CHECKLIST of SWEDISH TARDIGRADES (2015-2016, Ver. 2

Total Page:16

File Type:pdf, Size:1020Kb

CHECKLIST of SWEDISH TARDIGRADES (2015-2016, Ver. 2 CHECKLIST OF SWEDISH TARDIGRADES (2015-2016, Ver. 2: 26-06-2016) ROBERTO GUIDETTI 1, K. INGEMAR JÖNSSON2, REINHARDT M. KRISTENSEN3 1 Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy. Email: [email protected] 2 School of Education and Environment, Kristianstad University, Kristianstad, Sweden. Email: [email protected] 3 Section of Biosystematics, Natural History Museum of Denmark (Zoological Museum), University of Copenhagen, Copenhagen, Denmark. Email: [email protected] Introduction This checklist of Swedish tardigrades is based on the publication Guidetti, R., Jönsson, K.I. & Kristensen, R.M. 2015. Tardigrades of Sweden, an updated check-list. Zootaxa, 3981(4): 491– 507, which included 101 species reported from published studies and museum and university collections. The current online checklist is free for all users, but reference to it requires citation also of the original paper. Citation to this checklist should be Guidetti, R., Jönsson, K.I. & Kristensen, R.M. Checklist of Swedish tardigrades. http://www.hkr.se/swedishtardigrades, Accessed date). The checklist will be updated continuously based on new records of tardigrades from Sweden (date of latest update is given in the title). All changes, additions and corrections in comparison to the original paper are written in red font, and changes from the last version of the checklist are marked with yellow background. Please contact us ([email protected]) if you find any mistake or missing data in this checklist. Your help in its improvement is greatly appreciated! We hope that this checklist will inspire students, researchers and others to further explore the tardigrade fauna of Sweden! Acknowledgements We are grateful to the Royal Physiographic Society in Lund for economic support (grant 2013 from Jan Löfqvist donation to KIJ) for this study, to B. Sohlenius and S. Boström for providing information on the tardigrade collection at the Swedish Museum of Natural History in Stockholm, and to P.H. Enckell for information on the study reported by Mihelčič (1971). We have received valuable technical assistance from L. Pavesi to make an electronically database for the Thulin collection at Natural History Museum of Denmark, and she has also provided all the slides TAR ZMUC numbers for further investigation. The study of the ZMUC-collection in Copenhagen by RG was supported by a grant from the European Commission’s (FP6) Integrated Infrastructure Initiative programme SYNTHESYS (DK- TAF) in 2014. 1 Genus Species Authority Province Reference HETEROTARDIGRADA ARTHROTARDIGRADA Batillipedidae Willems et al. 2009 Batillipes cf. bullacaudatus Bo Karling 1954; (Richters, Bo, Go, Ha, Batillipes mirus Willems et al. 2009 1909) Sk (ZMUC) Halechiniscidae Styraconyxinae (Renaud- Raiarctus aureolatus Bo Willems et al. 2009 Mornant, 1981) Tanarctinae doryphorus Actinarctus (Schulz, 1935) Bo Willems et al. 2009 doryphorus (Renaud- Tanarctus gracilis Bo Willems et al. 2009 Mornant, 1980) ECHINISCOIDEA Echiniscoididae Carlzon 1909; Echiniscoides sigismundi (Schultze, Bo, Ha Willems et al. 2009 sigismundi 1865) (ZMUC) Echiniscidae Bryochoerus intermedius (Murray, 1910) Go, La