vine Vincetoxi- règnent au moment de la maturation des cum rossicum are affected by site, harvest date, and semences, sur leurs performances germina- storage duration. Can. J. Bot. 83: 102-110. tives est attribué à plusieurs mécanismes Dubreucq B., Grappin P., Miquel M., North N., Rochat comme la quantité et la qualité des ressources C. & Jullien M., 2001. Approche moléculaire de la disponibles pour les semences au moment de qualité et du développement des graines. Oléagi- neux, Corps gras, Lipides 8 : 487-495. leur maturation (Galloway 2002). Ces condi- El-Keblawy A. & Al-Ansari, F., 2000. Effects of site of tions peuvent, entre autres, modifier la struc- origin, time of seed maturation, and seed age on ger- ture des téguments des semences (Luziriagua mination behavior of Portulaca oleracea from the et al. 2006). Old and New Worlds. Can. J. Bot. 78: 279-287. El-Keblawy A. & Al-Rawai A., 2006. Effects of seed maturation time and dry storage on light and tem- perature requirements during germination in inva- sive Prosopis juliflora. Flora 201: 135-143. Remerciements El-Keblawy A., Al-Sodany Y.M. & Al-Hadad. F.A., 2009. Effects of time of seed maturation on dor- Nous remercions l’éditeur en chef du journal mancy and germination requirements of Sporobolus Thierry Dutoit et les relecteurs anonymes de spicatus (Vahl) Kunth, a native desert grass of the United Arab Emirates. Grass. Sci. 55: 11-17. ce manuscrit pour leurs remarques et critiques Galloway L.F., 2002. The effect of maternal phenology très pertinentes. on offspring characters in the herbaceous plant Campanula americana. J. Ecol. 90: 851-858. Geol A., Geol A.K. & Sheron I.S., 2003. Change in oxi- dative stress enzymes during artificial ageing in cot- ton seeds. J. Plant. Physiol. 160: 1093-1100. Gorai M., Tlig T. & Neffati M., 2009. Influence of water stress on seed germination characteristcs in invasive Diplotaxis harra (Forssk.) Boiss. (Brassicaceae) in arid zone of Tunisia. J. Phytol. 4: 249-254. Grappin P., Bourdais G., Collet B., Godin B., Job D., Ogé L., Jullien M. & Rajjou L., 2008. Vieillissement des semences et mécanismes de survie. J. Soc. Biol. 202 : 231-239. Hegazy A.K., 2001. Reproductive diversity and survival of the potential annual Diplotaxis harra (Forssk.) Boiss. (Brassicaceae) in Egypt. Ecography 24: 403- 412. Hélion E., 2005. Importance de la banque de graines dans la dynamique de la végétation des prairies subalpines (Col du Lautaret). Rapport de stage, Master Sciences et Technologies. Université Bor- deaux 1, 16 p.

88 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-07:Mise en page 1 12/07/11 9:11 Page 89

Effet de la durée de conservation, de la couleur et de la période de récolte des semences sur la germination de Diplotaxis harra (Forssk.) Boiss., plante envahissante en Tunisie méridionale

Jiofack R.B. & Dondjang J.P., 2007. Caractérisation et Ouled Belgacem A., Neffati M., Chaieb M. & Visser M., étude de la germination de diaspores de Tetracarpi- 2004. Réhabilitation des parcours dégradés en Tuni- dium conophorum (Müll. Arg.) Hutch. et Dalz. Int. sie présaharienne par réintroduction d’espèces J. Biol. Chem. Sci. 2 : 136-142. autochtones: cas de Stipa lagascae R. & Sch. Karlsson L. & Milberg P., 2008. Variation within species Options Méditerr. 62 : 437-441. and inter-species comparison of seed dormancy and Pottier A., 1979. Flore de la Tunisie. Angiospermes- germination of four annual Lamium species. Flora Dicotylédones. Apétales-Dialypétales. Imprimerie 203: 409-420. officielle de la République tunisienne, Tunisie, Liu X., Khan M.A., Tsuji W. & Tanaka K., 2008. The 651 p. effect of light, temperature and bracteoles on ger- Qaderi M.M., Cavers P.B. & Bernards M.A., 2003. Pre- mination of polymorphic seeds of Atriplex centra- and post-dispersal factors regulate germination pat- lasiatica under saline conditions. Seed Sci. Technol. terns and structural characteristics of Scotch thistle 36: 325-338. (Onopordum acanthium) cypselas. New Phytol. 159: Luzuriaga A.L., Escudero A. & Pérez-García F., 2006. 263-278. Environmental maternal effects on seed morphol- Saatkamp A., Affre L., Dutoit T. & Poschlod P., 2011. ogy and germination in Sinapsis arvensis (Cru- Germination traits explain soil seed persistence ciferae). Weed Res. 46: 163-174. across species : the case of Mediterranean annual Molino P., 2005. A Guide to Medicinal Plants in North plants in cereal fields. Ann. Bot. 107: 415-426. Africa. ISBN, Malaga, Spain. 256 p. Saccone P., 2007. Rôle des interactions entre plantes et Müller-Schärer H., Schaffner U. & Steinger T., 2004. place des espèces à stratégie dispendieuse dans les Evolution in invasive plants: implications for bio- dynamiques forestières sous l’influence des chan- logical control. Trends Ecol. Evol. 19: 417-422. gements globaux. Thèse de doctorat, Université J. Fourrier-Grenoble I. France, 236 p. Munir J., Dorn L.A., Donohue K. & Schmitt J., 2001. The effect of maternal photoperiod on seasonal dor- Sakai A.K., 2001. The population biology of invasive mancy in Arabidopsis thaliana (Brassicaceae). Am. species. Annu. Rev. Ecol. Syst. 32: 305-332. J. Bot. 88: 1240-1249. Simberloff D., 2003. Confronting introduced species: a Navarro L. & Guittan J., 2003. Seed germination and form of xenophobia? Biol. Invas. 5: 159-192. seedling survival of two threatened endemic species SPSS, 2002. SPSS 11.5 for Windows Update, SPSS Inc, of the northwest Iberian Peninsula. Biol. Conserv. USA. 109: 313-320. Tlig T., 2007. Diplotaxis harra (Forssk.) Boiss. : Apti- Neffati M., 1994. Caractérisation morpho-biologique tudes germinatives et vigueur reproductive. Mastère de certaines espèces végétales nord-africaines. de lutte contre la désertification et gestion durable Implication pour l’amélioration pastorale. Thèse de des ressources naturelles en milieux arides, INAT, doctorat, Université de Gent, Belgique, 264 p. Tunisie, 63 p. Noba K., Coundoul M., Fall I., Samba Mbaye M., Diop Tlig T., Gorai M. & Neffati M., 2008. Germination res- D., Caussanel J. P., TidianeBa A. & Barralis G., ponses of Diplotaxis harra to temperature and sali- 2009. Effet de la durée de la conservation, de la tem- nity. Flora 203 : 421-428. pérature et de la lumière sur le comportement ger- Willan R.L., 1992. Guide de manipulation des semences minatif des semences de huit espèces adventices des forestières dans le cas particulier des régions tro- cultures tropicales. J. Bot. 45 : 71-79. picales. Étude FAO Forêts 20/2.

ecologia mediterranea – Vol. 37 (1) – 2011 89 ecol-med-37-1-08-c:Mise en page 1 12/07/11 15:19 Page 91

Application of the Global Bioclimatic Classification to Iran: implications for understanding the modern vegetation and biogeography Application de la Classification Bioclimatique Globale en Iran : implications pour comprendre la végétation actuelle et la biogéographie

M. DJAMALI1,2*, H. AKHANI2*, R. KHOSHRAVESH2, V. ANDRIEU-PONEL1, P. PONEL1, S. BREWER3 1. Institut méditerranéen d‘écologie et de paléoécologie (IMEP UMR CNRS 6116), Europôle méditerranéen de l‘Arbois, bâtiment Villemin, BP80, 13545 Aix-en-Provence cedex 04, France 2. Department of Plant Science, School of Biology, College of Science, University of Tehran, 14155-6455 Tehran, Iran 3. Department of Botany, 3165 1000 E. University Ave., University of Wyoming, Laramie, WY 82071, USA * Correspondence: Morteza Djamali & Hossein Akhani, Department of Plant Science, School of Biology, College of Science, University of Tehran, 14155-6455 Tehran, Iran and Institut méditerranéen d‘écologie et de paléoécologie (IMEP UMR CNRS 6116), Europôle méditerranéen de l‘Arbois, bâtiment Villemin, BP80, 13545 Aix-en-Provence cedex 04, France E-mail : [email protected], [email protected]

Résumé dont le méditerranéen pluvisaisonnier-océa- L'objectif de cette étude est de proposer une nique, le méditerranéen xérique-océanique, le nouvelle zonation bioclimatique de l'Iran, basée méditerranéen pluvisaisonnier-continental, le sur le Global Bioclimatic Classification System méditerranéen xérique-continental, le méditer- (GBC) récemment développé et d'évaluer la vali- ranéen désertique-océanique et le méditerra- dité de ce système de classification en comparant néen désertique-continental. Le macrobioclimat l'adéquation entre les zones bioclimatiques nou- « tropical » présente aussi divers bioclimats dont vellement définies et les principales régions phy- le tropical xérique, le tropical désertique et le togéographiques, les principaux biomes et une tropical hyperdésertique. Enfin, le macrobiocli- sélection de plantes et d'insectes d'Iran. Trois mat « tempéré » ne comprend qu'un seul biocli- macrobioclimats, dix bioclimats et trois variantes mat, le tempéré océanique. Les zones bioclima- bioclimatiques ont été définis par application du tiques identifiées par le système GBC sont bien GBC aux données météorologiques iraniennes. Le corrélées avec les principales régions phytogéo- macrobioclimat « méditerranéen » est dominant, graphiques de l'Iran au niveau macrobioclima- il correspond à la région biogéographique irano- tique, et avec les principaux biomes au niveau touranienne ; le macrobioclimat « tropical » dans bioclimatique. Par rapport aux autres classifica- le sud de l'Iran correspond à la région saharo- tions bioclimatiques, le système GBC présente sindienne, et enfin une petite zone macrobiocli- l'avantage de prendre en compte non seulement matique «tempérée» correspond à la région les variations annuelles des paramètres clima- euro-sibérienne. Le macrobioclimat « méditerra- tiques significatifs pour la croissance et le déve- néen » comprend un large éventail de bioclimats loppement des populations et des communau-

Mots clés : zonation bioclimatique, climat méditerranéen, continentalité, région irano- Keywords: Bioclimatic zonation, Mediterranean touranienne, phytogéographie, végétation, climate, continentality, Irano-Turanian region, Proche-Orient. phytogeography, vegetation, Near East.

ecologia mediterranea – Vol. 37 (1) – 2011 91 ecol-med-37-1-08-c:Mise en page 1 12/07/11 15:19 Page 92

M. DJAMALI, H. AKHANI, R. KHOSHRAVESH, V. ANDRIEU-PONEL, P. PONEL, S. BREWER

tés végétales, mais aussi les variations saison- Introduction nières. Le GBC distingue plusieurs types de régimes climatiques «méditerranéens» pour l'Iran et aide à distinguer deux types de climat Iran has one of the most diversified fauna, désertique, le «méditerranéen» et le «tropi- flora, and landscapes in SW Asia (e.g. Davis cal ». Comme le climat de la région irano-toura- et al. 1994; Firouz 2005; Frey et al. 1999). nienne diffère clairement de celui de la région Several major biogeographical regions meet in méditerranéenne en ce qui concerne le degré de this country and create a unique biodiversity continentalité et la saisonalité, nous proposons d'utiliser pour la description du climat du (Zohary 1973; Klein 1994; Akhani 1998). Proche-Orient continental et de l'Asie centrale le Flora of Iran contains at least 7300 vascular terme de bioclimat « xéro-estival-continental » plant taxa with an endemic percentage of 24% au lieu de bioclimat « méditerranéen ». (Rechinger 1963-2010; Akhani 2006). This high phytodiversity rate is the result of a com- Abstract plex interaction between different climatic zones and biogeographical regions in a parti- This study aims at proposing a new bioclimatic zonation for Iran based on the recently devel- cular orographic context (Zohary 1973). The oped Global Bioclimatic Classification System present vegetation established after a long his- (GBC) and tries to re-appraise this classification tory of plant-habitat interaction to global and system by checking the degree of correspon- local climatic and environmental changes and dence between its bioclimatic zones and the anthropogenic activities in one of the main distribution of major phytogeographical regions, biomes, and a selection of plant and cradles of the human civilization. Investiga- insect taxa of Iran. After application of the GBC tions on past environmental and vegetation to Iranian meteorological data, three macro- changes of the Middle East including Iran, bioclimates, ten bioclimates, and three biocli- show that the flora and vegetation of Iran have matic variants were distinguished. The Mediter- been affected by Quaternary glaciations and ranean macrobioclimate is the dominant human activities (e.g. van Zeist and Bottema macrobioclimate and correlates with the Irano- Turanian biogeographical region, the Tropical 1977; Djamali et al. 2008a, b; Ramezani et al. macrobioclimate in southern Iran correlates 2008). To better understand the relative res- with the Saharo-Sindian region and finally a ponse of the Iranian vegetation to these envi- small Temperate macrobioclimatic zone in ronmental and anthropogenic changes and also northern Iran correlates with the Euro-Siberian to achieve more precise palaeoclimatic recons- region. Mediterranean macrobioclimate of Iran displays a wide range of bioclimates including tructions and modeling, it is necessary to Mediterranean pluviseasonal-oceanic, Mediter- obtain a good knowledge on modern climate- ranean xeric-oceanic, Mediterranean pluvisea- vegetation relationships. Although the flora sonal-continental, Mediterranean xeric-conti- and vegetation of Iran have been extensively nental, Mediterranean desertic-oceanic, and investigated since a long time (e.g. Rechinger Mediterranean desertic-continental. Tropical 1963-2010; Zohary 1973; Léonard 1981-1989, macrobioclimate also shows a range of biocli- mates including Tropical xeric, Tropical desertic, 1991/1992; Klein 1994; Akhani 1998; Frey and Tropical hyperdesertic. Finally, Temperate and Probst 1986; Frey et al. 1999), little atten- macrobioclimate has only one bioclimate i.e. tion has been given to the study of relation- Temperate oceanic. In conclusion, bioclimatic ships between climatic parameters and plant zones identified using the GBC system correlate and animal distribution over the country. well with the main phytogeographical regions of Iran at macrobioclimatic level and with major The main previous bioclimatic analyses of biomes at bioclimatic level. An advantage of Iran are based on application of simple bio- the GBC over other bioclimatic classification sys- tems is the inclusion of both seasonal and climatic indices such as the aridity index of annual variations in those climatic parameters de Martonne (Khodayari 1970; Dehsara which are significant for the growth and devel- 1973), and bioclimatic classification methods opment of plant populations and communities. of Köppen (Adle 1960) and Emberger (Sabeti GBC distinguishes several types of Mediter- 1969). The Köppen’s system fails to give an ranean climate regimes for Iran and helps to appropriate definition for “dry season” (Daget differentiate between two different desert cli- mate types i.e. Mediterranean and Tropical 1977a, b), a critical factor in defining the deserts in arid parts of the country. Because the diversified “Mediterranean-type ecosystems” climate in the Irano-Turanian region clearly dif- (Médail 2008) which are also found in Iran fers from the Mediterranean region in its (Sabeti 1969; Blumler 2005). The Emberger’s degree of continentality and seasonality, we bioclimatic classification system seems to propose the term ‘xero-estival-continental’ or ‘Irano-Turanian’ instead of ‘Mediterranean’ bio- provide more concrete correlations between climate when describing the climate of conti- vegetation and bioclimatic zones of Iran nental Middle East and Central Asia. (Sabeti 1969; Klein 1994). However, this sys-

92 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-08-c:Mise en page 1 12/07/11 15:19 Page 93

