Waterville Area Fisheries

Total Page:16

File Type:pdf, Size:1020Kb

Waterville Area Fisheries Waterville Area Fisheries (! Hastings Gaylord Red Wing (! (! Cannon River Mississippi River Le Center Wabasha (! (! Zumbro River St. Peter New Ulm ! (! Minnesota River ( Faribault (! Mankato P! Le Sueur River Watonwan River Waseca Owatonna (! (! Mantorville (! Rochester P! St. James (! Root River Preston Fairmont Austin ! Albert Lea (! ( (! Blue Earth (! (! Cedar River Iowa River, Upper Blue Earth River Waterville Area Fisheries (! Hastings Gaylord Red Wing (! (! Cannon River Mississippi River Le Center Wabasha (! (! Zumbro River St. Peter New Ulm ! (! Minnesota River ( Faribault (! Mankato P! Le Sueur River Watonwan River Waseca Owatonna (! (! Mantorville (! Rochester P! St. James (! Root River Preston Fairmont Austin ! Albert Lea (! ( (! Blue Earth (! (! Cedar River Iowa River, Upper Blue Earth River Le Sueur River Watershed (! Hastings Gaylord Red Wing (! (! Cannon River Mississippi River Le Center Wabasha (! (! Zumbro River St. Peter New Ulm ! (! Minnesota River ( Faribault (! Mankato P! Le Sueur River Watonwan River Waseca Owatonna (! (! Mantorville (! Rochester P! St. James (! Root River Preston Fairmont Austin ! Albert Lea (! ( (! Blue Earth (! (! Cedar River Iowa River, Upper Blue Earth River Freeborn Lake, Fish Species Present Freeborn Lake Fish Management Plan • Fisheries Management – First Fisheries Survey was conducted in 1983. • “Fish Management options are very limited because of habitat conditions which favor bullhead, carp and green sunfish.” • Good fishing of bullhead and/or crappie historically were largely dependent on winterkill events. • “The only economical way to improve the fishing in this lake is to create a situation for severe winterkill of bullheads and carp.” • A northern pike spawning area was operated in 1967-1968 and it produced only 20 and 6 fingerlings in consecutive years, so it was abandoned. • “Lake drawdown management should be considered.” However, such a proposal in the late 1960’s was met with strong opposition for various reasons”. • 1976: Lake was nearly dry. • History of periodic winterkill but the lake has downstream influence on the Cobb River. – Managed by Lanesboro until 2004, thereafter, Freeborn County managed by Waterville. – Fisheries Survey History: • 1983, 1984, 2004, 2014. – Primary Management Species. • Yellow perch. – Secondary Management Species. • Northern pike. – Stocking History (10 year) • 2014 – Yellow perch, 175 lbs (3,675 fish) • Prior to 2005: crappie, yellow perch, sunfish, bullhead, northern pike, pumpkinseed. Freeborn Lake, Fish Species Present • Historic Survey Fish Species Observed – Bigmouth Buffalo – Black Bullhead – Black Crappie – Bluegill – Common Carp – Fathead Minnow – Green Sunfish – White Crappie – White Sucker – Yellow Perch Freeborn Lake Fishery, 1984-2014 Yellow Perch Lake Class 41 Statistics (fish/net) Inter Quartile Range (3.0 – 22.5) 120 Median (8.9) 110 100 Lake Average (42.5) 90 80 70 60 50 40 30 Relative Relative abundance (#/net) 20 10 0 1984 2004 2014 Year Freeborn Lake Fishery, 1984-2014 Black Bullhead Lake Class 41 Statistics (fish/net) 500 Inter Quartile Range (1.3 – 78.1) Median (14.7) 400 Lake Average (243.9) 300 200 Relative Relative abundance (#/net) 100 0 1984 2004 2014 Year Freeborn Lake Fishery, 1984-2014 Common Carp Lake Class 41 Statistics (fish/net) 10 Inter Quartile Range (0.7 – 5.1) 9 Median (1.8) 8 Lake Average (3.2) 7 6 5 4 3 Relative Relative abundance (#/net) 2 1 0 1984 2004 2014 Year Commercial Fish Harvest, 2004-2014 100000 Common Carp 90000 Buffalo 80000 Carp Average (12,873) Buffalo Average (6,091) ) 70000 lbs 60000 50000 40000 30000 Pounds Pounds of Fish ( 20000 10000 0 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Year Waterville Area Fisheries • Primary Fisheries Challenges – River/Stream Degradation • Altered Hydrology. • Channelization. • Rough Fish impacts on Water Quality and Habitat. – Lake Impairments • Altered Hydrology. • Turbidity. • Phosphorus. • Algae dominated systems versus plant dominated. • Shoreline Erosion • Recreational Needs versus Habitat Protection. • Invasive Species. • Rough Fishes. – Possible culprits? • Eco-unfriendly Development. • Altered Watershed Hydrology. • Altered Water Level Management. • Climate Changes. • Connectivity and Rough Fish (Carp Pump) Freeborn Lake, Reclamation? Northern Pike Stocking Critical Northern Pike Hatchery Production Northern Pike: Watershed Stocking Approach Take a Kid Fishing Future of fishing is in their hands! Questions or Comments? .
Recommended publications
  • Zumbro River Comprehensive Watershed Management Plan
    Greater Zumbro River Watershed Comprehensive Watershed Management Plan Waterside Chats Summary Summary The Greater Zumbro River Watershed Partnership hosted “Waterside Chats” in three communities throughout the watershed in October and November 2019. Waterside Chats were held on October 24th, 2019 at the Zumbro Valley Recreation Club in Mantorville, November 7th, 2019 at the Community Center in Mazeppa and November 14th, 2019 at the Sportsman’s Club in Lake City. The public was asked to attend the Waterside Chats to learn about the issues that had been identified by local partners and to provide feedback with their local knowledge of the watershed. Each Waterside Chat began with an overview presentation by the local SWCD or County Staff which included a summary of the One Watershed, One Plan program and plan development process, a summary of what has been accomplished, and information on how the public can participate. Following the overview, Barr Engineering summarized the priority resources and issues that had been identified in local and state plans, studies, reports, state agency feedback, and resident surveys. Initial results of the prioritization of these issues identified by a survey of watershed residents and ranked by the policy committee, planning workgroup and technical advisory group was also shared to aid in the table conversations (see figure 1 below). Following the presentation, attendees were broken into small groups. Each small group discussed a series of questions to provide their input and feedback on the list of priority issues to be addressed in the 10-year scope of the plan. Comments were captured by a facilitator from the planning partnership, summarized, and reported out to the large group.