Thulin 1911 (ZMUC) Jørgensen et al. 2011 Bryodelphax parvulus (Thulin, 1928) Go, Öl (ZMUC) Richters 1904b; (Richters, Diploechiniscus oihonnae Vg, Sö, Sk Carlzon 1909 1903) (ZMUC) (Ehrenberg, Bo, Up Richters 1904b; Echiniscus arctomys 1853) Carlzon 1909 (Richters, Sk, Öl, Up, Echiniscus blumi Thulin 1911 (SMNH) 1903) La Echiniscus filamentosus (Plate, 1888) Vg Richters 1904b Echiniscus granulatus (Doyère, 1840) Up Thulin 1911 (SMNH) Echiniscus lapponicus (Thulin, 1911) La* Thulin 1911 (SMNH) (Richters, Echiniscus merokensis Go, La (ZMUC) 1904a) Thulin 1911; Durante Echiniscus merokensis (Richters, La, Up Pasa & Maucci 1979 merokensis** 1904a) (SMNH; MC) Echiniscus merokensis La*, Sk*, Thulin 1911 (ZMUC; (Thulin, 1911) suecicus** Go* MC) 2 Echiniscus pusae (Marcus, 1928) Go (ZMUC) Richters 1904b; (Richters, Vg, Up, Sm, Echiniscus quadrispinosus Carlzon 1909 1902) Sk (ZMUC) Richters 1904b; (Richters, Echiniscus spiniger Go*, Öl Jönsson 2007; Guil et 1904b) al. 2013 (ZMUC) Echiniscus testudo (Doyère, 1840) Go Richters 1904b Echiniscus trisetosus (Cuénot, 1932) Up (SMNH) (Richters, Thulin 1911 (ZMUC; Echiniscus wendti La 1903) SMNH) Jørgensen et al. 2011 Parechiniscus chitonides (Cuénot, 1926) Öl, Go (ZMUC) Thulin 1911, Durante (Ehrenberg, Sk, La, Up, Pseudechiniscus suillus Pasa & Maucci 1979 1853) Öl, Sm, Go (ZMUC; MC) Durante Pasa & Pseudechiniscus suillus/facettalis** Gä Maucci 1979 (MC) (Scourfield, Testechiniscus spitsbergensis Öl, La (ZMUC) 1897) EUTARDIGRADA APOCHELA Milnesiidae Milnesium cf. asiaticum Öl Nilsson et al. 2013 Richters 1904b; Bo, Go, Vä, Carlzon 1909; Thulin Milnesium tardigradum (Doyère, 1840) Vg, Vl, Up, 1911; Durante Pasa & Sk, Da, Sm, Maucci 1979; Jönsson Ha, Me, Ån, 2003; Nilsson et al. Gä, Bl, La 2013 (ZMUC; SMNH; MC) PARACHELA Eohypsibioidea Eohypsibiidae (Hansen, Kristensen, Hansen et al. 2016 Bertolanius birnae La Bertolani & (ZMUC) Guidetti, 2016) (Węglarska, Bertolanius smreczynskii La (ZMUC) 1970) Hypsibioidea Calohypsibiidae Carlzon 1909; Thulin (Richters, Up, Vl, La, Calohypsibius ornatus 1911; Durante Pasa & 1900) Sk, Sm Maucci 1979 (ZMUC; MC) 3 (Richters, La, Öl, Bo, Thulin 1911 (ZMUC) Calohypsibius verrucosus 1900) Sm Hypsibiidae Diphasconinae Ha, Me, Up, Durante Pasa & Diphascon alpinum (Murray, 1906) Gä, Sö, Ös, Maucci 1979 (MC) Sm, Vä Sk, Bl, Vl, Thulin 1911 (ZMUC; Diphascon chilenense (Plate, 1888) Up, La, Gä, SMNH) Go Bl, Up, Sm, Jönsson 2003 Diphascon pingue (Marcus, 1936) Sk (ZMUC; SMNH) Durante Pasa & Diphascon tenue (Thulin, 1928) Vä Maucci 1979 (MC) Hypsibiinae (Murray, Hypsibius arcticus Go (ZMUC) 1907a) Mihelčič 1971; Sk, Bl, La, Hypsibius convergens (Urbanowicz, Durante Pasa & Gä, Sö, Up, 1925) Maucci 1979 (ZMUC; Go, Sm SMNH; MC) Sö, Bo, Sk, Carlzon 1909; Thulin Hypsibius dujardini (Doyère, 1840) La, Nä, Da, 1911; Mihelčič 1971 Go, Up (ZMUC; SMNH) Sk*, Sm*, Thulin 1928; Durante Hypsibius microps (Thulin, 1928) Bo*, No, Pasa & Maucci 1979 Ån, Me, Hä, (ZMUC; SMNH; Up MC) Thulin 1911; Durante Sk*Vl*, Vä, Hypsibius pallidus (Thulin, 1911) Pasa & Maucci 1979; Sö*, La*, Maucci 1980 (ZMUC; No, Me, Gä, SMNH; MC) Up, Ös, Sm Itaquasconinae Adropion arduifrons (Thulin, 1928) La* Thulin 1928 (Richters, Jönsson 2003 Adropion belgicae Bl, La 1911) (SMNH) Thulin 1928; Durante Sm*, Ån; Adropion prorsirostre (Thulin, 1928) Pasa & Maucci 1979; Ös, Sö, Bl Jönsson 2003 (SMNH; MC) Carlzon 1909; Thulin Bo, Sk, Da, 1911; Durante Pasa & Adropion scoticum (Murray, 1905) Vl, La, Me, Maucci 1979; Ös, Up, Gä, Sohlenius et al. 1997; Sm, Bl Jönsson 2003 (SMNH; MC) Adropion scoticum Vl*, Vg* Thulin 1911 (ZMUC; (Thulin, 1911) ommatophorum SMNH) Astatumen sp.