Application of the Global Bioclimatic Classification to Iran: implications for understanding the modern vegetation and biogeography

tem has originally been elaborated for the Materials and Methods Mediterranean Basin and is based on annual rather than seasonal precipitation/temperature Global Bioclimatic Classification variations (Daget 1977a, b). “Mediterranean- System: a brief description type” climate of Iran shows much contrasted differences with the climate of the circum- Global Bioclimatic Classification System also Mediterranean region (Blumler 2005). For known as Worldwide Bioclimatic Classifica- instance, it has recently been demonstrated tion (GBC) is a new method of detailed bio- that precipitation seasonality, which is not climatic analysis of worldwide applicability much taken into account in these methods, is developed by Rivas-Martínez et al. (1997, apparently a primary bioclimatic factor for the 1999). It has been used for bioclimatic zona- growth, distribution, and ecology of plant taxa tion of North America (Rivas-Martínez et al. and communities in Iran (El-Moslimany 1997, 1999), Chile (Amigo and Ramírez 1986, 1987; Stevens et al. 2001; Akhani and 1998), Europe (Rivas-Martínez et al. 2004a, Ziegler 2002; Djamali et al. 2010). b) and the Iberian Peninsula (Rivas-Martínez Recently, several authors have proposed new and Arregui 1999; del Río González 2005). climatic classifications and models for Iran Detailed description of the method with rela- based on multivariate analyses of climatic ted references is available at the GBC’s offi- parameters notably the annual distribution and cial website at http://www.globalbioclima- inter-annual variations of precipitation (Dom- tics.org and in Rivas-Martínez et al. (1997, roes et al. 1998; Dinpashoh et al. 2004; Gha- 1999). This system divides the Earth’s surface semi & Khalili 2008) but also a range of other into about 300 bioclimatic zones using a dia- parameters including air humidity, wind speed, gnostic technique which is based on easily warm/cold season rains, and prevailing wind obtainable climatic parameters and easily cal- velocity (Alijani et al. 2008). Though very culated bioclimatic indices. Table 1 summa- useful to understand the modern climate of rizes the most important of these bioclimatic Iran in relation to regional atmospheric circu- parameters and indices. The GBC distin- lation pattern, they cannot be used to explain guishes 5 major “macrobioclimates” i.e. modern distribution patterns of the actual and “Tropical”, “Mediterranean”, “Temperate”, potential vegetation and flora of the country. “Boreal”, and “Polar”. Macrobioclimates are This fact can be deduced by inadequate match subdivided into 27 “bioclimates” on the basis between the suggested climatic regions (e.g. of the variations of bioclimatic parameters Alijani et al. 2008) and the vegetation maps of and indices especially the continentality and Iran (e.g. Zohary 1973; Mobayen & Tregubov ombrothermic indices (Table 1). Furthermore, 1970; Frey & Kürschner 1989). variations in seasonal precipitation patterns In this study, we apply the recently developed allow recognizing 5 “bioclimatic variants” Global Bioclimatic Classification System which help to complement the description of (Rivas-Martínez et al. 1997, 1999) to meteo- bioclimates particularly in transitional zones rological data of Iran. This system has suc- between neighboring bioclimates. Within cessfully been applied to different parts of the each bioclimate, two kinds of “bioclimatic world and seems to provide good matches bet- belts” can be distinguished namely “thermo- ween biome and climate boundaries (Rivas- types” and “ombrotypes” which are defined Martínez et al. 1997, 1999; Amigo and Ramí- on the basis of thermicity index and ombro- rez 1998; Rivas-Martínez and Arregui 1999; thermic index. Thermotypes and ombrotypes del Río González 2005). The main objectives in GBC replace the climatic variants and of this paper are: (1) proposing a new biocli- stages of the Emberger’s “climagram” in the matic zonation for Iran which is more useful bioclimatic classification system of the Medi- for biologists and ecologists working on the terranean region (Emberger 1971; Daget ecology and distribution of plant and animal 1977b). Tables 2 and 3 give a summary des- species in Iran, (2) deducing bioclimatic requi- cription of the selection of macrobioclimates rements of major biomes of Iran which are and bioclimates which will be encountered in characteristic of the continental Middle East, Iran (see next sections). In this study, the and (3) evaluating the ability of Global Bio- emphasis is put on macrobioclimates and bio- climatic Classification System to reveal cli- climates which give more information on bio- mate-vegetation relationships in a key region climatic regime of an area, independent of the with transitional climatic and biogeographical altitudinal climatic gradients. The GBC consi- contexts with a complex orography. ders the mountain climates as altitudinal

ecologia mediterranea – Vol. 37 (1) – 2011 93 ecol-med-37-1-08-c:Mise en page 1 12/07/11 15:19 Page 94

M. DJAMALI, H. AKHANI, R. KHOSHRAVESH, V. ANDRIEU-PONEL, P. PONEL, S. BREWER

Table 1 – Bioclimatic parameters and indices used in the Global Bioclimatic Classification System (Rivas-Martínez et al. 1997, 1999).

Bioclimatic parameters T Mean annual temperature (oC) Ti Mean temperature of any month (oC) m Average of the minimum temperatures of the coldest month (oC) M Average of the maximum temperatures of the coldest month (oC) Tmin Mean temperature of the coldest month (oC) Tmax Mean temperature of the warmest month (oC) P Mean annual precipitation (mm) Pi Mean precipitation values of any month (mm) Ps Mean precipitation values of three months of summer quarter of the year (June + July + August in the N Hemisphere) Pw Mean precipitation values of three winter months (December + January + February in the N Hemisphere) Pp Yearly positive precipitation (mm): Sum of the mean precipitation values of those months whose average temperature is > 0 oC (mm) Tp Yearly positive temperature (oC): Tenth of the sum of the mean temperatures of those months whose average temperature is > 0 oC

Bioclimatic indices Ic Simple continentality index: Ic = Tmax-Tmin It Thermicity index: It = (T + m + M) x 10 Itc Compensated thermicity index: Itc = It ± C (where C is the Compensation Value added or subtracted from It). This index is designed to compensate for excessive winter cold in continental climates and excessive winter mildness in strongly oceanic climates. Calculation of C values is described in details in GBC’s website or Rivas-Martínez et al. (1997, 1999) or del Río González (2005) Io Ombrothermic index: Io = (Pp/Tp) x 10 Iosi Ombrothermic index of any month of summer: Iosi = (Psi/Tsi) x 10 Ios2 Ombrothermic index of warmest bimonth of summer quarter of the year (July + August in Iran): Ios2 = (Pps2/Tps2) x 10

variations in temperature and moisture within ting from 1970 to 1980’s and ending at 2003 a given regional macrobioclimate and/or bio- (Fig. 1a). The mean values of climatic para- climate and proposes the assignment of verti- meters used in bioclimatic diagnosis are the cal bioclimatic belts i.e. thermotypes and averages of the whole length of records. The ombrotypes for bioclimatic characterization authors admit that comparison of average cli- of vertical mountain climate zones (Rivas- matic values from different stations computed Martínez et al. 1997, 1999). over different time spans reduces the reliabi- On the other hand, the concept of precipita- lity of the diagnosed bioclimates because the tion seasonality which is of fundamental latter one can show considerable inter-annual importance in the ecology and distribution of variations notably in transitional climatic plant taxa and communities is included in the zones (e.g. Meher-homji 1970). Such a pro- bioclimatic diagnoses of GBC system. It is blem can be solved in future by using a homo- the basis of distinction between different genized climatic database over an identical macrobioclimates, bioclimates and bioclima- interval of time. However, in this study, using tic variants, partly expressed in ombrothermic data from all stations was necessary to obtain index (Table 1) and partly by the duration a higher-resolution spatial network of meteo- of dry season (months with P>2T senso rological data for bioclimatic mapping pur- Bagnouls & Gaussen 1953; Gaussen 1954; poses. Fortunately, our comparisons indicated Walter & Lieth 1960-1967). For the complete that a given station displays nearly always the description of GBC system and its bioclima- same bioclimate on different multi-annual tic units the reader is referred to the GBC’s time periods. official website. Bioclimate diagnosis and zonation Meteorological data Determination of bioclimatic units (macro- The climatic data used in this study were bioclimates, bioclimates and bioclimatic extracted from the Iran Meteorological Orga- variants) for each station was performed using nization’s official website. Data from two the online diagnostic tool of GBC’s website. types of stations have been used: (1) synoptic The required input values i.e. mean monthly stations with long and relatively complete climatic values were entered manually into meteorological records mainly starting from the GBC’s website and the output diagnosis 1950’s and ending at 2005 and (2) climatolo- information were noted for each station. gical stations with shorter records mainly star- Zonations of bioclimatic maps were carried

94 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-08-c:Mise en page 1 12/07/11 15:19 Page 95

Application of the Global Bioclimatic Classification to Iran: implications for understanding the modern vegetation and biogeography

Table 2 – Bioclimatic characteristics and description of three major macrobioclimates of Iran (from Rivas-Martínez et al. 1997). Dry season is defined as those months with P > 2T following Bagnouls & Gaussen (1953). Note that mean temperature values and thermicity/compensated thermicity index should be re-calculated for elevations higher than 200 m and that in tropical/subtropical Eurasian supercontinent, the elevations > 2,000 m high are not considered as tropical macrobioclimate (see the publication number Publ-Global Bioclimatics-2008-09 in GBC’s website at www.globalbioclimatics.org).

Macrobioclimate Latitude Precipitation regime Temperature (oC) in < 200 m altitude

Temperate Subtropical to high No dry season (P ≥ 2T) T < 21, M < 18 at < 200 m alt. temperate (23o to 66o (excepted the submediterranean variant N/23o to 51o S) with one dry month (P < 2T)

Mediterranean Subtropical to low At least two consecutive dry months (P < 2T). T < 25, m < 10 at < 200 m alt. temperate (23o to 52o N/S) Dry season can last for up to twelve months in Mediterranean deserts Tropical Tropical to subtropical (0o to 35o N/S) Variable. Dry season can vary from 0 to 12 months T ≥ 21, M ≥ 18 at < 200 m alt.

Table 3 – Bioclimatic characteristics and description of 10 major bioclimates of Iran (summarized from Rivas-Martínez et al. 1997). Note that in Tropical macrobioclimate, the excess of heat is subtracted from Ic (continentality index) to calculate a new index (thermicity index. Itc). See the above references for more details.

Bioclimate Bioclimatic values General characteristics Ic Io wet months (P > 2T)

Temperate oceanic 11-21 3.2-2.8 0 Low continentality, evenly distributed annual precipitation, high precipitation during growing season, lack of dry season or only one dry month in submediterranean variant. Mediterranean pluviseasonal-oceanic ≤ 21 >2 3-10 Low continentality, relatively high precipitation during growing season or months with mean temperature > 0 °C, at least two consecutive dry summer months. Mediterranean pluviseasonal-continental > 21 > 2.2 3-10 High continentality, relatively high precipitation during growing season or months with mean temperature > 0 °C, at least two consecutive dry summer months. Mediterranean xeric-oceanic ≤ 21 0.9-2.0 0-8 Low continentality, low precipitation during growing season or months with mean temperature > 0 °C, long dry season lasting for 4 to 12 months. Mediterranean xeric-continental > 21 0.9-2.2 0-8 High continentality, low precipitation during growing season or months with mean temperature > 0 °C, long dry season lasting 4 to 12 months. Mediterranean desertic-oceanic ≤ 21 0.1-0.9 0-4 Low continentality, very scarce precipitation during growing season or months with mean temperature > 0 °C, very long dry season lasting at least 8 months. Mediterranean desertic-continental > 21 0.1-0.9 0-4 High continentality, very scarce precipitation during growing season or months with mean temperature > 0 °C, very long dry season lasting at least 8 months. Tropical xeric ----- 1.1-3.0 1-7 Very long dry season, 3 to 8 months with precipitation values less than mean temperatures (P < T) but at least one month has precipitations more than two times the mean monthly temperatures (P > 2T). Tropical desertic ----- 0.1-1.1 0-1 Very low precipitation with at least seven months with mean precipitation less than mean temperatures (P < T). Tropical hyperdesertic ----- < 0.1 0 Extremely low precipitation with a dry season lasting for all year, mean monthly precipitations always less than mean monthly temperatures (P < T).

out by Nearest Neighbor interpolation method Results in the software Surfer version 9.1.352 after attributing arbitrary numbers to different bio- In total, GBC analysis revealed three macro- climates of each station. Table 4 presents a bioclimates, ten bioclimates, and three biocli- selection of stations mentioned in the text matic variants for Iran which are listed and with diagnosed bioclimatic units and some described in Tables 2 and 3. Examples of sta- meteorological normals and bioclimatic para- tions with corresponding bioclimatic dia- meters and indices. gnostics are given in Table 4. The vegetation map of Iran according to Frey and Kürschner

ecologia mediterranea – Vol. 37 (1) – 2011 95 ecol-med-37-1-08-c:Mise en page 1 12/07/11 15:19 Page 96

M. DJAMALI, H. AKHANI, R. KHOSHRAVESH, V. ANDRIEU-PONEL, P. PONEL, S. BREWER

Figure 1 – a) Location map of Iran in the Middle East (inset) and the geographical position of the meteorological stations whose data were used in this study. b) Shaded relief map of Iran with major geomorphological features mentioned in the text.

96 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-08-c:Mise en page 1 12/07/11 15:19 Page 97

Application of the Global Bioclimatic Classification to Iran: implications for understanding the modern vegetation and biogeography

Figure 2 – Map showing the bioclimatic zonation of Iran based on Global Bioclimatic Classification System. Macrobioclimates have been illustrated in the inset picture at the top right corner).

(1989) and photographs of major vegetation tion of circum-Mediterranean region, inlands units of Iran are given in Figs. 3, 5 and 6. of the Iberian Peninsula and much of the Examples of the chorology of some selected Scandinavia (Rivas-Martínez et al. 2004a). plants and insects are given in Figs. 7 and 8. Several different bioclimates can be distin- guished in this macrobioclimate in Europe. While Western Europe has Temperate ocea- Temperate macrobioclimate nic (Toc) and hyperoceanic (Tho) bioclimates, Western part of the south Caspian region the Eastern Europe has Temperate continen- including the Caspian plain and the northern tal (Tco) and xeric (Txe) bioclimates. The dif- foothills of the Alborz and Talish (Talesh) Mts ference is in the values of continentality index present the Temperate macrobioclimate (Figs. (Ic) which is ≤ 11 for Tho, 11-21 for Toc, > 21 1, 2, 5a, b). A small patch of this macrobio- for Tco, and ≥ 7 for Txe bioclimates (Rivas- climate is also found centered at Afrachal Martínez et al. 1997, 1999). The latter biocli- located in eastern section of the Alborz Mts mate displays P ≤ 2T. In Iran, Temperate (Fig. 1a, Table 4). Such small patches of Tem- macrobioclimate in the south Caspian region perate macrobioclimate might be numerous in is represented by Temperate oceanic biocli- the Alborz Mts because of the particular mate (Fig. 2). microclimatic and precipitation distribution patterns (Khalili 1973; Akhani 1998). Insuf- Temperate oceanic bioclimate ficient numbers of meteorological stations in Almost all meteorological stations in Tempe- the Alborz Mts makes it difficult to pinpoint rate zone of northern Iran (except for Pilim- and map such patches. bra in Gilan Province (Table 4), display the Temperate macrobioclimate covers the majo- submediterranean bioclimatic variant (Tocsm) rity of the European continent with the excep- which is characterized by only one month of

ecologia mediterranea – Vol. 37 (1) – 2011 97 ecol-med-37-1-08-c:Mise en page 1 12/07/11 15:19 Page 98

M. DJAMALI, H. AKHANI, R. KHOSHRAVESH, V. ANDRIEU-PONEL, P. PONEL, S. BREWER

Table 4 – A selection of 94 weather stations of Iran with the diagnosed bioclimatic units as well as the bioclimatic parameters calculated via the GBC’s system. The data are from Iran meteorological organization (http://www.irimet.net/irimo/ contents.htm). Abbreviations: U: upper, L: lower, Mte: Mesotemperate, Tte: Thermotemperate, Ome: Oromediterranean, Sme: Supramediterranean, Mme: Mesomediterranean, Tme: Thermomediterranean, Ime: Inframediterranean, Ttr: Thermotropical, Itr: Infratropical, H: humid, Shu: Subhumid, D: Dry, Sar: Semiarid, Ari: Arid, Har: Hyperarid, Uha: Ultrahyperarid. For the definition of abbreviations of climatic parameters and indices, please refer to Table 1.