** Bl Jönsson 2003 4 (Mihelčič, Up* Mihelčič 1971-72 Itaquascon enckelli 1971-72) (Węglarska, Vä Durante Pasa & Itaquascon pawlowskii 1973) Maucci 1979 (MC) Ån, Sö, Up Durante Pasa & Itaquascon placophorum (Maucci, 1973) Maucci 1979 (MC) Thulin 1911; Durante Sm, Da, La, Pasa & Maucci 1979; Mesocrista spitzbergensis (Richters, Ån, Gä, Sk, Sohlenius et al. 1997; 1903) Up, Bl Jönsson 2003 (ZMUC; SMNH; MC) Jönsson 2003 Platicrista angustata (Murray, 1905) Bl, Up, Sm (SMNH) (Durante Pasa Durante Pasa & Platicrista itaquasconoide & Maucci, Ös*, Up* Maucci 1975 (MC) 1975) Pilatobiinae Pilatobius bullatus (Murray, 1905) La (ZMUC) Thulin 1911; Jönsson Vl, La, Bl, Pilatobius oculatus (Murray, 1906) 2003 (ZMUC; Up, Sm SMNH) Durante Pasa & (Richters, Pilatobius recamieri Ha, La Maucci 1979 (ZMUC; 1911) MC) Sö, Go, Up, Pilatobius rugosus (Bartoš, 1935) (SMNH) Sm Microhypsibiidae Fractonotus caelatus (Marcus, 1928) Up Maucci 1980 Ramazzottiidae Vl*, La*, Thulin 1911 (ZMUC; Hebesuncus conjungens (Thulin, 1911) Gä SMNH) Richters 1904b; Vl, Vg, Up, Ramazzottius oberhaeuseri (Doyère, 1840) Carlzon 1909; Thulin Bo, Sk, La, 1911; Durante Pasa & Gä, Ös, Sm, Maucci 1979 (ZMUC; Öl SMNH; MC) Isohypsibioidea Isohypsibiidae (Kristensen, Halobiotus crispae Bo Willems et al. 2009 1982) (Richters, Halobiotus stenostomus Bo Willems et al. 2009 1908) Carlzon 1909 Isohypsibius cf. annulatus Up, Sk (ZMUC) (Durante & Durante Pasa & Isohypsibius basalovoi Me Maucci, 1973) Maucci 1979 (MC) (Mihelčič, Mihelčič 1971, 1971- Isohypsibius fuscus Sk* 1971-72) 72 5 (Durante Pasa Durante Pasa & Isohypsibius glaber & Maucci, No* Maucci 1979 (MC) 1979) Thulin 1928 (ZMUC; Isohypsibius granulifer (Thulin, 1928) Sk*, Sö SMNH) Durante Pasa & Isohypsibius helenae (Iharos, 1964) Vm, Sm Maucci 1979 (MC) (Murray, Isohypsibius indicus Sk (ZMUC) 1907b) Durante Pasa & Isohypsibius lunulatus (Iharos, 1966) Ån, Gä Maucci 1979 (MC) (Durante Pasa Durante Pasa & Isohypsibius neoundulatus & Maucci, Up* Maucci 1975, 1979 1975) (MC) Mihelčič 1971; Go, Sk, Bl, Isohypsibius prosostomus (Thulin, 1928) Jönsson 2003 Ös, Nä, Da, (ZMUC; SMNH) Up, La, Mihelčič 1971, 1971- (Mihelčič, Isohypsibius pulcher La*, Sk 72 1971-1972) Thulin 1911; Jönsson Sk, La, Bl, Isohypsibius sattleri (Richters, 2003 (ZMUC; Sö, Up, Go, 1902) SMNH) Sm (Richters, Isohypsibius schaudinni Sk (ZMUC) 1909) Isohypsibius septentrionalis (Thulin, 1928) La* (ZMUC) (Richters, Isohypsibius tetradactyloides Sö, Sk (ZMUC; SMNH) 1907) Sk, Sö, La, Isohypsibius tuberculatus (Plate, 1888) Thulin 1911 (SMNH) Up, Go, Sm Thulin 1928; Durante Isohypsibius undulatus (Thulin, 1928) Sk*, Sm*, Pasa & Maucci 1975, Up 1979; Maucci 1980 (ZMUC; MC) Vä, Vl, Vg, Thulinius augusti (Murray, Sm, Sk, Bl, Mihelčič 1971 1907c)
Recommended publications
  • I the Tardigrades of Oklahoma, with Addi Tional Records from Other States and Mexico
    This dissertation has been microtihned exactly as received 69 1976 BEASLEY, Clark Wayne, 1942- I THE TARDIGRADES OF OKLAHOMA, WITH ADDI­ TIONAL RECORDS FROM OTHER STATES AND MEXICO. The University of Oklahoma, Ph.D., 1968 Zoology University Microfilms, Inc., Ann Arbor, Michigan THE UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE THE TARDIGRADES OF OKLAHOMA, WITH ADDITIONAL RECORDS FROM OTHER STATES AND MEXICO A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY BY CLARK W. BEASLEY Norman, Oklahoma 1968 THE TARDIGRADES OF OKLAHOMA, WITH ADDITIONAL RECORDS FROM OTHER STATES AND MEXICO APPROVED BY ^ (Î- - DISSERTATION COMMITTEE ACKNOWLEDGEMENTS I wish to thank Dr. Harley P. Brown, icy major professor, for his help and encouragement during my graduate studies. His collections from .areas outside the United States have been a valuable addition to my reference collection of tardigrades. I wish to express appreciation to the other members of my dissertation committee, Dr. Cluff E. Hopla, Dr. Arthur N. Bragg, and Dr. George J. Goodman, for their time and effort. Two members of the Cryptogam Division of the United States National Museum have added much to this study. Dr. Mason Hale identified the lichens and Dr. Harold Robinson, the cryptophytes The many samples brought to me by people too numerous to name are genuinely appreciated. Mrs. Eilene Belden of the Zoology Stockroom has been very helpful and deserves recognition. Finally, thanks go to my wife, Barbara, who has put up with me (!) and who therefore believes in waterbears. Ill TABLE OF CONTENTS Page LIST OF ILLUSTRATIONS..................................
    [Show full text]
  • Heterotardigrada, Echiniscidae, Arctomys Group) from the Parco Naturale Delle Alpi Marittime (NW Italy)
    Echiniscus pardalis n. sp., a new species of Tardigrada (Heterotardigrada, Echiniscidae, arctomys group) from the Parco Naturale delle Alpi Marittime (NW Italy) Peter DegMA Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B-1, 84215 Bratislava (Slovakia) [email protected] Ralph Oliver SchIll Department of Zoology, Institute of Biomaterials and biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany) [email protected] Published on 27 March 2015 urn:lsid:zoobank.org:pub:DC9DA37B-C71A-42E5-AEE3-4A0BECB27F24 Degma P. & Schill R. O. 2015. — Echiniscus pardalis n. sp., a new species of Tardigrada (Heterotardigrada, Echinisci- dae, arctomys group) from the Parco Naturale delle Alpi Marittime (NW Italy), in Daugeron C., Deharveng L., Isaia M., Villemant C. & Judson M. (eds), Mercantour/Alpi Marittime All Taxa Biodiversity Inventory. Zoosystema 37 (1): 239-249. http://dx.doi.org/10.5252/z2015n1a12 ABSTRACT A new species of Tardigrada Doyère, 1840, Echiniscus pardalis n. sp., is described from two moss samples collected in the Parco Naturale delle Alpi Marittime (NW Italy). It belongs to the Echiniscus arctomys species-group, but differs from other 49 known members of the group mainly by the irregularly and distantly scattered deep pores on the plates and by a unique subsurface cuticular pattern on the plates, resembling that of a leopard’s fur. The new species is most similar to eight species from the arctomys group: E. barbarae Kaczmarek & Michalczyk, 2002, E. crebraclava Sun, Li & Feng, 2014, E. dearmatus Bartoš, 1935, E. mosaicus Grigarick, Schuster & Nelson, 1983, E. nigripustulus Horning, Schuster & Grigarick, 1978, E.