Station Long. oE Lat. oN Alt. (m) Year Bioclimate Thermotype Ombrotype Ti oC Tmin Tmax P (mm) Pp Ic It Itc Io Abadan 48.3 30.4 7 1951-2005 Trde U Itr L Ari 25.3 7.3 45.3 156 156 24.4 501 567 0.5 Abadeh 52.7 31.2 2,030 1977-2005 Medc U Mme U Ari 14.7 - 3.4 34.1 143.4 143 24.2 199 262 0.8 Abali 51.8 35.9 2,465 1983-2005 Mepc U Sme U Dry 8.9 - 7.4 26.1 534 329 25.4 19 100 2.9 Afrachal 53.3 36.2 1,300 1964-2003 Teoc L Mte U Shu 15.0 0.7 30.4 878.4 878 17.3 268 268 4.9 Ahvaz 48.7 31.3 22 1951-2005 Trde U Itr L Ari 26.2 7.2 46.3 213.4 213 26.1 512 604 0.7 Amol 52.4 36.5 24 2001-2005 Mepo U Tme U Dry 18.0 3.8 29.9 702.6 703 18.7 360 364 3.3 Anar 55.3 30.9 1,409 1986-2005 Medc U Tme U Ari 19.7 - 0.9 38.3 77.9 169 23.1 287 334 0.79 Arak 49.8 34.1 1,708 1955-2005 Mexc U Mme U Sar 13.7 - 5.6 35.7 341.7 289 28.7 113 250 1.75 Ardebil 48.3 38.3 1,332 1976-2005 Mepc U Sme L Dry 9.0 - 7.9 25.0 303.9 257 21.6 38 62 2.3 Ardestan 52.4 33.4 1,252 1992-2005 Medc U Ime L Ari 20.0 0.6 38.0 115.8 116 27.4 314 425 0.48 Astara 48.9 38.4 - 18 1986-2005 Teoc L Mte L Hum 15.1 2.8 29.6 1,380.8 1,380 19.8 262 271 7.65 Babolsar 52.7 36.7 - 21 1951-2005 Mepo L Mme L Shu 16.6 4.1 30.3 894.4 894 18.8 316 320 4.48 Bafgh 55.4 31.6 991 1993-2005 Trhd L Ttr U Uha 23.7 2.0 42.1 55.7 56 26.5 437 535 0.2 Baft 56.2 29.2 2,280 1989-2005 Mexc L Mme L Sar 15.3 - 2.4 32.2 261.6 262 23.3 215 265 1.42 Bam 58.4 29.1 1,067 1956-2005 Trde L Tme L Har 23.1 4.9 39.4 61.3 61 23.6 439 493 0.22 Bandar Anzali 49.5 37.5 - 26 1951-2005 Teoc U Tme U Hum 16.1 4.6 29.4 1,853.5 1,853 19.1 299 304 9.61 56.4 27.2 10 1957-2005 Trde L Ttr L Ari 27.3 12.3 38.3 182.5 183 16.4 635 635 0.56 54.8 26.5 23 1966-2005 Trde L Ttr L Ari 27.7 13.4 37.3 143 143 15.6 659 659 0.43 Bardsir 56.6 29.9 1,900 1973-2003 Medc U Mme L Ari 13.8 - 7.1 34.2 95.5 96 22.3 182 216 0.58 Biabanak 55.3 33.3 1,450 1986-2005 Medc L Tme U Har 21.8 1.2 40.0 86.3 93 24.2 341 404 0.39 Behbahan 50.2 30.6 313 1993-2005 Trxe U Itr L Sar 25.0 7.1 44.8 349.9 350 25.4 488 569 1.17 Birjand 59.2 32.9 1,491 1955-2005 Medc L Mme U Ari 16.7 - 2.2 35.7 170.8 171 24.6 254 314 0.85 Bonab 46.1 37.3 1,290 1999-2005 Mexc U Mme L Sar 15.0 - 3.9 33.6 250.9 251 27.6 170 284 1.4 Boroujen 51.3 32.0 2,197 1988-2005 Mexc U Mme L Sar 12.7 - 7.7 31.5 254.3 209 26.7 101 202 1.36 Boushehr 50.8 29.0 20 1951-2005 Medo L Ime U Ari 24.6 10.2 37.9 279.1 279 18.7 537 537 0.95 Chabahar 60.6 25.3 8 1963-2005 Trde L Ttr U Har 26.5 15.4 33.2 111 111 11.1 675 675 0.35 Dameghan 54.3 36.2 1,170 1961-2000 Medc L Mme L Ari 15.3 - 3.8 35.3 112 112 26.4 183 279 0.61 Dezfoul 48.4 32.4 143 1961-2005 Mexc L Ime L Sar 24.3 5.6 46.0 404.6 405 26.1 465 557 1.39 Doroudzan 52.5 30.2 1,800 1961-2000 Mepc L Mme L Dry 16.6 - 1.6 36.2 448.5 449 24.2 244 307 2.26 Esfahan 51.7 32.6 1,550 1951-2005 Medc L Mme L Ari 16.2 - 2.5 36.7 122.8 123 26.4 220 316 0.63 Fassa 53.7 29.0 1,288 1966-2003 Mexc U Ime L Sar 20.3 1.3 39.5 301.7 302 24.4 361 427 1.24 Firouzkouh 52.8 35.8 1,922 1970-2000 Mexc U Sme U Sar 8.3 - 13.3 28.8 272.3 169 27 - 45 60 1.51 Kouhrang 50.1 32.4 2,285 1987-2005 Mepc L Sme U Shu 9.8 - 11.1 30.0 1,441.8 732 28.3 - 6 122 5.77 Gonbad-e-Qabous 55.2 37.3 150 1961-2000 Mepc U Tme L Dry 17.8 1.6 35.5 488.5 489 21.1 324 340 2.29 Gorgan 54.3 36.9 13 1952-2005 Mepo L Mme U Dry 17.8 3.4 32.6 601 601 20 334 344 2.82 Hajiabad 55.9 28.3 931 1998-2005 Trde U Itr L Ari 26.2 5.0 42.1 179 179 23.4 526 577 0.57 Hamedan Airport 48.5 34.9 1,742 1976-2005 Mexc L Sme U Sar 11.8 - 7.9 34.2 317.7 239 28.2 64 189 1.65 Hassanabad (Darab) 54.3 28.8 1,098 1995-2005 Trxe L Ttr L Sar 24.0 4.2 41.5 292.7 293 25.2 458 536 1.02 Ilam 46.4 33.6 1,337 1986-2005 Mepc L Mme U Dry 17.1 0.5 35.9 616 616 25.9 259 348 3 Iranshahr 60.7 27.2 591 1964-2005 Trde L Itr U Har 27.6 7.9 44.4 110 110 22.9 576 619 0.33 Izeh 49.9 31.9 767 1993-2005 Trxe L Ttr L Dry 23.2 4.8 41.4 694.1 694 26 433 523 2.5 57.8 25.6 5 1986-2005 Trde L Tme L Ari 27.5 16.7 34.0 142.2 142 11.6 695 695 0.43 Kahnouj 57.7 28.0 470 1989-2005 Trde L Itr L Ari 27.4 8.8 43.9 209 209 23.1 566 613 0.64 Karaj 50.9 35.9 1,312 1985-2005 Mexc L Mme L Sar 15.8 - 2.3 35.0 243.8 244 26.2 202 295 1.28 Kerman 57.0 30.3 1,754 1951-2005 Medc L Mme U Ari 17.0 - 3.0 35.7 152.9 153 23.9 264 322 0.75 Khash 61.2 28.2 1,394 1986-2005 Trde U Ttr L Ari 21.4 2.2 37.8 150.5 151 22.4 402 438 0.59 Khomein 50.1 33.7 1,835 2001-2005 Mexc L Mme U Sar 15.5 - 4.9 35.0 347.9 348 28.1 169 291 1.87 Khorramabad 48.3 33.4 1,148 1951-2005 Mepc L Mme L Dry 17.3 0.0 39.6 509 509 25.6 271 355 2.45 Khoy 45.0 38.6 1,103 1959-2005 Mexc U Mme U Sar 12.5 - 6.3 32.6 292.6 272 27.8 85 202 1.78 Kouhrang 50.1 32.4 2,285 1987-2005 Mepc L Sme U Shu 9.8 - 11.1 30.0 1,441.8 732 28.3 - 6 122 5.77 Lahijan 50.0 37.2 1,431 1964-2003 Teoc U Tme L Hum 16.1 2.8 30.3 1,430.8 1,431 17.4 309 309 7.42 Lar 54.3 27.7 792 1989-2005 Trde U Itr U Ari 25.8 4.8 43.1 225.7 226 24.6 508 577 0.73 Makou 44.4 39.3 1,411 1985-2005 Mexc L Sme U Sar 10.3 - 7.4 29.4 294.5 225 27.4 27 138 1.72 Manjil 49.4 36.7 333 1993-2005 Mexo L Mme L Sar 17.0 3.3 31.3 209.3 209 20 314 324 1.03 Maragheh 46.3 37.4 1,478 1983-2005 Mexc U Mme U Sar 12.5 - 3.7 32.9 322.4 291 26.9 109 213 1.93 Mashad 59.6 36.3 999 1951-2005 Mexc U Mme U Sar 14.0 - 3.8 34.4 255.2 255 26 160 250 1.52 Meimeh 51.2 33.4 1,980 1999-2005 Medc U Mme U Ari 14.2 - 7.0 33.5 163.7 164 26.9 146 249 0.96 57.1 27.1 30 1985-2005 Trde L Ttr L Ari 28.7 12.2 40.3 204.4 204 16.6 671 671 0.59 Minoudasht 55.4 37.2 190 1985-2000 Mepc L Mme L Dry 17.8 2.2 34.8 573.8 574 19.9 338 348 2.68 Neyriz 54.3 29.2 1,632 2000-2005 Trde U Ttr U Ari 20.8 2.2 37.3 204.9 205 24.5 364 431 0.82 Neishabour 58.8 36.3 1,213 1991-2005 Mexc U Mme L Sar 14.8 - 2.9 34.6 239.8 240 25.6 188 272 1.35 Noshahr 51.5 36.7 - 20 1977-2005 Teoc U Tte L hum 16.4 3.9 28.7 1,293.5 1,294 18.1 316 316 6.59 Pilambra 49.1 37.6 6 1968-2003 Teoc L Mte U Hum 15.3 2.4 30.0 2,045.4 2,045 19 273 278 11.12 Qapan 55.7 37.6 300 1985-2003 Mepo L Mme L Dry 17.0 1.3 34.7 547.9 548 20.5 310 323 2.68 Qazvin 50.1 36.3 1,279 1959-2005 Mexc U Mme U Sar 14.3 - 4.3 35.4 316 316 26.9 151 254 1.84 Qeshm 55.9 26.9 6 1996-2005 Trde L Ttr L Ari 26.8 13.1 38.8 151.6 152 15.9 628 628 0.47 Qom 50.9 34.7 877 1986-2005 Medc U Tme L Ari 18.1 - 1.5 40.1 151.1 151 28.3 259 386 0.7 Ramsar 50.7 36.9 - 20 1955-2005 Teoc U Tte L hum 16.0 3.9 28.6 1,217.8 1,218 18.1 304 304 6.36 Rasht 49.6 37.3 - 7 1956-2005 Mepo L Mme L hum 16.2 2.4 30.3 1,359 1,288 20.2 292 303 6.77 Robat Posht-e-Badam 55.6 33.0 1,188 1992-2005 Trde U Ttr L Har 20.7 1.7 37.5 111.6 75 27.8 351 468 0.29 Sabzevar 57.7 36.2 978 1954-2005 Medc U Tme U Ari 17.6 - 1.5 37.7 188.6 189 27.9 240 358 0.89 Saqez 46.3 36.3 1,523 1961-2005 Mepc L Sme L Dry 12.2 - 8.1 34.3 499.4 374 29.1 68 215 2.5 Sahand 46.1 37.9 1,641 1996-2005 Mexc L Sme L Sar 12.0 - 3.9 30.6 202.7 186 26.5 94 192 1.28 Sanandaj 47.0 35.3 1,373 1959-2005 Mepc U Mme L Dry 14.2 - 5.4 36.8 458.4 393 28.9 140 282 2.31 Sarbaz 61.3 26.6 880 1964-2003 Trde U Ttr L Ari 23.9 5.7 39.0 138.3 138 19.3 501 508 0.48 Sardasht 45.5 36.2 1,670 1986-2005 Mepc U Mme U Shu 13.6 - 3.5 31.2 866 866 26.2 150 243 5.29

98 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-08-c:Mise en page 1 12/07/11 15:19 Page 99

Application of the Global Bioclimatic Classification to Iran: implications for understanding the modern vegetation and biogeography

Station Long. oE Lat. oN Alt. (m) Year Bioclimate Thermotype Ombrotype Ti oC Tmin Tmax P (mm) Pp Ic It Itc Io Sari 53.0 36.6 23 1999-2005 Mepo L Mme L Shu 17.4 4.3 31.0 789.2 789 19.1 338 343 3.79 Semnan 53.6 35.6 1,131 1965-2005 Medc U Tme L Ari 18.3 - 0.4 37.7 140.8 141 28.2 259 384 0.64 Shiraz 52.6 29.5 1,484 1951-2005 Mexc U Tme U Sar 17.9 0.2 37.8 346 345 24.3 293 358 1.61 Siah Bisheh 51.3 36.3 1,855 1999-2005 Mepo U Sme L Shu 10.2 - 2.4 22.4 503.4 503 18.4 120 122 4.11 Siah Kouh Kavir 53.9 32.5 1,036 1988-2003 Medc L Tme L Har 19.2 - 1.9 41.3 67.8 68 27.5 298 411 0.29 Sirjan 55.7 29.5 1,739 1985-2005 Medc U Tme L Ari 17.7 - 1.1 36.8 141.5 142 24.2 287 350 0.66 Tabas 56.9 33.6 711 1960-2005 Medc L Ime U Har 22.5 1.7 42.1 83.2 83 28.5 379 511 0.31 Tabriz 46.3 38.1 1,361 1951-2005 Mexc L Sme U Sar 12.1 - 5.7 32.7 288.9 242 27.9 75 193 1.65 Tehran (N) 51.6 35.8 1,548 1988-2005 Mepc L Mme L Dry 15.3 - 1.5 33.9 429 429 26.4 191 287 2.34 Torbat-e-Jam 60.6 35.3 950 1993-2005 Medc L Mme U Ari 16.1 - 1.8 34.4 175.6 176 25.6 229 313 0.91 Urmia 45.1 37.5 1,316 1951-2005 Mepc L Sme L Dry 11.2 - 6.1 31.2 341 278 26.4 62 158 2.02 Yassouj 51.7 30.8 1,831 1987-2005 Mepc L Mme L Shu 15.0 - 2.0 35.1 864.9 865 24.5 202 270 4.8 Yazd 54.3 31.9 1,237 1952-2005 Medc L Tme L Har 19.3 - 0.4 39.4 60.8 61 27 303 408 0.26 Zabol 61.5 31.0 489 1962-2005 Medc L Ime L Har 22.7 1.9 41.6 61 61 26.3 405 499 0.22 Zahedan 60.9 29.5 1,370 1951-2005 Medc U Tme L Ari 18.6 0.2 37.0 90.6 91 22.7 322 363 0.41 Zanjan 48.5 36.7 1,663 1955-2005 Mexc L Sme U Sar 11.5 - 7.5 31.9 313.1 255 27 63 168 1.81 Ziaratgah -e-Seyf 57.8 30.6 353 1986-2003 Trhd U Itr L Uha 25.4 3.1 47.5 28 28 26.3 490 585 0.09 Ziaratgah (Ch. M.) 60.4 29.4 1,200 1982-2003 Medo U Mme U Ari 15.9 - 0.9 33.4 135 135 19.1 269 275 0.71

a “moderate” summer drought with mean pre- terranean macrobioclimate of Iran which are cipitation less than twice the mean tempera- described below. ture (Iosi = Psi/Tsi < 2 or Psi > 2Tsi). This Mediterranean pluviseasonal-oceanic (Mpo). bioclimatic variant is generally found in tran- Eastern section of the south Caspian region sitional zones between Temperate macrobio- including northern foothills of the Alborz Mts climate with no dry summer month and the present a continuous band of Mediterranean Mediterranean macrobioclimate with at least pluviseasonal-oceanic bioclimate which beco- two successive dry summer months. It forms mes discontinuous forming several isolated a long belt between Mediterranean and Tem- patches in the eastern extension of the Alborz perate macrobioclimates in southern France, Mts including the Golestan National Park and central Apennines (Italy), southern flanks of in the western parts of the Kopeh Dagh Mts the Pyrénéens, Balkans and central Greece up to the border of Turkmenistan. This patchy (see Rivas-Martínez et al. 2004a). It is also pattern in the east must be partly due to the dominant in western Atlantic coastal region of complex orography of the area at the junction France as well as the NW Iberian Peninsula. of Alborz and Kopeh Dagh ranges. The Mpo Elsewhere in the Mediterranean macrobiocli- has also several isolated territories within the matic area, the Tocsm bioclimatic variant Temperate macrobioclimate of the west Cas- forms small isolated patches in high mountain pian region (near Rasht) and in NW Iran (e.g. areas of central Spain, southern Italy, Sicily, E of Ardebil, Arasbaran forests and Arasba- Corsica, Sardinia, southern Balkans, and Por- ran Protected Area) (Figs. 1 and 2). Climate tuguese Atlantic Islands (Açores and diagrams of three stations located in Mpo bio- Madeira). Climate diagrams corresponding to climatic zone are represented in Fig. 4d-f. this bioclimate are illustrated in Fig. 4a-c. They show a short period of summer dry with They show clearly the absence or the very a reduced summer rainfall especially in short duration of the dry season. mountainous sites (Afrachal & Qapan, see also Table 4). Mediterranean macrobioclimate Mediterranean pluviseasonal-continental (Mpc). This bioclimate constitutes the domi- The vast majority of Iran including the nor- nant bioclimatic unit in the Zagros upland thern, western and eastern highlands and cen- areas (Figs. 1 and 2). Outside the Zagros tral plateau are dominated by Mediterranean range, it is found in highland areas of north- macrobioclimate (Fig. 2). This macrobiocli- central Iran, the western flanks and higher ele- mate even extends into the eastern section of vations of Talish Mts, northeastern parts of the the south Caspian region and gives a subme- Azerbaijan plateau, south-central Alborz diterranean aspect to the Temperate macro- around Damavand Volcano, easternmost part bioclimate (see above). It has also some of the Alborz at its transition to Kopeh Dagh patches within the Tropical macrobioclimatic Mts, southeastern coastal area of the Caspian area in southwest Iran (see below). The GBC Sea, and the Quchan-Chekaneh area between enables to distinguish six clearly distinct Kopeh Dagh and Allah Dagh-Binalud Mts. Mediterranean bioclimates within the Medi- Climate diagrams typical of Mpc bioclimate

ecologia mediterranea – Vol. 37 (1) – 2011 99 ecol-med-37-1-08-c:Mise en page 1 12/07/11 15:19 Page 100

M. DJAMALI, H. AKHANI, R. KHOSHRAVESH, V. ANDRIEU-PONEL, P. PONEL, S. BREWER

Figure 3 – a) Simplified vegetation map of Iran based on Frey and Kürschner (1989). b) Phytogeographical zonation of Iran according to Zohary (1973). c) Phytogeographical zonation of Iran according to White and Léonard (1991).

in Zagros are illustrated in Fig. 4i-k displaying climate (Figs. 1 and 2). It also covers the high amount of annual precipitation in winter majority of the Kopeh Dagh Mts in NE Iran, months which may extend until May. some southern ranges in NE of the Lut Desert, Mediterranean xeric-oceanic (Mxo). Three and also parts of the Kerman Massif. Accor- small disjunct patches of this bioclimate are ding to the climate diagrams (Fig. 4l-n), sum- found in Iran (Fig. 2). One of them is cente- mer drought is longer and both spring and red at Manjil-Rudbar area at the upper part of total amount of annual precipitation are lower Sefidrud defile and two other ones are located in Mxc compared to Mpc. in southern flanks of the Kerman Massif in Mediterranean desertic-oceanic (Mdo). This south-southeastern Iran (Fig. 1a): Saghdar in bioclimate is found in two localities: SE Iran the north of Jiroft (57.88oE, 28.82oN, 1610 m) near the junction of the borderlines of Iran, and Gorgin Khabr in SE of Baft (56.22oE, Pakistan, and Afghanistan (Cheshmeh Moh- 28.83oN, 1825 m). Climate diagrams of this hamadabad at 60.41oE, 29.41oN, 1200 m) and bioclimatic zone represent a relatively long SW Iran centered around Boushehr (Figs. 1 summer drought, low amount of annual pre- and 2). Comparison of Mxo and Mdo climate cipitation but relatively elevated average of diagrams (Fig. 4g, h) indicate that the annual winter temperature minima (Fig. 4g). precipitation is lower and the summer drought Mediterranean xeric-continental (Mxc). It is is longer in the latter bioclimate. the second largest bioclimate of Iran after the Mediterranean desertic-continental (Mdc). Mediterranean desertic-continental bioclimate This is the largest bioclimate of Iran covering (see below). It dominates the high plateau of the majority of the desert areas of the central NW Iran as well as several isolated mountain Iranian plateau (Fig. 3). It is also present as ranges in central Iran. In W and SW Iran, a isolated patches within the Tropical macro- relatively large part of the Zagros Mts in their bioclimate near the Persian Gulf coasts and in southern section is also covered by this bio- SE Iran in Sistan area at SE of Lut Desert.

100 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-08-c:Mise en page 1 12/07/11 15:19 Page 101

Application of the Global Bioclimatic Classification to Iran: implications for understanding the modern vegetation and biogeography

The Mdc bioclimate is the driest Mediterra- amount of annual precipitation occurring Figure 4 – Climate nean bioclimate with very low annual preci- during winter months (Fig. 4P). diagrams representative of pitation and extended summer drought as Tropical desertic (Trd). It is the dominant bio- different bioclimates revealed in the climate diagrams (Fig. 4o). described in the climate of the Tropical macrobioclimate of text. Iran and is particularly well represented in SE Tropical macrobioclimate Iran and over the Makran Range and extends into the Lut and central Iranian deserts. Only This macrobioclimate dominates the southern low amount of annual precipitation falls in Iran along the Persian Gulf and the Gulf of this bioclimatic zone similar in amount to the Oman coasts. It includes the Khuzestan plain, Mdc amount but the temperature minima and southern foothills of the Zagros Mts, and the maxima are substantially higher in the Trd Makran Ranges. In the S and SE Iran, it pene- (compare Fig. 4o and q). In the extreme eas- trates northward deep into the Mediterranean tern Iran an obvious peak of summer rainfall macrobioclimate encircling the Lut Desert appears during July and the summer tempe- and forms three isolated or semi-isolated ter- rature maxima show a conspicuous reduction ritories centered around deserts of Marvast, (Fig. 4R) reflecting the influence of the Indian Bafgh, and Robat Posht-e-Badam (Figs.1 Summer Monsoon. and 2). Tropical macrobioclimate of Iran is Tropical hyperdesertic (Trhd). This bioclimate subdivided into three bioclimates: which constitutes the driest and hottest bio- Tropical xeric (Trx). This bioclimate is appa- climatic unit of the world in the GBC system rently wedged between the Mediterranean and in Iran, is found in the Lut and the Siah bioclimates and Tropical desertic bioclimate Kuh deserts near Bafq (Figs. 1 and 2). The cli- (Trd). It is particularly extended over the sou- mate diagram is very impressive showing a thern Zagros Mts (Fig. 2). Compared to other nearly year-round drought and extremely high Tropical bioclimates, Trx has an important summer temperatures.

ecologia mediterranea – Vol. 37 (1) – 2011 101 ecol-med-37-1-08-c:Mise en page 1 12/07/11 15:19 Page 102

M. DJAMALI, H. AKHANI, R. KHOSHRAVESH, V. ANDRIEU-PONEL, P. PONEL, S. BREWER

102 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-08-c:Mise en page 1 12/07/11 15:19 Page 103

Application of the Global Bioclimatic Classification to Iran: implications for understanding the modern vegetation and biogeography

Discussion canian forest but almost absent from the eas- tern parts (Dorostkar & Noirefalaise 1976; Vegetation-types/biomes Assadollahi 1980; Assadollahi et al. 1981; and GBC’s bioclimates Rastin 1983; Klein 1994; Akhani 1998; Akhani et al. 2010). The western Hyrcanian Figures 5 and 6 illustrate a selection of pho- forests are characterized by dense fern floor tos of Iranian landscapes corresponding to the and occurrence of many epiphytes and lianas. aforementioned bioclimates. The range of A number of mesophytic ferns such as Ophio- some selected species matching their range glossum lusitanicum, O. vulgatum, Osmunda with the discussed bioclimates is shown in regalis, Marsilea quadrifolia, Pteris dentata, Figs. 7 and 8. Some GBC’s bioclimates show Thelypteris limbosperma and the highly iso- good correspondence with the major vegeta- lated relict pteridophyte Psilotum nudum, tion types/biomes of Iran. Comparison of recently discovered from Ramsar (Fig. 1), Fig. 2 and Fig. 3A (vegetation map based on occur only in the western parts of the Hyrca- Frey and Kürschner 1989) illustrates clearly nian forests (Rezaei 2003; Khoshravesh et al. this correspondence. 2009) (Fig. 7A). Some relict species such as Hyrcanian forest in its western part is domi- Gleditsia caspica Desf., and acidophyte shrub nated by Temperate oceanic climate (subme- Vaccinium arctostaphylos L. are absent in the diterranean variant) or Tocsm (Fig. 4A, B) east and the range of many mesophytic and whereas in its eastern part it is dominated by thermo-mesophytic species such as Buxus Mediterranean pluviseasonal-oceanic biocli- sempervirens reach at most to Gorgan (Assa- mate (Fig. 4D, E) with patches of Temperate dollahi 1980; Browicz & Zieliński 1982: map bioclimate distributed according to the com- 70; Jafari & Akhani 2008) while some more plex topography of the Alborz Mts (Fig. 4C). xerophytic and/or cold-adapted trees such as The variations in floristic composition of the Taxus baccata L., Thuja orientalis L., Carpi- Hyrcanian flora in south Caspian region can, nus orientalis Mill. (Fig. 7B) and Betula pen- to a great extent, be explained by this biocli- dula Roth. are best represented in the orien- matic subdivision. As mentioned above, the tal parts of the Hyrcanian forest (e.g. western Hyrcanian forests show different flo- Assadollahi 1980; Browicz & Zieliński 1982; ristic composition than eastern parts. Some of Akhani 1998; Ejtehadi et al. 2004). C4-grass- these differences can be summarized as lands associated with open scrub vegetation, follows. The plain and piedmont Buxus sem- or dominating the sand dunes of the eastern pervirens-Smilax excelsa communities and shores of the Caspian Sea occur mostly in eas- lowland Fagus orientalis-Ruscus hyrcanus tern parts of the Hyrcanian forests (Akhani & communities are dominant in the west Hyr- Ziegler 2002; Akhani et al. 2010). These com- munities profit remarkable amount of summer precipitation associated with high temperature giving a Savanna-like type of vegetation in a temperate forest (Fig. 5c). In spite of such minor difference between East and West of Figure 5 – Selected photographs of natural the Hyrcanian forests many species occur in vegetation in Temperate and Mediterranean macrobioclimates in Iran. both parts such as Parrotia persica, Quercus A) Lowland deciduous forest between Fuman and castaneifolia, Carpinus betulus, Zelkova car- Masooleh, Gilan Province of Toc bioclimate. pinifolia, Acer velutinum and large number of B) Montane deciduous forest, Golestan National Park, Golestan Province of the Mpo bioclimate. herbaceous species such as the endemic Teu- C) Open scrub with C4-grasslands in Golestan crium hyrcanicum L. (Fig. 7c). National Park, Golestan Province of Mpo biocliamte. D) Zagros oak forest (Quercus brantii), near Kuh-e The above-mentioned different floristic fea- Dena, Fars Province of the Mpc bioclimate. tures are a reflection of the differential effect E) Amygdalus-Pistacia scrub, near Jahrom, Fars of the maritime effect of the Caspian Sea and Province, of the Mxc bioclimate. F) Juniperus excelsa woodland in the Alborz Mts local orographic as well as regional atmos- near Shahmirzad, Semnan Province of the Mxc pheric circulation patterns in the south Cas- bioclimate. pian region (Alijani & Harman 1985; Khalili G) Thorn-cushion dominated montane steppes, 1973). The greatest concentration of relict Kuh-e Binalud, Khorassan Province of the Mxc bioclimate. thermo-mesophytic trees occurs in the Gilan H) Cupressus sempervirens woodland near Siah plain. Here, the contact between the nor- Bisheh, Chalus valley, Mazandaran Province of Mxo theasterly humidity-loaded winds blowing bioclimate . Photographs A-D, F-H, H. Akhani, E, M. Djamali. from the Caspian Sea and the hot dry air

ecologia mediterranea – Vol. 37 (1) – 2011 103 ecol-med-37-1-08-c:Mise en page 1 12/07/11 15:19 Page 104

M. DJAMALI, H. AKHANI, R. KHOSHRAVESH, V. ANDRIEU-PONEL, P. PONEL, S. BREWER

104 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-08-c:Mise en page 1 12/07/11 15:19 Page 105

Application of the Global Bioclimatic Classification to Iran: implications for understanding the modern vegetation and biogeography

masses from the Iranian plateau decreases the with the Azerbaijan plateau and NE Iran, in air stability and causes higher rainfall during terms of precipitation seasonality, is that the hot summer months but especially during the winter precipitation in the Zagros is superior autumn (Khalili 1973). Highest values of to spring precipitation. The Mpc bioclimatic annual rainfall and air humidity (Khalili 1973; area of the Zagros extends over a long latitu- Dinpashoh 2006) and lowest values of refe- dinal range with significant temperature gra-

rence crop evapotranspiration (ET0) in Iran dient from north to south showing that the are observed in the western part of the south moisture variations i.e. the total annual and Caspian region. This fact indicates the very seasonal distribution of precipitation rather favorable bioclimatic context of this area for than temperature changes would constitute the survival of the dry and cold-sensitive Hyr- the most important controls on the chorology canian relict species during the late Quater- of the plant individuals and communities in nary glaciations suggesting that this area this area. would have retained its Temperate oceanic The distribution of xerophytic Pistacia-Amyg- bioclimate even during the glacial periods. dalus scrubs on the eastern foothills of the One of the most striking vegetation-biocli- Zagros (Fig. 5E) on its central Iranian side as mate correlations is observed in the Zagros well as the narrow band on the SW Zagros Mts where the xerophytic deciduous Zagros and the cold-resistance Juniperus excelsa oak woodland dominated by Quercus brantii woodlands in the NE Iran (Fig. 5F) and their Lindl. (cold deciduous broad-leaved wood- scattered stands in Alborz Mt show good cor- land in Figs. 3a, 5d and 7d) correlates quite respondence with Mediterranean xeric-conti- well, with Mediterranean pluviseasonal-con- nental bioclimate (Mxc) of GBC’s classifica- tinental bioclimate (Mpc) (compare Figs. 2, tion (compare Figs. 2 and 4A). Additionally, 3, and 7d). Areas occupied by Mpc bioclimate this bioclimate also represents most of the show similar precipitation seasonality pat- tree-less and shrub-less monatne steppes and terns. Three typical climate diagrams charac- sub-steppes (Figs. 7F, G). This bioclimate teristic of this Mpc bioclimate in the Zagros occupies areas between the Mpc and Mdc Mts are represented in Fig. 4i-k. In terms of bioclimates indicating intermediate moisture precipitation seasonality, the Mpc bioclimatic conditions not enough for the expansion of zone is generally characterized by mean deciduous woodlands but wet enough to sup- annual precipitation of ca. 388 mm, mostly port the open xerophytic scrubs and shru- occurring during winter months, but also a blands (see Table 3). Xerophytic Pistacia- considerable amount (ca. 93 mm) of spring Amygdalus scrubs of Iran have been among rainfall (Domroes et al. 1998). The difference the most impacted ecosystems of Iran by anthropogenic activities (Djamali et al. 2008b). If the climatic conditions of Mxc bio- climate are supposed to be the most favorable Figure 6 – Selected photographs of natural vegetation in Mediterranean and Tropical for development of the xerophytic scrubs of macrobioclimates in Iran. Iran, one can consider that in the absence of A) Dasht-e Kavir (Great Kavir Plain) with extremely human activities, the natural potential vegeta- xeromorphic dwarf shrubs dominated by Zygophyllum atriplicoides-Artemisia sieberi, Touran tion of the majority of Azerbaijan plateau Biosphere Reserve, Semnan Province of the Mdc (Fig. 1 & 3) would be composed of this vege- bioclimate. tation type. The long-term land-use and over- B) Artemisia sieberi steppe, South Tehran near Hassanabad, of Mdc bioclimate. grazing have degraded such woodlands lea- C) Moving sand dunes in Dasht-e Kavir near ding to their replacement with thorn-cushion Jandagh, Esfahan Province of Mdc bioclimate. montane steppes towards the higher altitudes D) Halophytic shrubby community dominated by Salsola rosmarinus, near Varzaneh, Esfahan and Artemisia steppes towards the lower alti- Province, Mdc bioclimate. tudes. The thorn-cushion formations as a E) Pseudo-savanna vegetation in Southern Iran consequence of long-term human activity, dominated by Acacia and Hammada salicornica, near Shoorezar-e Mehregan, especially the pasturalism, dominate large of Trd bioclimate. parts of Azerbaijan, Alborz, Zagros and Kho- F) Mangrove forests (Avicennia marina) along rassan mountains (Noroozi et al. 2010). They Persian Gulf near Bandar-e Khamir, Hormozgan are composed of many tragacanthic species of Province, of Trd bioclimate. G) xermorphic scrub of the Zagros foothills near Astragalus, Acantholimon, Acanthophyllum Estahban, Fars Province representing Trx bioclimate. and Onobrychis cornuta (Fig. 5G). In the H) Extremely dry deserts near Siahkuh desert, Yazd highlands, many tall umbelliferous species Province representing Trhd bioclimate. Photographs, H. Akhani. (such as Prangos uloptera) dominate such

ecologia mediterranea – Vol. 37 (1) – 2011 105 ecol-med-37-1-08-c:Mise en page 1 12/07/11 15:19 Page 106