    [Show full text]
  • Extreme Secondary Sexual Dimorphism in the Genus Florarctus
    Extreme secondary sexual dimorphism in the genus Florarctus (Heterotardigrada Halechiniscidae) Gasiorek, Piotr; Kristensen, David Mobjerg; Kristensen, Reinhardt Mobjerg Published in: Marine Biodiversity DOI: 10.1007/s12526-021-01183-y Publication date: 2021 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Gasiorek, P., Kristensen, D. M., & Kristensen, R. M. (2021). Extreme secondary sexual dimorphism in the genus Florarctus (Heterotardigrada: Halechiniscidae). Marine Biodiversity, 51(3), [52]. https://doi.org/10.1007/s12526- 021-01183-y Download date: 29. sep.. 2021 Marine Biodiversity (2021) 51:52 https://doi.org/10.1007/s12526-021-01183-y ORIGINAL PAPER Extreme secondary sexual dimorphism in the genus Florarctus (Heterotardigrada: Halechiniscidae) Piotr Gąsiorek1 & David Møbjerg Kristensen2,3 & Reinhardt Møbjerg Kristensen4 Received: 14 October 2020 /Revised: 3 March 2021 /Accepted: 15 March 2021 # The Author(s) 2021 Abstract Secondary sexual dimorphism in florarctin tardigrades is a well-known phenomenon. Males are usually smaller than females, and primary clavae are relatively longer in the former. A new species Florarctus bellahelenae, collected from subtidal coralline sand just behind the reef fringe of Long Island, Chesterfield Reefs (Pacific Ocean), exhibits extreme secondary dimorphism. Males have developed primary clavae that are much thicker and three times longer than those present in females. Furthermore, the male primary clavae have an accordion-like outer structure, whereas primary clavae are smooth in females. Other species of Florarctus Delamare-Deboutteville & Renaud-Mornant, 1965 inhabiting the Pacific Ocean were investigated. Males are typically smaller than females, but males of Florarctus heimi Delamare-Deboutteville & Renaud-Mornant, 1965 and females of Florarctus cervinus Renaud-Mornant, 1987 have never been recorded.
    [Show full text]
  • Tardigrada, Heterotardigrada)
    bs_bs_banner Zoological Journal of the Linnean Society, 2013. With 6 figures Congruence between molecular phylogeny and cuticular design in Echiniscoidea (Tardigrada, Heterotardigrada) NOEMÍ GUIL1*, ASLAK JØRGENSEN2, GONZALO GIRIBET FLS3 and REINHARDT MØBJERG KRISTENSEN2 1Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales de Madrid (CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain 2Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark 3Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA Received 21 November 2012; revised 2 September 2013; accepted for publication 9 September 2013 Although morphological characters distinguishing echiniscid genera and species are well understood, the phylogenetic relationships of these taxa are not well established. We thus investigated the phylogeny of Echiniscidae, assessed the monophyly of Echiniscus, and explored the value of cuticular ornamentation as a phylogenetic character within Echiniscus. To do this, DNA was extracted from single individuals for multiple Echiniscus species, and 18S and 28S rRNA gene fragments were sequenced. Each specimen was photographed, and published in an open database prior to DNA extraction, to make morphological evidence available for future inquiries. An updated phylogeny of the class Heterotardigrada is provided, and conflict between the obtained molecular trees and the distribution of dorsal plates among echiniscid genera is highlighted. The monophyly of Echiniscus was corroborated by the data, with the recent genus Diploechiniscus inferred as its sister group, and Testechiniscus as the sister group of this assemblage. Three groups that closely correspond to specific types of cuticular design in Echiniscus have been found with a parsimony network constructed with 18S rRNA data.
    [Show full text]
  • Halechiniscidae (Heterotardigrada, Arthrotardigrada) of Oura Bay, Okinawajima, Ryukyu Islands, with Descriptions of Three New Species
    A peer-reviewed open-access journal ZooKeys 483:Halechiniscidae 149–166 (2015) (Heterotardigrada, Arthrotardigrada) of Oura Bay, Okinawajima... 149 doi: 10.3897/zookeys.483.8936 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Halechiniscidae (Heterotardigrada, Arthrotardigrada) of Oura Bay, Okinawajima, Ryukyu Islands, with descriptions of three new species Shinta Fujimoto1 1 Department of Zoology, Division of Biological Science, Graduate School of Science, Kyoto University, Kitashi- rakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan Corresponding author: Shinta Fujimoto ([email protected]) Academic editor: Sandra McInnes | Received 12 November 2014 | Accepted 9 February 2015 | Published 24 February 2015 http://zoobank.org/58EC3A1C-7439-4C15-9592-ADEA729791B3 Citation: Fujimoto S (2015) Halechiniscidae (Heterotardigrada, Arthrotardigrada) of Oura Bay, Okinawajima, Ryukyu Islands, with descriptions of three new species. ZooKeys 483: 149–166. doi: 10.3897/zookeys.483.8936 Abstract Marine tardigrades of the family Halechiniscidae (Heterotardigrada: Arthrotardigrada) are reported from Oura Bay, Okinawajima, one of the Ryukyu Islands, Japan, including Dipodarctus sp., Florarctus wunai sp. n., Halechiniscus churakaagii sp. n., Halechiniscus yanakaagii sp. n. and Styraconyx sp. The attributes distinguishing Florarctus wunai sp. n. from its congeners is a combination of two characters, the smooth dorsal cuticle and two small projections of the caudal alae caestus. Halechiniscus churakaagii sp. n. is dif- ferentiated from its congeners by the combination of two characters, the robust cephalic cirrophores and the scapular processes with flat oval tips, whileHalechiniscus yanakaagii sp. n. can be identified by the laterally protruded arched double processes with acute tips situated dorsally at the level of leg I. A list of marine tardigrades reported from the Ryukyu Islands is provided.