M. DJAMALI, H. AKHANI, R. KHOSHRAVESH, V. ANDRIEU-PONEL, P. PONEL, S. BREWER

ecosystems, a unique life form trait of the the Caspian Sea causing the highest rainfall Irano-Turanian montane steppes (Klein in the region notably during autumn (Khalili 1994). The strong human-induced modifica- 1973). This climatic phenomenon creates a tions in the natural vegetation of NW Iran has small Mediterranean pluviseasonal-oceanic also been suggested by Zohary (1983) and is bioclimate towards the Caspian Sea and a evident by presence of relict scrub communi- Mediterranean xeric-oceanic bioclimate ties in the upland areas and the Lake Urmia towards the hot and dry plateau of central Iran islands (Zohary 1973; Zehzad 1989). Besides (Fig. 2). In general, Mediterranean oceanic the disturbed upland vegetation, the salt-affec- bioclimate area (including both pluviseasonal ted lowland soils resulted from the intensive and xeric) of northern Mediterranean Basin irrigation in semi-arid areas, form large coincides with supposed natural distribution expanses of Mxc bioclimate e.g. characteri- area of Olea europaea L. (compare Quézel zed by the range extension of Atriplex tata- and Médail 2003, Fig. 5.5 to Rivas-Martínez rica (Fig. 7F). The above examples implicate et al. 2004a). Sefidrud defile is the most that the GBC’s bioclimatic units may have a important cultivation center of O. europaea in high predictive value in discerning the poten- Iran, a fact that indicates it has the closest bio- tial vegetation of the areas with long history climate to circum-Mediterranean lowlands. of human disturbance such as Iran. Most of the interior parts of Iran, limited by In northern Iran, several isolated Mediterra- the precipitation isohyet of 200 mm/yr, match nean xeric conifer forest communities are with Mediterranean desertic continental bio- found in the natural defiles or transversal val- climate (Mdc). This vast area comprises large ley floors of the Alborz Mts, the most impor- deserts (Dasht-e Kavir or Great Kavir Plain in tant of which being found in the Sefidrud Val- Fig. 1b) (see also Figs. 6A, B), large number ley (Mossadegh 1975) between Qazvin and of playas, salt lakes or Daqs (Krinsley 1970; Rasht, in Chalus valley (Fig. 5H) and East of Akhani 2006, Breckle 1981, 1983) and sandy Gorgan near Aliabad (Fig. 1), where is known dunes (Fig. 6C). The soil in the saline depres- in Iran as the best places for olive plantations. sions is too salty for plant growth. Vegetation In these areas, Cupressus sempervirens L. is mostly in the form of halophyte and salt (Fig. 5H) is occasionally accompanied by a tolerant plants (Figs. 6D and 7H) (Akhani few other Mediterranean trees and shrubs 2004, 2006). The saline depressions are sur- such as Myrtus communis L., Cercis siliquas- rounded by extremely vast alluvial plains with trum L., Jasminum fructicans L., and Ficus undulating gravelly slopes dominated by Arte- carica L. (Sabeti 1976; Djazirei 1965; Mos- misia sieberi and co-dominated by a large sadegh 1975; Assadollahi 1980). This zone number of xerophytes e.g. Zygophyllum atri- benefits from the Mediterranean xeric-ocea- plicoides, Haloxylon ammodendron, Kaviria nic bioclimate (Mxo) whose exact equivalent tomentosa, Halothamnus subaphyllus (Fig. is found in lowland areas of Mediterranean 7H), Stipagrostis plumosa, Pteropyrum au- Basin particularly in SE Iberian Peninsula but cheri and P. olivieri, the two latter mostly in also in NE Iberian interior parts as well as dry ephemeral stream beds (Asri 2003; Léo- some Eastern Mediterranean islands including nard 1991/1992) (Figs. 6A, B). The extreme southern Cyprus (Rivas-Martínez et al. dry deserts in Dasht-e Kavir and Lut Desert 2004a). In SE Iberian Peninsula, this biocli- are covered by sand dunes (Fig. 6C). Sand mate corresponds to Murcian-Almerian Pro- habitats are widely distributed in the semi- vince of Mediterranean phytogeographical desert and extreme dry deserts of Central Iran, region characterized by the dominance of Lut Desert as well as in Khuzestan (Mpc and open xerophytic scrub communities rich in Trd bioclimates, see below). Psammophytic endemic species (Rivas-Martínez & Loidi flora consists of many shrubs, dwarf shrubs, 1999b). This area is located in the rain-sha- cryptophytes and annuals adapted to harsh dow side of the SE ranges which block wet environmental conditions. Examples of such air masses originated from the Atlantic Ocean species include Haloxylon persicum, Calligo- and northern Mediterranean Sea (Rivas- num spp., Xylosalsola richteri, and Stipa- Martínez & Loidi 1999a, b). The Sefidrud grostis spp. (Freitag 1986; Ghasemkhani et al. Valley is a natural wide corridor through 2008). which the dry and hot summer air masses of Central Iran penetrate into the south Caspian The Tropical desertic bioclimate (Trd) exten- region and form a front over SW Caspian ding along the southern parts of Iran is com- plain when they meet the cool air masses of posed of pseudo-savanna vegetation (Fig. 6E).

106 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-08-c:Mise en page 1 12/07/11 15:19 Page 107

Application of the Global Bioclimatic Classification to Iran: implications for understanding the modern vegetation and biogeography

Figure 7 – Distribution maps of some selected floristic elements of Iranian flora matching with bioclimates discussed in this paper. A) Ophioglossum vulgatum (Toc); B) Carpinus orientalis (Mpo); C) Teucrium hyrcanicum (Toc & Mpo); D) Quercus brantii (Mpc); E) Phlomis persica (Mpc); F) Atriplex tatarica (Mxc); G) Kochia prostrata (Mxc); H) Halothamnus subaphyllus (Mdc); I) Suaeda aegyptiaca (Trd); J) Hammada salicornica (Trd); K) Ajuga austro-iranica (Trx); L) Stachys benthamiana (Trx).

ecologia mediterranea – Vol. 37 (1) – 2011 107 ecol-med-37-1-08-c:Mise en page 1 12/07/11 15:19 Page 108

M. DJAMALI, H. AKHANI, R. KHOSHRAVESH, V. ANDRIEU-PONEL, P. PONEL, S. BREWER

Mild winters and extremely hot summers not attractive for human societies, the vegeta- push the vegetation to flourish during winter tion of this region is well conserved. months and early spring. Precipitation falls The very cold-sensitive mangrove communi- only during late autumn and winter with the ties (Avicennia marina) naturally occur only exception of southeasternmost Iran which in Tropical desertic zone of Iran along tidal receives very slight amounts of summer mon- coasts of the Persian Gulf and the Gulf of soon rainfall (Fig. 4R). Only extremely xero- Oman, where they occur as the northernmost morphic species and C4 chenopods can sur- range of tropical coastal forest (Fig. 6F) vive hot summers in this zone (Figs. 7I, J). (Akhani 2004; Frey et al. 1986). The pseudo-savanna vegetation is composed of open xeromorphic scrub dominated in the The Tropical xeric bioclimate found in tran- westernmost area by Ziziphus nummularia in sitional position between Mediterranean plu- Ilam and Khuzestan lowland plain and repla- viseasonal-continental and Tropical desertic ced eastwards by Ziziphus spina-christi, seve- bioclimates shows mixed vegetation elements ral species of Acacia (A. ehrenbergiana, A. of both types. It dominates mostly the pied- tortilis, A. oerfota, and A. nilotica) and, Pro- monts of Zagros mounatains towards the low- sopis cineraria (Fig. 6E). In areas with less land plains (Fig. 6G). In many places within human impact, dense woodlands of Acacia this bioclimate, the gypsum hills harbour a and Prosopis can dominate and create a true number of relict elements (Akhani 2004; Rob- savanna physiognomy. The main difference son 1987). The sparse Quercus brantii trees between the Iranian savanna-like vegetation mostly co-occur with Amygdalus arabica, and the North-African savanna is the absence Pistacia khinjuk, Acer monspessulanum subsp. cinerascens and subsp. persicum. In of dense C4-grasslands which reflects lacking of the summer rainfall (Cerling 1999). Ins- the ground vegetation, several elements such tead, the presence of saline soils and availa- as Dicyclophora persica, Ebenus stellata and Otostegia persica occur in common with the bility of groundwater supports C4-chenopods and halophytes dominating large parts of sou- Tropical desertic bioclimate. This bioclimatic thern Iran both as co-dominants with Acacia, zone supports distribution of a number of Ziziphus and Prosopis shrubs (e.g. Suaeda endemics such as Ajuga austro-iranica Rech. aegyptiaca, Hammada salicornia, Caroxylon f. and Stachys benthamiana Boiss. cyclophyllum, Kaviria lachnantha) (Figs. 6E, (Figs. 7K, L). 7I, J) or as almost pure communities domina- The Tropical hyperdesertic (Trhd) bioclimate ted by Suaeda fruticosa and Salsola drum- represents the most arid parts of Iran. This mondii (Léonard 1991/1992; Akhani 2004; bioclimatic area is composed of a very spar- sely vegetated to the so-called “abiotic” Alaei 2001). C4-grasses have been reported from southern Iran (Bor 1970; Ghasemkhani region lacking any vegetation (Mobayen 1976). The large sand dunes, gravelly deserts et al. 2008) and co-occur with other C4-shrubs such as Calligonum spp., Haloxylon persi- and saline depressions form the major land- cum, and Hammada salicornica, or constitute scapes of this zone in which only extremely small patches in suitable microhabitats such xeromorphic species can survive – see detai- as sand dunes, ruderal places and palm plan- led data on the vegetation of Kavir-e Lut in tations. Mobayen (1974, 1976) and Léonard (1991/1992). Surprisingly, a small enclave of Proximity of western parts of the Tropical Trhd bioclimate occurs in Yazd province near desertic bioclimate in Khuzestan, Bushehr, Bafgh. There are some playas in this area and Fars provinces to the Zagros Mts with (Daranjir and Siahkuh) covered by gravelly abundant freshwater resources and, in recent soil (“Rig”) with very sparse vegetation of Sti- times, discovery and exploitation of many oil pagrostis plumosa, Kaviria tomentosa and resources has caused increasing human sett- Cornulaca monacantha (Fig. 6H). lements and intensive agricultural practices which have led to devastation of natural vege- tation and soil salinization in SW Iran (Gho- Phytogeographical regions badian 1969; Akhani 2006). The landscape and macrobioclimates here is largely represented by palm planta- tions, wetlands and river systems, halophytic It has been shown that in the absence of high vegetation and salt affected waste lands. north-south oriented orographic barriers, the Conversely, as large parts of SE Iran (east large-scale phytogeographical patterns in Hormozgan and Sistan & Baluchestan) are many parts of the world such as the East Asia

108 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-08-c:Mise en page 1 12/07/11 15:19 Page 109

Application of the Global Bioclimatic Classification to Iran: implications for understanding the modern vegetation and biogeography

and North America are linked to climatic gra- macrobioclimatic boundaries (Figs. 2, 3a, b). dients and thresholds related to latitude (Qian Main discrepancies to this image comprise the 1999; Qian et al. 2003). The major climatic eastern section of the south Caspian forest and variable controlled by latitude is the annual some areas in central Iranian plateau which temperature variations (Qian et al. 2003). The- will be discussed below. The presence of such refore, it is important to include the latitudi- a remarkable coincidence is due to the fact nal range of an area in any bioclimatic zona- that the complex orography of Iran has the tion scheme which is the case with GBC same effects on plant distribution patterns as system (Rivas-Martínez et al. 1997). In the on the interaction of the main climatic sys- case of Iran, however, the complex orography tems. Some of the main climatic-floristic links of the country which has resulted from its of the Iranian phytogeographical regions are complex tectonic history (Stöklin 1968), has summarized below. greatly modified the simplified picture of lati- tudinally-extended phytogeographical regions. Euro-Siberian floristic region. The Euro-Sibe- High mountain ranges can block and lowland rian floristic region is mainly represented in areas or natural defiles can facilitate the plant Temperate macrobioclimatic region in the migration processes. Hence, the modern phy- western south Caspian region but also under togeographical zonation of Iran shows the Mediterranean macrobioclimate in eastern combined influence of both latitudinal belts south Caspian region. The whole of the south and complex orography. Caspian forest is included in the Euxino-Hyr- canian or Hyrcanian Province of the Euro- Zohary (1973) distinguishes four phytogeo- Siberian phytogeographical region (Zohary graphical regions in Iran i.e. the Euro-Sibe- 1973; Browicz 1989; Akhani 1998; Akhani et rian region in the south Caspian region, Irano- al. 2010) (Fig. 3). A look at the floristic com- Turanian region in much of the central Iranian position of the Hyrcanian forests shows plateau and its bordering highlands, Sudanian contrasted differences between the east and region in southern Iran, and finally the west (Figs. 5a, c). The above difference can Saharo-Arabian region in southwesternmost be explained by a difference in precipitation Iran (Fig. 3b). Takhtajan (1986) largely adop- regime (Khalili 1973; Domroes et al. 1998) ted the Zohary’s system but misclassified the and particularly the increasing duration of Hyrcanian forests as part of Irano-Turanian summer drought and winter cold towards the floristic region and classified the southern east under the influence of dry air masses ori- Iran as the Sudano-Zambesian region. More ginated from the Central Asian deserts and recently, Léonard (1989) and White and Léo- central Iranian plateau. The boundary bet- nard (1991), proposed a modified phytogeo- ween the Mediterranean and Temperate graphical scheme for SW Asia in which the macrobioclimates in south Caspian coincides Irano-Turanian region is called, “Irano-Tura- approximately with the 800-900 mm contour nian regional center of endemism” and the of annual precipitation (e.g. Khalili 1973) but Saharo-Arabian and Sudanian territories of is also marked by the transition of precipita- Iran based on Zohary’s system (1973) are tion seasonality regime from the autumn- combined together under the new concept of dominated in the west to winter/spring-domi- the “Saharo-Sindian local center of ende- nated in the east (Khalili 1973; Dinpashoh et mism” (Fig. 3c). In a recent chorological ana- al. 2004). Hence, although the boundary bet- lysis and relationships of species of the genus ween the Mediterranean and Temperate Heliotropium and several examples in the macrobioclimates in the Hyrcanian region family Chenopodiaceae (Akhani 2007), the does not correspond to a sharp biogeographi- second author argued that the area of southern cal change but is characterized by a degree of Iran has nearest chorological affinity with the change in climatic and floristic features. Irano-Turanian region when the endemic spe- cies are concerned but is over-represented by It is interesting to raise the question of why elements of the so-called “Saharo-Sindian” or no Mediterranean-type vegetation (e.g. scle- “Saharo-Arabian” and “Somalia-Masaei” rophyls) has developed in the eastern Hyrca- regions in the lowlands sensu Zohary (1973) nian region under its Mpo bioclimate. One and Léonard (1988). possibility to explain this phenomenon may be the inadequacy of GBC in detecting some This study demonstrates that the boundaries special types of bioclimates formed in the of major phytogeographical units recognized transitional zones between different macro- in Iran are largely coincident with GBC’s bioclimates. This may indicate the necessity

ecologia mediterranea – Vol. 37 (1) – 2011 109 ecol-med-37-1-08-c:Mise en page 1 12/07/11 15:19 Page 110