    [Show full text]
  • Tardigrades: an Imaging Approach, a Record of Occurrence, and A
    TARDIGRADES: AN IMAGING APPROACH, A RECORD OF OCCURRENCE, AND A BIODIVERSITY INVENTORY By STEVEN LOUIS SCHULZE A thesis submitted to the Graduate School-Camden Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Master of Science Graduate Program in Biology Written under the direction of Dr. John Dighton And approved by ____________________________ Dr. John Dighton ____________________________ Dr. William Saidel ____________________________ Dr. Emma Perry ____________________________ Dr. Jennifer Oberle Camden, New Jersey May 2020 THESIS ABSTRACT Tardigrades: An Imaging Approach, A Record of Occurrence, and a Biodiversity Inventory by STEVEN LOUIS SCHULZE Thesis Director: Dr. John Dighton Three unrelated studies that address several aspects of the biology of tardigrades— morphology, records of occurrence, and local biodiversity—are herein described. Chapter 1 is a collaborative effort and meant to provide supplementary scanning electron micrographs for a forthcoming description of a genus of tardigrade. Three micrographs illustrate the structures that will be used to distinguish this genus from its confamilials. An In toto lateral view presents the external structures relative to one another. A second micrograph shows a dentate collar at the distal end of each of the fourth pair of legs, a posterior sensory organ (cirrus E), basal spurs at the base of two of four claws on each leg, and a ventral plate. The third micrograph illustrates an appendage on the second leg (p2) of the animal and a lateral appendage (C′) at the posterior sinistral margin of the first paired plate (II). This image also reveals patterning on the plate margin and the leg.
    [Show full text]
  • A Molecular Study of the Tardigrade Echiniscus Testudo (Echiniscidae) Reveals Low DNA Sequence Diversity Over a Large Geographical Area
    G. Pilato and L. Rebecchi (Guest Editors) Proceedings of the Tenth International Symposium on Tardigrada J. Limnol., 66(Suppl. 1): 77-83, 2007 A molecular study of the tardigrade Echiniscus testudo (Echiniscidae) reveals low DNA sequence diversity over a large geographical area Aslak JØRGENSEN*, Nadja MØBJERG1) and Reinhardt M. KRISTENSEN2) The Mandahl-Barth Centre for Biodiversity and Health, DBL – Centre for Health Research and Development, Department of Veterinary Pathobiology, Faculty of Life Sciences, University of Copenhagen, Jægersborg Allé 1D, DK-2920 Charlottenlund, Denmark 1)Institute of Molecular Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark 2)The Zoological Museum, The Natural History Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark *e-mail corresponding author: [email protected] ABSTRACT In the present study we investigate the genetic diversity within the asexually reproducing tardigrade Echiniscus testudo. The present study is the first to sample a tardigrade species for comparison of DNA sequence diversity between widely separated samples. Echiniscus testudo was sampled at 13 localities spanning three continents. DNA sequences of the mitochondrial COI gene and the nuclear ITS2 sequence were used to investigate the genetic diversity and phylogeographic structure of the various asexual lineages. Terrestrial tardigrades with the capability of entering a cryptobiotic state are assumed to have a high passive dispersal potential through airborne transport. Our results show moderate (ITS2) to high (COI) haplotype diversity and low sequence diversity that indicate evolution of haplotypes within distinct asexual lineages and a high dispersal potential. No isolation by distance was detected by Mantel tests.