M. DJAMALI, H. AKHANI, R. KHOSHRAVESH, V. ANDRIEU-PONEL, P. PONEL, S. BREWER

of defining and using additional bioclimatic the high continentality and long duration of parameters such as the air humidity and eva- summer drought and also the unique phyto- potranspiration. It can also be suggested that geographical feature of this region. This term an alternative term should be used to describe is approximately equivalent to the sum of the bioclimate of the eastern Hyrcanian region Mediterranean continental bioclimates repre- to replace the Mediterranean pluviseasonal- sented in the area (Mpc, Mxc, Mdc). oceanic namely “Mediterranean xero-estival- oceanic” bioclimate. Saharo-Sindian floristic region. In southern Iran, the “Saharo-Sindian regional zone” Irano-Turanian floristic region. Irano-Tura- (sensu White and Léonard 1991) (or Sudanian nian phytogeographical unit comprises a vast region sensu Zohary 1973) occupies the same territory in SW and Central Asia with a territory as Tropical macrobioclimate (com- unique flora which has developed indepen- pare Figs. 2 and 3c). Although, the extension dently of its surrounding floristic regions of this phytogeographical unit into the central (Zohary 1973) (Fig. 7d-h). It is the floristi- Iranian desert areas has not been illustrated in cally richest region of the eastern Holarctic phytogeographical subdivisions of Iran super-region containing some “giant” genera (Zohary 1973; White & Léonard 1991), the such as Astragalus, Acantholimon, Cousinia, distribution of some typical Saharo-Sindian Allium, Nepeta, etc. and displays a high rate plant species indicates that the latter region of speciation and endemism (Zohary 1973; has some outposts in the Irano-Turanian Takhtajan 1986; Akhani 2006; Rechinger region. Indeed, some of the Saharo-Sindian 1963-2010). Zohary (1973) has already men- elements have reached as far as northern part tioned that the general climatic context of the of the central Iranian plateau (Fig. 7i, j) which Irano-Turanian region has some specific fea- coincides with the northern limit of date palm tures which distinguish it from other surroun- (Moore 1980). ding phytogeographical regions. These include low annual precipitation, strong conti- To explain these modern distribution patterns nentality (large seasonal and daily tempera- of plant species, a comparison to modern geo- ture amplitude), and two seasons of rest in graphical range of plant-independent orga- plant life i.e. hot/dry summers and cold win- nisms such as coprophagous coleoptera (dung ters. Our study reveals that the Irano-Turanian beetles) may be informative. This group as region of Iran shows a good match with the well as many other groups of insects cannot Mediterranean macrobioclimate. This means change rapidly its climatic tolerances (Gres- that the Irano-Turanian flora is adapted to and sit 1958). For example, in the Mediterranean developed under severe summer dry condi- region, its distribution is closely linked to tions which might last from two consecutive xerothermic climatic index while the altitude, months to as long as 12 months in Mediterra- dung type, and soil characteristics have negli- nean desertic-continental bioclimate. The gible role (Kirk & Ridsdill-Smith 1986). Cli- continentality index is commonly over 21, a mate envelope models (CEMs) have also common feature of Mediterranean continen- demonstrated that the climate is the major tal-bioclimates (Table 3), which demonstrates constraint on geographical distribution of the extreme seasonal temperature variations. dung beetles in Australia (Duncan et al. This severe continentality of the Mediterra- 2009). Dung beetles are also independent of nean macrobioclimate of Iran makes it dis- floristic composition of the vegetation of an tinct from the predominantly oceanic biocli- area. Unlike many plant species (Fig. 7), the mates of the circum-Mediterranean region majority of the Afro-Tropical dung beetle spe- (see Rivas-Martínez et al. 2004a). The great cies of southern Iran which are confined to the difference between the floristic composition Saharo-Sindian phytogeographical limits, do of the circum-Mediterranean region and not reach the central Iranian deserts (Fig. 8) Irano-Turanian region might be, to a large (Barari 2001; Löbl & Smetana 2006; Sewak extent, related to this difference in the degree 2009). One interpretation of this distribution of continentality. Therefore, the term “Medi- patterns is that the northern limit of the terranean-type climate” generally used for the Saharo-Sindian floristic region would have description of the climate of Iran and other once been situated in higher latitudes within parts of the interior Middle East would better the central plateau of Iran due to the north- be replaced by a more appropriate term such ward displacement of climate system boun- as the “xero-estival-continental” (or in local daries. Such a climatic change could have use the “Irano-Turanian”) which imply both been caused by northwesternward shift of the

110 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-08-c:Mise en page 1 12/07/11 15:19 Page 111

Application of the Global Bioclimatic Classification to Iran: implications for understanding the modern vegetation and biogeography

InterTropical Convergence Zone (ITCZ) during the past Indian Ocean Monsoon inten- sifications (Fleitmann et al. 2003). This would have permitted the Saharo-Sindian plant and animal species to migrate northward and colo- Caspian nize some areas within the presently Irano- Sea Turanian territory. Later climatic deterioration (e.g. aridification due to monsoon retreat or winter temperature decline) could have cau- sed the temperature/drought-sensitive insects to extirpate. The cold winter of 2008 provides a remarkable example for this phenomenon when many trees and shrubs of tropical origin which are now widely cultivated in interior Iran died out due to extremely cold winter P temperatures. However, some plant species e including the examples given in Fig. 7i, j rs ia (Suaeda aegyptiaca (Hasselq.) Zohary and n G Hammada salicornia (Moquin) Iljin) have ul survived in isolated populations in suitable f microhabitats most probably because their fundamental ecological niche has remained Anthyreus flavohirtus Walk. Rhyssemodes spp. Reit. stable within the new environmental space Metacatharsius inermis Lap. Scarabaeus wilsoni Waferh. (Jackson & Overpeck 2000) or because they Heliocopris gigas Oliv. Scarabaeus cristatus Fels. would have developed adaptation strategies to Gymnopleurus persianus Reitter new environmental constraints. In contrast, dung beetles which are more sensitive to vari- Figure 8 – Localities of several dung beetle species reported ations of climatic parameters particularly tem- from southern Iran (after Barari 2001). perature variations (Lobo et al. 2002) would have quickly disappeared from the formerly occupied areas. Modern severe climatic con- ditions of central Iranian deserts particularly the Lut Desert with extreme daily and sea- sonal thermal variations (e.g. Azizi et al. Conclusions 2007) is a major natural ecological obstacle for the northward migration of southern Iran- Among different climatic and bioclimatic ian dung beetles. This is in contrast with the classification systems that have so far been south and southeastern Iran which have the applied to Iran, the Global Bioclimatic Clas- less annual thermal variations and the most sification System (GBC) seems to provide the oceanic climate in Iran after the south Caspian most appropriate zonation in terms of the region. potential natural vegetation. This fact is due In summary, the modern phytogeographical to the use of climatic parameters and indices configuration and plant distribution patterns which are significant in the growth and deve- of central Iran can partly be explained by nar- lopment of plant taxa and communities of row extensions of Tropical macrobioclimate Iran. Not only the main phytogeographical into the Mediterranean macrobioclimatic units of Iran correlate with the GBC’s dia- realm and partly by the past climate and envi- gnosed macrobioclimates but also several ronmental changes. major biomes/vegetation types of Iran can be well correlated to the main GBC’s biocli- mates. The dominant bioclimates of Iran are the Mediterranean continental bioclimates which are not well-represented in the Medi- terranean Basin but almost perfectly coinci- dent with Irano-Turanian floristic region. Hence, it is suggested to use the term ‘xero- estival-continental-type’rather than “Mediter- ranean-type” climate for that part of Iran and

ecologia mediterranea – Vol. 37 (1) – 2011 111 ecol-med-37-1-08-c:Mise en page 1 12/07/11 15:19 Page 112

M. DJAMALI, H. AKHANI, R. KHOSHRAVESH, V. ANDRIEU-PONEL, P. PONEL, S. BREWER

perhaps central Asia which is dominated by sis of phytogeographical units. Bot. J. Linn. Soc. Irano-Turanian flora. The main bioclimatic 155: 401-425. difference between the ‘xero-estival-conti- Akhani H. & Ziegler H., 2002. Photosynthetic pathways and habitats of grasses in Golestan National Park nental-type’(locally ‘Irano-Turanian-type’) (NE Iran), with an emphasis on the C4-grass domi- and the Mediterranean-type climates is the nated rock communities. Phytocoenologia 32: 455- substantially higher values of the continenta- 501. lity index in the former region. Delineated Akhani H., Djamali M., Ghorbanalizadeh A. & bioclimatic areas can help understand the Ramezani E., 2010. Plant biodiversity of Hyrcanian relict forests, N Iran: an overview of the flora, veg- potential vegetation of those areas submitted etation, palaeoecology and conservation. Pak. J. Bot. to a long history of human activities in which 42: 231-258. the human-induced ecosystems have replaced Alaie E., 2001. Salt marshes and salt deserts of SW Iran. the natural vegetation. The bioclimatic zona- Pak. J. Bot. 33: 77-91. tion proposed in this study is also useful for Alijani B. & Harman J.R., 1985. Synoptic climatology of precipitation in Iran. Ann. Assoc. Am. Geogr. 75: biologists and ecologists who work on the 404-416. ecology and distribution of plant and animal Alijani B., Ghohroudi M. & Arabi N., 2008. Develop- species in Iran. ing a climate model for Iran using GIS. Theor. Appl. Climatol. 92: 103-112. Amigo J. & Ramírez C., 1998. A bioclimatic classifi- cation of Chile: woodland communities in the tem- perate zone. Plant Ecol. 136: 9-26. Acknowledgments Asri Y., 2003. Plant diversity in Kavir Biosphere Reserve. Tehran: Research Institute of Forests and This paper partly presents the results of the Rangelands. research project “Geobotanical Studies in Dif- Assadollahi F., 1980. Étude phytosociologique et bio- géographique des forêts hyrcaniennes – essai syn- ferent Parts of Iran I-IV” supported by the thétique et application à la région d’Assalem (Iran). Reaserch Council of the University of Tehran. PhD Thesis, Université de droit, d’économie et des Authors wish to appreciate the Iran Meteoro- sciences d’Aix-Marseille. logical Organization for generously providing Assadollahi F., Barbero M. & Quezel P., 1982. Les éco- public access to its long-term meteorological systèmes préforestiers et forestiers de l’Iran. Ecol. Medit. 8 : 365-379. database of Iran. The reviewers of the paper Azizi G., Alavi Panah S.K., Goodarzi N., Kazemi M., are thanked for their very constructive com- 2007. An estimation of the temperature of Lut desert ments and suggestions to the improvement of using MODIS sensor data. Biaban (Desert Journal) the manuscript. 12: 7-15. Bagnouls F. & Gaussen H., 1953. Saison sèche et indice xérothermique. Bull. Soc. Hist. Nat. Toulouse 88 : 193-239. Barari H., 2001. Coleoptera (XXIV): Scarabaeoidea, References group: Laparosticti (Geotrupidae, Hybosoridae, Orphnidae, Scarabaeidae, and Aphodiidae). Insects Adle A.H., 1960. Régions climatiques et végétation en of Iran, Publication No. 7. Tehran: Agricultural Iran. University of Tehran’s Publications No. 626, Research, Education and Extension Organization, Tehran. Ministry of Agriculture. Blumler M.A., 2005. Three conflicted definitions of Akhani H., 1998. Plant biodiversity of Golestan Natio- Mediterranean climates. Middle States Geographer nal Park, Iran. Stapfia 53:1-411. 38: 52-60. Akhani H., 2004. A new spiny, cushion-like Euphorbia Bor N.L., 1970. Gramineae. In: Rechinger H.K. (ed.) (Euphorbiaceae) from south-west Iran with special Flora Iranica, 70. Graz: Akademische Druck unde reference to the phytogeographic importance of Verlagsanstalt. local endemic species. Bot. J. Linn. Soc. 146: 107- 121. Breckle S.W., 1981. The time-scale of salt-accumula- tion in a desertic hydrotope in North-Central Iran. Akhani H., 2005. The illustrated Flora of Golestan In: Frey W. & Uerpmann H.-P. (eds), Beiträge zur National Park, Iran. Vol. 1, University of Tehran Umweltgeschichte des Vorderen Orients. Beihefte Press, Tehran. zum Tübinger Atlas des Vorderen Orients Reihe A Akhani H., 2006. Flora Iranica: facts and figures and a (Naturwissenschaften) 8: 51-60. list of publications by K.H. Rechinger on Iran and Breckle S.W., 1983. Temperate Deserts and semi- adjacent areas. Rostaniha 7, Suppl. 2, 19-61. deserts of Afghanistan and Iran. Ecosystems of the Akhani H., 2006. Biodiversity of halophytic and sabkha World 5: 271-319. Amsterdam, Elsevier. ecosystems in Iran. In: Ajmal Khan M. et al. (eds), Browicz K. & Zieliński J., 1982. Chorology of trees and Sabkha Ecosystems. Volume II: West and Central shrubs in south-west Asia and adjacent regions, Asia. Dordrecht, Springer: 71-88. Vol. 1. Warszawa, Polish Scientific Publishers. Akhani H., 2007. Diversity, biogeography, and photo- Browicz K., 1989. Chorology of the Euxinian and Hyr- synthetic pathways of Argusia and Heliotropium canian element in the woody flora of Asia. Plant. (Boraginaceae) in South-West Asia with an analy- System. Evol. 162: 305-314.

112 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-08-c:Mise en page 1 12/07/11 15:19 Page 113

Application of the Global Bioclimatic Classification to Iran: implications for understanding the modern vegetation and biogeography

Cerling T.E., 1999. Paleorecords of C4 plants and deduced from the ecology and pollen production of ecosystems. In: Sage R.F. & Monson R.K. (eds), C4 non-arboreal vegetation. Vegetatio 72: 131-139. plant biology, 445-469. San Diego, Academic Press. Emberger L., 1971. Travaux de botanique et d’écologie. Daget P., 1977a. Le bioclimat méditerranéen : caractères Paris, Masson. généraux. Vegetatio 34 : 1-20. Firouz E., 2005. The complete fauna of Iran. London, Daget P., 1977b. Le bioclimat méditerranéen : analyse I.B. Tauris. des formes climatiques par le système d’Emberger. Fleitmann D., Burns S.J., Mudelsee M., Neff U., Kra- Vegetatio 34 : 87-103. mers J., Mangini A. & Matter A., 2003. Holocene Davis S.D., Heywood V.H. & Hamilton A.C. (eds), forcing of the Indian monsoon recorded in a stalag- 1994. Centers of Plant Diversity: A guide and stra- mite from Southern Oman. Science 300: 1737-1739. tegy for their Conservation, Vol. 1. Europe, Africa, Freitag H., 1986. Notes on the distribution, climate and South West Asia and the Middle East. Cambridge, flora of the sand deserts of Iran and Afghanistan. IUCN Publications Unit. Proc. Roy. Soc. Edinburgh Sec. B-Biological Sci. 89: del Río González S., 2005. El cambio climatic y su 135-146. influencia en la vegetatión de Castilla y León (España). Itinera Geobotanica 16 : 5-534. Frey W., Kürschner H., 1989. Die Vegetation im Vorde- ren Orient: Erläuterungen zur Karte A VI 1 Vorde- Dinpashoh Y., 2006. Study of reference crop evapo- rer Orient. Vegetation des Tübinger Atlas des Vor- transpiration in Iran. Agricultural Water Manage- deren Orients Reihe A. Weisbaden, Dr. Ludwig ment 84: 123-129. Reichert. Dinpashoh Y., Fakheri-Fard A., Moghaddam M., Jahan- Frey W. & Probst W., 1986. A synopsis of the vegeta- bakhsh S. & Mirnia M., 2004. Selection of variables tion of Iran. In: Kürschner H. (ed.), Contributions for the purpose of regionalization of Iran’s precipi- to the vegetation of Southwest Asia. Wiesbaden, Dr. tation climate using multivariate methods. Journal Ludwig Reichert: 9-43. of Hydrology 297: 109-123. Frey W., Kürschner H. & Probst W., 1999. Flora and Djamali M., de Beaulieu J.-L., Shah-Hosseini M., vegetation, including plant species and larger vege- Andrieu-Ponel V., Amini A., Akhani H., Leroy tation complexes in Persia. In: Yarshater E. (ed.), S.A.G., Stevens L., Lahijani H., Ponel P., Brewer S., Encyclopedia Iranica, 10. New York, Bibliotheca 2008a. An Upper Pleistocene long pollen record Persia Press: 46-63. from the Near East, the 100 m-long sequence of Lake Urmia, NW Iran. Quat. Res. 69: 413-420. Frey W., Kürschner, H. & Probst W., 1986. Persische Djamali M., de Beaulieu J.-L., Miller N.F., Andrieu- Golfküste. Mangrove. Vegetation. Beispiele. AVI Ponel V., Ponel P., Lak R., Sadeddin M., Akhani H., 10. Tübinger Atlas des Vorderen Orients der Uni- Fazeli H., 2008b. Vegetation history of the SE sec- versität Yübingen (TAVO). Wiesbaden, Dr. Ludwig tion of Zagros Mountains during the last five mil- Reichert Verlag. lennia; a pollen record from the Maharlou Lake, Gaussen H., 1954. Théorie et classification des climats Fars Province, Iran. Veget. Hist. Archaeobot. 18: et microclimats. Paris : 8th International Congress 123-136. of Botany : 125-130. Djamali M., Akhani H., Andrieu-Ponel V., Bracconnot Ghasemkhani M., Akhani H., Sahebi J. & Scholz H., P., Brewer S., de Beaulieu J.-L., Fleitmann D., 2008. The genera Aristida and Stipagrostis Fleury J., Gasse F., Guibal F., Jackson S.T., Lézine (Poaceae) in Iran. Willdenowia 38: 135-148. A.-M., Médail M., Ponel P., Roberts N., Stevens L., Ghasemi A.R. & Khalili D., 2008. The association bet- 2010. Indian Summer Monsoon variations could ween regional and global atmospheric patterns and have affected the early Holocene woodland expan- winter precipitation in Iran. Atm. Res. 88: 116-133. sion in the Near East. The Holocene 20: 813-820. Ghobadian A., 1969. Causes Leading to Soil Salinity in Djazirei M.H., 1965. Contribution à l’étude des forêts Khuzestan and their Control. Ahvaz, Jundi-Shapur primaires de la Caspienne. Institut d’agronomie de University, No. 1. station de recherche de Gembloux 35 : 36-71. Golden Software Inc., 2009. Surfer (Surfer Mapping Domoers M., Kaviani M. & Schaefer D., 1998. An System), version 9.1.352. Golden, Colorado, analysis of regional and intra-annual precipitation Golden Software Inc. variability over Iran using multivariate statistical methods. Theor. Appl. Climatol. 61: 151-159. Gressitt J.L., 1958. Zoogeography of insects. Ann. Rev. Entomol. 3: 207-230. Dorostkar M. & Noirfalaise M., 1976. Contribution à l’étude des forêts caspiennes orientales (chaîne du Jackson S.T., Overpeck J.T., 2000. Responses of plant Gorgan). Bull. Rech. Agronom. Gembloux 17 : 42- populations and communities to environmental 57. changes of the late Quaternary. Paleobiology 26 (Supplement 4): 194-220. Duncan R.P., Cassey P. & Blackburn T.M., 2009. Do cli- mate envelope models transfer? A manipulative test Jafari S.M., Akhani H., 2008. Plants of Jahan Nama Pro- using dung beetle introductions. Proc. Roy. Soc. B tected Area, Golestan Province, N. Iran. Pak. J. Bot. 276: 1449-1457. 40: 1533-1554. Ejtehadi H., Zare H., Akbarnia M. & Hosseini M., 2004. Khalili A., 1973. Precipitation patterns of Central Ecological study of Betula pendula stands in Hyr- Elburz. Theor. Appl. Climatol. 21: 215-232. canian forests, north Iran. Act. Bot. Hungarica 46: Khodayari E., 1970. Contribution à l’étude des préci- 143-151. pitations atmosphériques au sud-ouest de la mer El-Moslimany A.P., 1986. Ecology and late-Quaternary Caspienne. PhD thesis, Faculté des sciences, Uni- history of the Kurdo-Zagrosian oak forest near Lake versité de Paris. Zeribar, western Iran. Vegetatio 68: 55-63. Khoshravesh R., Akhani H., Eskandari M. & Greuter El-Moslimany A.P., 1987. The late Pleistocene climates W., 2009. Ferns and fern allies of Iran. Rostaniha of the Lake Zeribar region (Kurdistan, western Iran) 10 (Supplement 1): 1-129.