    [Show full text]
  • Contribution to the Knowledge on Distribution of Tardigrada in Turkey
    diversity Article Contribution to the Knowledge on Distribution of Tardigrada in Turkey Duygu Berdi * and Ahmet Altında˘g Department of Biology, Faculty of Science, Ankara University, 06100 Ankara, Turkey; [email protected] * Correspondence: [email protected] Received: 28 December 2019; Accepted: 4 March 2020; Published: 6 March 2020 Abstract: Tardigrades have been occasionally studied in Turkey since 1973. However, species number and distribution remain poorly known. In this study, distribution of Tardigrades in the province of Karabük, which is located in northern coast (West Black Sea Region) of Turkey, was carried out. Two moss samples were collected from the entrance of the Bulak (Mencilis) Cave. A total of 30 specimens and 14 eggs were extracted. Among the specimens; Echiniscus granulatus (Doyère, 1840) and Diaforobiotus islandicus islandicus (Richters, 1904) are new records for Karabük. Furthermore, this study also provides a current checklist of tardigrade species reported from Turkey, indicating their localities, geographic distribution and taxonomical comments. Keywords: cave; Diaforobiotus islandicus islandicus; Echiniscus granulatus; Karabük; Tardigrades; Turkey 1. Introduction Caves are not only one of the most important forms of karst, but also one of the most unique forms of karst topography in terms of both size and formation characteristics, which are formed by mechanical melting and partly chemical erosion of water [1]. Most of the caves in Turkey were developed within the Cretaceous and Tertiary limestone, metamorphic limestone [2], and up to now ca. 40 000 karst caves have been recorded in Turkey. Although, most of these caves are found in the karstic plateaus zone in the Toros System, important caves, such as Kızılelma, Sofular, Gökgöl and Mencilis, have also formed in the Western Black Sea [3].
    [Show full text]
  • The Diversity of Indian Ocean Heterotardigrada
    G. Pilato and L. Rebecchi (Guest Editors) Proceedings of the Tenth International Symposium on Tardigrada J. Limnol., 66(Suppl. 1): 60-64, 2007 The diversity of Indian Ocean Heterotardigrada Maria GALLO*, Rossana D'ADDABBO, Cristiana DE LEONARDIS, Roberto SANDULLI and Susanna DE ZIO GRIMALDI Dipartimento di Zoologia, Università di Bari, Via Orabona, 4 - 70125 Bari, Italy *e-mail corresponding author: [email protected] ABSTRACT Information about Indian Ocean tardigrades is quite scarce and in most cases refers to species in coastal coralline sediment and occasionally in abyssal mud. The present data concern species found in the intertidal sand of Coco and La Digue Islands in the Seychelles, previously unsampled for tardigrades, as well as species in subtidal sediment found at depths ranging between 1 and 60 m off the shores of the Maldive Atolls. These sediments are all very similar and consist of heterogeneous coralline sand, moderately or scarcely sorted. Sixteen species (three new to science) were found in the Seychelles, belonging to Renaudarctidae, Stygarctidae, Halechiniscidae, Batillipedidae and Echiniscoididae. Diversity and evenness data are also interesting, with maximum values of H' = 2.59 and of J = 0.97. In the Maldives 25 species were found (two new to science) belonging to Neostygarctidae, Stygarctidae, Halechiniscidae and Batillipedidae. Such a number of species, despite the low percentage of tardigrade fauna (only 0.6% of the total meiofauna), contributes to the high values of both diversity and evenness, with H' ranging between 1.5 and 2.6 and J between 0.6 and 1. The Indian Ocean tardigrade fauna currently numbers 31 species of Arthrotardigrada and 2 species of Echiniscoidida.
    [Show full text]
  • Comparative Analysis of the Tardigrade Feeding Apparatus: Adaptive Convergence and Evolutionary Pattern of the Piercing Stylet System
    J. Limnol., 2013; 72(s1): 24-35 DOI: 10.4081/jlimnol.2013.e4 Comparative analysis of the tardigrade feeding apparatus: adaptive convergence and evolutionary pattern of the piercing stylet system Roberto GUIDETTI,1* Roberto BERTOLANI,2 Lorena REBECCHI1 1Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via G. Campi 213/D, 41125 Modena; 2Dipartimento di Educazione e Scienze Umane, Università di Modena e Reggio Emilia, Via A. Allegri 9, 42121 Reggio Emilia, Italy *Corresponding author: [email protected] ABSTRACT A thorough analysis of the cuticular parts of tardigrade feeding apparatuses was performed in order to provide a more complete understanding of their evolution and their potential homologies with other animal phyla (e.g. Cycloneuralia and Arthropoda). The buc- cal-pharyngeal apparatuses of eight species belonging to both Eutardigrada and Heterotardigrada were studied using light and scanning electron microscopy. This study supports and completes a previous study on the relationships between form and function in the buccal- pharyngeal apparatus of eutardigrades. The common sclerified structures of the tardigrade buccal-pharyngeal apparatus are: a buccal ring connected to a straight buccal tube, a buccal crown, longitudinal thickenings within the pharynx, and a stylet system composed of piercing stylets within stylet coats, and stylet supports. Specifically, heterotardigrades (Echiniscoidea) have a narrow buccal tube; long piercing stylets, each with a longitudinal groove, that cross one another before exiting the mouth; pharyngeal bars and secondary lon- gitudinal thickenings within the pharynx. In contrast, eutardigrades have stylets which are shorter than the buccal tube; Parachela have pharyngeal apophyses and placoids within the pharynx, while Apochela lack a buccal crown and cuticular thickenings within the pharynx, the buccal tube is very wide, and the short stylets are associated with triangular-shaped stylet supports.