ecologia mediterranea – Vol. 37 (1) – 2011 113 ecol-med-37-1-08-c:Mise en page 1 12/07/11 15:19 Page 114

M. DJAMALI, H. AKHANI, R. KHOSHRAVESH, V. ANDRIEU-PONEL, P. PONEL, S. BREWER

Kirk A.A. & Ridsdill-Smith T.J., 1986. Dung beetle dis- Rastin N., 1983. Vegetationskundliche Untersuchungen tribution patterns in the Iberian Peninsula. Entomo- in Hochwaldresten der Kaspischen Ebene. Phyto- phaga 31: 183-190. coenologia 11: 245-289. Klein J.-C., 1994. La végétation altitudinale de l'Alborz Rechinger K.-H., 1963-2010. Flora Iranica. Vols. 1- Centrale (Iran). Tehran: Institut français de 178. Graz: Akademische Druck- u. Verlagsanstalt. recherche en Iran. Rezaei A., 2003. Psilotum nudum (L.) P. Beauv. (Psilo- Krinsley D.B., 1970. A geomorphological and palaeo- taceae), A new record for the flora of Iran. Iran. J. climatological study of the playas of Iran. Wash- Bot. 10: 1-3. ington, D.C., U. S. Government Printing Office. Rivas-Martínez S. & Loidi J.L., 1999a. Bioclimatology Löbl A. & Smetana A., 2006. Catalogue of Palaearctic of the Iberian Peninsula. Itinera Geobotanica 13: Coleoptera, Vol. 3, Stenstrup, Apollo Books. 41-47. Léonard J., 1981-1989. Contribution à l’étude de la Rivas-Martínez S. & Loidi J.L., 1999b. Biogeography flore et de la végétation des déserts d’Iran : étude of the Iberian Peninsula. Itinera Geobotanica 13: 9- des aires de distribution les phytochories, les cho- 67. rotypes. Fascicules 1-9. Meise, Jardin botanique Rivas-Martínez S., Penas A. & Diaz T.E., 2004a. Bio- national de Belgique. climatic map of Europe: bioclimates. León: Carto- Léonard J., 1991/1992. Contribution à l’étude de la graphic Service, University of León. flore et de la végétation des déserts d’Iran. Étude Rivas-Martínez S., Penas A. & Diaz T.E., 2004b. Bio- de la végétation: analyse phytosociologique et phy- climatic map of Europe: thermoclimatic belts. León: tochorologique des groupments végétaux. Fascicule Cartographic Service, University of León. 10. Meise, Jardin botanique national de Belgique. Rivas-Martínez S., Sánchez-Mata D. & Costa M., 1997. Lobo J.M., Lumaret J.-P., Jay-Robert P., 2002. Model- Syntaxonomical synopsis of the potential natural ing the species richness distribution of French dung plant communities of North America I. Itinera Geo- beetles (Coleoptera, Scarabaeidae) and delimiting botanica 10: 5-148. the predictive capacity of different groups of explanatory variables. Glob. Ecol. Biogeogr. 11: Rivas-Martínez S., Sánchez-Mata D. & Costa M., 1999. 265-277. Boreal and western Temperate forest vegetation (syntaxonomical synopsis of the potential natural Médail F., 2008. Mediterranean ecosystems. In: Jør- plant communities of North America II). Itinera gensen S.E. & Fath B.D. (eds), Encyclopedia of Geobotanica 12: 3-311. Ecology, Vol. 3. Oxford, Elsevier: 2296-2308. Robson N.K.B., 1987. An Iranian floristic link with Meher-Homji V.M., 1970. A diagram for depicting the Socotra in Hypericum (Hypericaceae). Plant Syst interyearly variability in bioclimatic factors. Int. J. Evol 155: 89-92. Biomet. 14: 343-347. Sabeti H., 1969. Les études bioclimatiques de l’Iran. Mobayen S., Tregubov V., 1970. Carte de la végétation Tehran: University of Tehran Press. naturelle de l’Iran. Project UNDP/FAO 92. Tehran: University of Tehran. Sabeti H., 1976. Forests, Trees and Shrubs of Iran. Teh- ran: National Agriculture and Natural Resources Mobayen S., 1974. Structure géobotanique du Loute. Research Organization. Quaterly Bulletin of the Faculty of Science Tehran University 5: 67-70. Sewak R., 2009. Dung beetles (Coleoptera-Scarabaei- dae-Coprinae) of the Thar Desert of Rajastan and Mobayen S., 1976. Structure géobotanique du Loute. Gujarat. In: Sivaperuman C., Baqri Q.H., Ramas- Acta Ecologica Iranica 1 : 73-86. wamy G. & Naseema M. (eds), Faunal ecology and Montreuil O., 2009. Gymnopleurus persianus Reitter, conservation of the Great Indian Desert. Berlin & 1909, n. stat., et description d’une nouvelle espèce Heidelberg, Springer-Verlag: 25-39. d’Irak (Coleoptera, Scarabaeidae). Bul. Soc. Ento- mol. France 114 : 419-422. Stevens L.R., Wright Jr. H.E., Ito E., 2001. Proposed changes in seasonality of climate during the Late- Mossadegh A., 1975. Contribution à l’étude des asso- glacial and Holocene at Lake Zeribar, Iran. The ciations forestières des massifs bordant la mer Cas- Holocene 11: 747-756. pienne. Rev. Biol. Ecol. Médit. de l’Université de Provence 2 : 3-16. Stöcklin J., 1968. Structural history and tectonics of Iran: a review. Am Ass Petrol Geol Bul 52: 1229- Noroozi J., Akhani H., Willner W., 2010. Phytosocio- 1258. logical and ecological study of the high alpine veg- etation of Tuchal Mountains (Central Alborz, Iran). van Zeist W. & Bottema S., 1977. Palynological inves- Phytocoenologia 40: 293-321. tigations in western Iran. Palaeohistoria 19: 19-85. Qian H., 2001. Floristic analysis of vascular plant Walter H. & Lieth H., 1960-1967. Klimadiagramm Wel- genera of North America north of Mexico: spatial tatlas. Jena: G. Fischer Verlag. patterning of phytogeography. J. Biogeogr. 28: 525- White F. & Léonard J., 1991. Phytogeographical Links 534. between Africa and Southwest Asia. Flora et Vege- Qian H., Song J.-S., Krestov P., Guo Q., Wu Z., Shen tatio Mundi 9: 229-246. X. & Guo X., 2003. Large-scale phytogeographical Zehzad B., 1989. Flora and vegetation of Ashk Island patterns in East Asia in relation to latitudinal and (Urumia Lake National Park). J Sci Univ Tehran 18: climatic gradients. J. Biogeogr. 30: 129-141. 57-64. Quézel P. & Médail F., 2003. Écologie et biogéographie Zohary M., 1973. Geobotanical foundations of the des forêts du bassin méditerranéen. Nancy, Elsevier. Middle East, Vols 1 and 2. Stuttgart: Fischer. Ramezani E., Joosten H., Marvie Mohadjer R., Knapp Zohary M., 1983. Man and vegetation in the Middle H.-D. & Ahmadi H., 2008. The late-Holocene vege- East. In: Holzner W., Werger M.J.A., Ikusima I. tation history of the Central Caspian (Hyrcanian) (eds) Man’s impact on vegetation. The Hague, Dr forests of northern Iran. The Holocene 18: 305-319. W. Junk Publishers: 287-295.

114 ecologia mediterranea – Vol. 37 (1) – 2011 ecol-med-37-1-09-resumes:Mise en page 1 12/07/11 9:12 Page 115

Résumé de thèse

en temps depuis le dernier feu (plus de 57 ans, 17 ans, 4 ans René GUÉNON 2010 et 10 mois). Les dynamiques de retour à court et long terme des activités de minéralisation du C et du N, des activités enzymatiques (phosphatases alcaline et acide, hydrolases Vulnérabilité des sols méditerranéens de la fluorescéine diacétate, phénol oxydases, β-glucosi- aux incendies récurrents dases et cellulases) et de la diversité catabolique des com- munautés microbiennes, ainsi que leur stabilité à des stress et restauration de leurs qualités hydriques supplémentaires, ont été évaluées sous des chimiques et microbiologiques régimes d’incendie fréquents et peu fréquents. La matière organique (MO) a été caractérisée par les techniques IRTF par l’apport de composts et RMN CPMAS du 13C. Les effets d’un apport de composts de boues d’épuration urbaines et de déchets verts sur la Thèse soutenue le 17 décembre 2010 à l’université Paul qualité des sols ont été étudiés in situ sur des sols fré- Cézanne. quemment incendiés en croisant 3 niveaux de maturité (3 semaines, 3 mois et 9 mois) et 3 temps depuis le dernier Jury – Thierry TATONI (Pr,IMEP, université Paul Cézanne, Marseille), feu (10 mois, 5 ans et 18 ans). président. Cornélia RUMPEL (Dr,CNRS Thiverval-Grignon), rappor- teur. Jean-Luc CHOTTE (Dr,IRD Montpellier), rapporteur. Antonio Les résultats ont montré que les incendies répétés accé- BISPO (ingénieur, ADEME, Angers), examinateur. Michel VENNETIER lèrent le retour après le feu de la nitrification nette et des (ingénieur, CEMAGREF, Aix-en-Provence), examinateur. Sevastianos profils cataboliques (CLPPs) mais affectent durablement ROUSSOS (Dr,IRD, université Paul Cézanne, Marseille), directeur. la plupart des autres fonctions microbiennes. L’activité Raphaël GROS (MCF,IMEP, université Paul Cézanne, Marseille), codi- respiratoire des sols récemment incendiés s’est avérée recteur. plus résistante aux stress hydriques mais également moins résiliente lorsque les feux sont récurrents. Une Mots clés : incendies, sol, activités enzymatiques, probable sélection par les feux de populations résistantes communautés microbiennes, CLPPs, résistance, résilience, matière organique, nutriments, SPIR,SMIR,RMN 13C, qualité aux stress a été discutée. Les résultats démontrent le rôle de compost, restauration. limitant de l’évolution de la MO, en particulier de son degré d’aromaticité, sur la dynamique de retour des fonctions microbiennes après les feux et leur résilience aux stress hydriques. La perte en nutriments après 4 feux concomitante au ralentissement de la dynamique de partir de la fin des années 1960, la fermeture des retour des activités minéralisatrices microbiennes sug- Àmilieux consécutive à la déprise agricole a favorisé la recrudescence des grands feux et, au plan local, a augmenté gèrent que des régimes d’incendies encore plus impor- la fréquence des incendies. Les objectifs de la thèse étaient tants pourraient réduire la productivité des sites et, à long d’évaluer les effets des incendies récurrents sur la capacité terme, conduire à une perte de résilience de l’écosys- de résilience des propriétés microbiennes des sols, d’iden- tème. La spectroscopie du proche infra-rouge s’est avé- tifier les principaux facteurs impliqués dans la résilience rée être un outil particulièrement efficace pour prédire microbienne et d’évaluer l’efficacité d’apports de composts l’histoire contemporaine des incendies et la vulnérabi- pour favoriser la restauration de la qualité chimique et lité de la qualité des sols aux feux récurrents. L’apport microbiologique des sols. Pour cela, 27 parcelles situées des composts sur les sols fréquemment incendiés est une dans le massif des Maures (Var, France) ont été sélection- solution efficace pour restaurer la qualité des sols mais nées compte tenu de leur histoire d’incendie variable en nécessite de sélectionner une maturité adaptée à l’his- nombre (de 1 à 4), en temps entre 2 feux (de 5 à 28 ans) et toire contemporaine d’incendie.

ecologia mediterranea – Vol. 37 (1) – 2011 115 ecol-med-37-1-09-resumes:Mise en page 1 12/07/11 9:12 Page 116

Fabrication : Transfaire, 04250 Turriers Dépôt légal juillet 2011 Impression sur papier recyclé ecol-med-37-1-00-couv:Mise en page 1 12/07/11 15:20 Page 2

ecologia mediterranea Instructions aux auteurs ecologia mediterranea Instructions to authors Éditeur en chef : P r Thierry Dutoit Editeur-in-Chief : Pr Thierry Dutoit UMR CNRS IRD IMEP ecologia mediterranea publie des travaux de recherche AUTEURS UMR CNRS IRD IMEP ecologia mediterranea publishes original research ABSTRACTS , KEYWORDS AND SHORT VERSION Université d’Avignon, IUT originaux et des mises au point sur des sujets se rap - L’adresse de chaque auteur sera indiquée avec l’adresse Université d’Avignon, IUT reports and syntheses in the fields of fundamental and Abstracts should be no longer than 300 words. The Eng - Site Agroparc, BP 1207 portant à l’écologie fondamentale ou appliquée des courriel de l’auteur pour la correspondance. Dans le cas Site Agroparc, BP 1207 applied ecology of Mediterranean areas, except for lish short version should not exceed one page long 84911 Avignon cedex 09 régions méditerranéennes, à l’exception des milieux où la publication est le fait de plusieurs auteurs, il doit 84911 Avignon cedex 09 descriptive articles or articles about systematic. The edi - (1,000 words). Do not use more than six keywords. Key - France marins. La revue exclut les articles purement descriptifs être précisé lors du premier envoi la personne à qui doit France tors of ecologia mediterranea invite original contribu - words should not be present in the title. ou de systématique. ecologia mediterranea privilégie être retourné l’article après lecture. tions in the fields of: bioclimatology, biogeography, con - les domaines scientifiques suivants : bioclimatologie, servation biology, restoration ecology, populations REFERENCES Editorial Board All publications cited in the text should be presented in biogéographie, écologie des communautés, biologie de RÉSUMÉS , MOTS CLÉS ET VERSION ABRÉGÉE biology, genetic ecology, landscape ecology, community Comité éditorial Dr Audrey Marco, École nationale a list of references following the text of the manuscript. la conservation, écologie de la restauration, biologie des Les résumés doivent comporter 300 mots au maximum ecology, microbial ecology, vegetal and animal ecology, r supérieure du paysage, Marseille, France. The list of references should be arranged alphabetically D Audrey Marco, École nationale populations, écologie génétique, écologie du paysage, et la version anglaise abrégée 1 000 mots (environ une ecophysiology, palaeoecology, palaeoclimatology, on author’s names, and chronologically for each author. supérieure du paysage, Marseille, France. écologie microbienne, écologie végétale et animale, éco - page). Le nombre de mots clés est limité à six, dans la Dr James Aronson, CNRS , Montpellier, except marine ecology. Symposium proceedings, review You should abbreviate the titles of periodicals mentioned r physiologie, paléoclimatologie, paléoécologie. La revue langue des résumés ; ils ne doivent généralement pas France. articles, methodological notes, book reviews, Ph. D. the - D James Aronson, CNRS , Montpellier, in the list of references (except if you are not sure of it). accepte également la publication d’actes de colloques, figurer dans le titre. sis abstracts and comments on recent papers in ecologia France. Dr Alex Baumel, Université Paul-Cézanne, Check the manuscripts to make sure that all references d’articles de synthèse, de notes méthodologiques, de mediterranea are also published. Dr Alex Baumel, Université Paul-Cézanne, Marseille, France. are cited and that all citations in the text are included in comptes rendus d’ouvrages, des résumés de thèses, ainsi BIBLIOGRAPHIE Marseille, France. La bibliographie regroupera toutes les références citées Dr Élise Buisson, Université Avignon, France. the references. Use following system to write the refer - que des commentaires sur les articles récemment parus Manuscript reviews Dr Élise Buisson, Université Avignon, France. et elles seules. Les références seront rangées dans l’ordre Dr Marc Cheylan, EPHE , Montpellier, France. ences: dans ecologia mediterranea . Manuscripts are reviewed by appropriate referees, or by r alphabétique des auteurs et de façon chronologique. Les D Marc Cheylan, EPHE , Montpellier, France. Dr Cécile Claret, Université Paul-Cézanne, Journal article Les manuscrits sont soumis à des lecteurs spécialistes abréviations internationales des titres des revues doivent the Editors. The final decision to accept or reject the r Marseille, France. Andow D.A., Karieva P., Levin S.A. & Okubo A., 1990. D Cécile Claret, Université Paul-Cézanne, du sujet ou aux éditeurs. La décision finale d’accepter être utilisées (sauf en cas de doute). Vérifier attentive - manuscript is made by the Editors. Please send an elec - Spread of invading organisms. J. Ecol . 4: 177-188. Marseille, France. ou de refuser un article relève des éditeurs. L’article pro - ment le manuscrit pour s’assurer que toutes les réfé - Dr Bruno Fady, INRA , Avignon, France. tronic copy of your manuscript (doc or rtf files) to our journal (thierry.dutoit @univ-avignon.fr). When the arti - Dr Bruno Fady, INRA , Avignon, France. posé doit être envoyé en version électronique à rences citées dans le texte apparaissent bien en biblio - Pr Thierry Gauquelin, Université de cle is accepted, the authors should take reviewer’s com - Book r [email protected] (version doc ou rtf). Une graphie et inversement. Provence, Marseille, France. P Thierry Gauquelin, Université de ments into consideration. They will send back to the Harper J.L., 1977. Population biology of plants . Lon - Provence, Marseille, France. fois leur article accepté, les auteurs devront tenir compte Dr Raphaël Gros, Université Paul-Cézanne, don, Academic Press. 300 p. des remarques des lecteurs, puis ils renverront leur texte Article journal Editorial Office, within 1 month, an electronic Dr Raphaël Gros, Université Paul-Cézanne, Marseille, France. copy of the corrected manuscript (doc or rtf). Pass this corrigé sous un mois toujours sous format électronique Andow D.A., Karieva P., Levin S.A. & Okubo A., 1990. Book chapters Marseille, France. Dr Frédéric Guiter, Université Paul-Cézanne, delay, the manuscrpt will be considered as a new sub - (doc ou rtf). Passé ce délai, la seconde version sera Spread of invading organisms. J. Ecol . 4: 177-188. May R.M., 1989. Levels of organisation in ecology. In : Dr Frédéric Guiter, Université Paul-Cézanne, considérée comme une nouvelle proposition. Les illus - Marseille, France. mission. Enclose the original illustrations. Corrected Cherret J.M. (ed.), Ecological concepts . Oxford, Black - Marseille, France. trations originales seront jointes à l’envoi. Les épreuves Ouvrage Pr Serge Kreiter, Université Montpellier, proofs must be returned to the journal Editorial Office well Scientific Public: 339-363. without delay. Books and monographs to be reviewed r corrigées doivent être retournées au secrétariat de la Harper J.L., 1977. Population biology of plants . Lon - France. P Serge Kreiter, Université Montpellier, must be submitted to the Editor-in-chief. Conference proceedings France. revue sans délai. Les livres et monographies devant être don, Academic Press, 300 p. Pr N.S. Margaris, Université Mytilène, Grèce. Grootaert P., 1984. Biodiversity in insects, speciation r analysés seront envoyés à l’éditeur en chef. P N.S. Margaris, Université Mytilène, Grèce. Chapitre d’ouvrage Pr Frédéric Médail, Université Paul- Manuscript preparation and behaviour in Diptera. In : Hoffmann M. & Van der r Cézanne, Marseille, France. Veken P. (eds), Proceedings of the symposium on “Bio - P Frédéric Médail, Université Paul-Cézanne, TEXTE May R.M., 1989. Levels of organisation in ecology. In : TEXT diversity: study, exploration, conservation” . Ghent, Marseille, France. Cherret J.M. (ed.), Ecological concepts . Oxford, Black - Pr François Mesléard, Université Avignon – Les articles (dactylographiés en double interligne, en Manuscripts (typewritten with double spacing and A4 18 November 1992: 121-141. Pr François Mesléard, Université Avignon – well Scientific Public: 339-363. Tour du Valat, France. format A4) doivent être rédigés de préférence en fran - size for paper) should be preferably written in French, Tour du Valat, France. Dr Jérôme Orgeas, Université Paul- CITATIONS IN -TEXT çais ou en anglais. Si l’article soumis n’est pas rédigé English. If the language is not English, you should join r Actes de conférence Cézanne, Marseille, France. The words “figures” and “tables” announced in-text D Jérôme Orgeas, Université Paul-Cézanne, en anglais, il est demandé (en plus des résumés) une ver - an English short version and English titles of figures and Grootaert P., 1984. Biodiversity in insects, speciation should be written in extenso and with lower-case letter Marseille, France. sion anglaise abrégée ainsi qu’une traduction en anglais Dr Philippe Ponel, CNRS , Marseille, France. tables. The manuscript must be complete: e.g. French and behaviour in Diptera. In : Hoffmann M. & Van der type. In the text refer to the author’s name and year of Dr Philippe Ponel, CNRS , Marseille, France. des titres des figures et tableaux. L’article doit être com - Dr Roger Prodon, EPHE , Montpellier, France. and English titles, author(s) and address(es), French and Veken P. (eds), Proceedings of the symposium on “Bio - English abstracts, an English short version (if English is publication (followed by pages only if it is a quotation). r plet : titres français et anglais, auteur(s) et adresse(s), D Roger Prodon, EPHE , Montpellier, France. diversity: study, exploration, conservation” . Ghent, Dr Isabelle Laffont- Schwob , Université de If a publication is written by more than two authors, the résumés en français et anglais (au minimum), version not the language used in the article), key-words, text, r 18 November 1992: 121-141. Provence, Marseille, France. name of the first author should be used followed by “ et D Isabelle Laffont- Schwob , Université de anglaise abrégée (si le texte n’est pas en anglais), mots references, acknowledgements, figures and tables. For Provence, Marseille, France. Dr Brigitte Talon, Université Paul-Cézanne, research papers, the text should normally consist of 4 al. ” (this indication, however, should never be used in clés, texte, puis remerciements, bibliographie, figures et CITATIONS ET RENVOIS APPELÉS DANS LE TEXTE the list of references: first author and co-authors should Dr Brigitte Talon, Université Paul-Cézanne, tableaux. Le texte des articles originaux de recherche Marseille, France. sections: introduction, methods, results, discussion. In Les mots « figures » et « tableaux » annoncés dans le typing the manuscript, please clearly distinguish titles be mentioned in it). Examples: “Since Dupont (1962) Marseille, France. devrait normalement comporter quatre parties : intro - texte sont écrits en toutes lettres et en minuscules. Indi - Dr Éric Vidal, Université Paul-Cézanne, has shown that…”, or “This is in agreement with previ - r duction, méthodes, résultats, discussion. En ce qui Marseille, France. from others paragraphs. Titles and subtitles should not D Éric Vidal, Université Paul-Cézanne, quer le nom d’auteur et l’année de publication (mais be numbered. Avoid letters to number subtitles. Use ous results (Durand et al. 1990; Dupond & Dupont Marseille, France. concerne la saisie du texte, il est simplement demandé indiquer tous les auteurs dans la bibliographie). Exem - Dr I.N. Vogiatzakis, Open University of 1997)…”. aux auteurs de distinguer clairement les titres des diffé - lower-case letter type for names. Do not underline any Dr I.N. Vogiatzakis, Open University of ples : « Since Dupont (1962) has shown that… », or Cyprus, Nicosia, Chypre. rents paragraphes. Les titres ne seront pas numérotés. word. In English, there is one blank after any punctua - ABBREVIATES , NOMENCLATURE Cyprus, Nicosia, Chypre. “This is in agreement with previous results (Durand et tion, never before. Copy editing of manuscripts is per - Pour numéroter les sous-titres, éviter les lettres. Atten - al . 1990 ; Dupond & Dupont 1997)…”. Le numéro de AND LATIN WORDS tion, l’emploi de mots soulignés est à proscrire. Les formed by the journal. Explanation of a technical abbreviate is required when page de la citation n’est mentionné que dans le cas où ISSN 0153-8756 noms d’auteurs cités figureront en minuscules dans le elle est entre guillemets. Si la publication est écrite par AUTHORS the first use. International convention codes for nomen - ISSN 0153-8756 texte comme dans la bibliographie. En français, n’utili - plus de deux auteurs, le nom du premier doit être suivi The email address of the corresponding author should clature should be used. Latin words should be in italic sez les majuscules que pour les noms propres, sauf par et al. http://ecologia-mediterranea.univ-avignon.fr be mentioned on the manuscript. Each author’s address (et al ., a priori , etc.), particularly for plants or animal - exception justifiée. Les ponctuations doubles ( : ; ? ! ) should be specified. The first time, please precise the s’denomination (the first time, please precise author’s http://ecologia-mediterranea.univ-avignon.fr sont précédées d’un espace, contrairement aux ponc - ABRÉVIATIONS , NOMENCLATURE ET MOTS LATINS complete address of the correspondent author to which name: for example, Olea europaea L.). tuations simples ( , . ). En revanche, toutes les ponctua - L’usage d’une abréviation technique doit être précédée the proofs should be sent. FIGURES AND TABLES tions sont suivies d’un espace. La mise en forme défi - de sa signification lors de sa première apparition. Les All illustrations should be submitted separately and they nitive du texte sera assurée par la revue. codes de nomenclature doivent être respectés selon les should be preceded by the figures and tables legends on conventions internationales. Les mots latins doivent être a separate page. Figures and tables should be sent ready ABONNEMENT mis en italiques ( et al., a priori, etc.), et en particulier SUBSCRIPTION to be printed, so their size should be 16 22 cm or les noms de plantes ou d’animaux. Lors de la première × 8 × 22 cm maximum. All the illustrations being in-text (contact : [email protected]) apparition du nom d’une espèce, il est demandé d’y faire (contact: [email protected]) should be cited, increasing numbered, and should have figurer le nom d’auteur (exemple : Olea europaea L.). a legend. Computerised table columns should not be rep - 1 an = 1 numéro FIGURES ET TABLEAUX 1 year = 1 issue resented by signs (: or |). Les figures et tableaux (précédés des légendes corres - ELECTRONIC FILE Abonnement Frais de port Total pondantes sur une feuille séparée) doivent être remis Subscription Postage Total Authors receive a free copy where their paper is pub - France 20 € 3 € 23 € séparément du texte, prêts à l’impression, sans nécessi - France 20 € 3 € 23 € lished as well as an electronic version of their paper for ter de réduction (donc au maximum : format 16 22 cm distribution. Europe 20 € 6 € 26 € × Europe 20 € 6 € 26 € ou 8 × 22 cm). Tous les documents devant être insérés Monde 20 € 8 € 28 € dans le texte doivent être annoncés, numérotés dans World 20 € 8 € 28 € l’ordre croissant et légendés. Les tableaux informatisés ne doivent pas comporter de signes ( : ou | ) pour mar - Mail this subscription to: Abonnement à adresser à : Code banque Code guichet numéro de compte clé RIB quer les colonnes. 19106 00839 13995626000 62 SARL Transfaire SARL Transfaire FICHIER ÉLECTRONIQUE Bank: CA SISTERON Domiciliation : CA SISTERON Immeuble Wanad Les auteurs reçoivent gracieusement un fascicule de la Immeuble Wanad IBAN: FR76 1910 6008 3913 9956 2600 062 F-04250 TURRIERS IBAN : FR76 1910 6008 3913 9956 2600 062 revue où leur article est paru ainsi qu’une version élec - F-04250 TURRIERS BIC: AGRIFRPP891 BIC : AGRIFRPP891 tronique de leur article pour diffusion. 6 mm ecol-med-37-1-00-couv:Mise en page 1 12/07/11 15:20 Page 1 (124 p) 1 1

ecologia mediterranea Vol. 37 (1) – 2011 0 2 – )

1 Vol. 37 (1) – 2011 (

7 ecologia 3 . l o Sommaire – Contents V mediterranea Éditorial – Editorial Renaissance des numéros spéciaux en 2011 Revue internationale d’écologie méditerranéenne T. D UTOIT (éditeur en chef ) ...... 3 International Journal of Mediterranean Ecology Articles originaux – Original articles Effets de l’âge des plantations de figuier de Barbarie (Opuntia ficus indica f. inermis ) sur les propriétés du sol et la végétation à Tébessa (zone semi-aride de l’est algérien) S. N EFFAR , A. B EDDIAR , N. R EDJEL , J. B OULKHELOUA ...... 5

Mediterranean experience and practice in Landscape Character Assessment I. N. VOGIATZAKIS ...... 17

Contribution élémentaire à l’étude de l’impact de l’ Atriplex halimus sur les caractéristiques physico-chimiques et biologiques du sol en Algérie occidentale A. B OUZID , K. B ENABDELI ...... 33

The diet of the Maghrebian mouse-eared bat Myotis punicus (Mammalia, Chiroptera) in Kabylia, Northern Algeria M. A HMIM , A. M OALI ...... 45

Habitat heterogeneity and soil-vegetation relations in South of the Nile Delta, Egypt M. M. A BD EL-G HANI , M. M. A BOU -E L-E NAIN , A. I. A BOEL -A TTA , E. A. H USSEIN ...... 53

Seasonal variability and phenology of dwarf rush communities in Southern Spain K. D OLOS , M. R UDNER ...... 69

Effet de la durée de conservation, de la couleur et de la période de récolte des semences sur la germination de Diplotaxis harra (Forssk.) Boiss., plante envahissante en Tunisie méridionale T. TLIG , M. GORAI , M. NEFFATI ...... 83

Application of the Global Bioclimatic Classification to Iran: implications for understanding the modern vegetation and biogeography M. D JAMALI , H. A KHANI , R. K HOSHRAVESH , V. A NDRIEU -P ONEL , P. P ONEL , S. B REWER ...... 91

Résumé de thèse – Ph. D summaries a e

René GUÉNON ...... 115 n a r

r Editor-in-Chief: Pr Thierry Dutoit

Revue indexée dans Pascal-C NRS et Biosis e t i d e m Institut méditerranéen d’écologie et de paléoécologie (I MEP ) Naturalia Publications a i

g Mediterranean Institute of Ecology and Palaeoecology o l o

ISSN 0153-8756 c e