    [Show full text]
  • Tardigrada, Echiniscidae
    ARTICLE IN PRESS Organisms, Diversity & Evolution 8 (2008) 58–65 www.elsevier.de/ode A new discovery of Novechiniscus armadilloides (Schuster, 1975) (Tardigrada, Echiniscidae) from Utah, USA with considerations on non-marine Heterotardigrada phylogeny and biogeography Lorena Rebecchia,Ã, Tiziana Altieroa, Jette Eibye-Jacobsenb, Roberto Bertolania, Reinhardt M. Kristensenb aDepartment of Animal Biology, University of Modena and Reggio Emilia, Via Campi 213/D, 41100 Modena, Italy bZoological Museum, The Natural History Museum of Denmark, University of Copenhagen, Universitetparken 15, 2100 Copenhagen Ø, Denmark Received 28 March 2006; accepted 8 November 2006 Abstract The discovery of a new population of the non-marine heterotardigrade Novechiniscus armadilloides from Utah, USA, allowed us to reanalyse the species by means of scanning electron microscopy and differential interference contrast microscopy. This analysis confirmed the presence of bar shaped, unpaired segmental plates and of a long filament E in addition to the filament A always present in the class Heterotardigrada. It also provided additional information on characters not explicitly cited in the previous descriptions of this monotypic genus, such as details of the head cirri and clavae, details of the buccal tube and pharyngeal bulb, sculpture of the dorso-lateral and leg plates, details of the claws. The population is bisexual, but no secondary sexual dimorphism was observed. The male and female gonopores were described. New characters such as red eyes and red body colour were used in analysing the phylogeny of the family Echiniscidae. The phylogeny and biogeography of non-marine heterotardigrades provide intriguing questions for further research. r 2007 Gesellschaft fu¨ r Biologische Systematik.
    [Show full text]
  • Arthrotardigrada, Styraconyxidae) with Unique Pockets on the Legs
    Zoosyst. Evol. 96 (1) 2020, 115–122 | DOI 10.3897/zse.96.49676 A new marine tardigrade genus and species (Arthrotardigrada, Styraconyxidae) with unique pockets on the legs Shinta Fujimoto1, Naoto Jimi2 1 Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, 9 Sakamoto, Aomori, Aomori 039-3501, Japan 2 National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518, Japan http://zoobank.org/44F42F00-8B76-4C95-961D-4FC588C50BF0 Corresponding author: Shinta Fujimoto ([email protected]) Academic editor: Pavel Stoev ♦ Received 26 December 2019 ♦ Accepted 25 February 2020 ♦ Published 23 March 2020 Abstract A marine heterotardigrade Cyaegharctus kitamurai gen. et sp. nov. (Arthrotardigrada, Styraconyxidae) is described from Daidokut- su, a submarine cave off Iejima island, Okinawa Islands, Ryukyu Archipelago, Japan. It is easily distinguished from all other styr- aconyxids by its pocket organs (putative sensory structures) on all legs in addition to the usual leg sensory organs. Its combination of other character states, such as the dorso-ventrally flattened body, ovoid primary clavae, conical secondary clavae, large terminal anus, internal digits with proximal pads and peduncles, external digits with developed peduncles and all digits with three-pointed claws in adult female, supports the erection of a new genus and species. Key Words meiofauna, Pacific Ocean, sensory organs, submarine cave, Tardigrada Introduction et al. 2020). In addition to these ten genera, Fujimoto et al. (2017) reported an undescribed genus related to Styr- Marine tardigrades, specifically arthrotardigrades, exhib- aconyx and Tetrakentron from a submarine cave in Japan it remarkable morphological diversity (see comprehen- (for detail of this cave see Yamamoto et al.
    [Show full text]