    [Show full text]
  • Le Sueur River Watershed Monitoring and Assessment Report
    z c LeSueur River Watershed Monitoring and Assessment Report March 2012 Acknowledgements MPCA Watershed Report Development Team: Bryan Spindler, Pat Baskfield, Kelly O’Hara, Dan Helwig, Louise Hotka, Stephen Thompson, Tony Dingmann, Kim Laing, Bruce Monson and Kris Parson Contributors: Citizen Lake Monitoring Program volunteers Citizen Stream Monitoring Program Volunteers Minnesota Department of Natural Resources Minnesota Department of Health Minnesota Department of Agriculture Minnesota State University, Mankato Water Resource Center Project dollars provided by the Clean Water Fund (from the Clean Water, Land and Legacy Amendment). March 2012 Minnesota Pollution Control Agency 520 Lafayette Road North | Saint Paul, MN 55155-4194 | www.pca.State.mn.us | 651-296-6300 Toll free 800-657-3864 | TTY 651-282-5332 This report is available in alternative formats upon request, and online at www.pca.State.mn.us Document number: wq-ws3-07020011b Table of Contents Executive Summary ................................................................................................................................................................. 1 I. Introduction .................................................................................................................................................................. 2 II. The Watershed Monitoring Approach ........................................................................................................................... 3 Load monitoring network ......................................................................................................................................................
    [Show full text]
  • Zumbro River Watershed HSPF Model Development Project Report
    Zumbro River Watershed HSPF Model Development Project Minnesota Pollution Control Agency, One Water Program Prepared for: Minnesota Pollution Control Agency FINAL May 12, 2014 wq-iw9-20n This page is blank to facilitate double-sided printing Page | ii Zumbro River Watershed HSPF Model Development Project Minnesota Pollution Control Agency, One Water Program FINAL Prepared for: Minnesota Pollution Control Agency May 12, 2014 This page is blank to facilitate double-sided printing Page | iv Zumbro River Watershed HSPF Model Development Project May 2014 Minnesota Pollution Control Agency, One Water Program FINAL TABLE OF CONTENTS 1 Introduction .............................................................. 15 1.1 Project Background and Objectives ................................. 15 1.2 Project Scope ..................................................................... 15 1.3 Scope of Report ................................................................. 16 2 Characteristics of the Zumbro River Watershed ....... 17 2.1 Physical Characteristics .................................................... 17 2.2 Impairments and Pollution Prevention ........................... 19 3 Model Development .................................................. 21 3.1 Overview of the Hydrological Simulation Program - FORTRAN (HSPF) ........................................................... 21 3.2 Model Inputs ..................................................................... 22 3.2.1 Climate ....................................................................
    [Show full text]
  • Zumbro River Watershed: Water Plans
    Zumbro River Watershed: Water Plans The Zumbro River Watershed encompasses Dodge, Goodhue, Olmsted, Rice, Steele, and Wabasha Counties. Each county has developed a 10-year rotating comprehensive local water management plan (LWMP) in order to improve water quality within Minnesota. The water plans are comprised of a set of concerns the counties have described as a priority, along with how they intend to effectively manage them. This document contains two parts: (1) A comparison of management goals from each county (2) A summary of all county water plans in the watershed including priority concerns, goals and objectives, and actions related to nutrient management. Water Plans: Dodge County LWMP 2006-2015 amended 2011 Goodhue County LWMP 2010-2020 Olmsted County LWMP 2013-2023 Rice County LWMP 2004-2014 amended 2010 Steele County LWMP 2007-2016 amended 2011 Wabasha County LWMP 2008-2012 Zumbro River Watershed 1 Water Resources Center January 2014 Minnesota State University, Mankato, MN Water Plan Evaluation Concern Dodge Goodhue Olmsted Rice Steele Wabasha Conservation BMPs Coordination/Partnership Education Groundwater Shoreland Management SSTS/ISTS Surface Water Technical/Financial Assistance Erosion Control Feedlot Compliance Municipal Wastewater Sediment Watershed-based Approach Wetlands Monitoring Priority Pollutants Seek Funding Stormwater Management TMDL - Impaired Water Wellhead Protection Abandoned Wells Development Concerns Nutrient Management Drainage Management Manure Management Plan Concerns addressed in County Water Plan associated
    [Show full text]
  • Trout Unlimited
    Trout Unlimited MINNESOTAThe Official Publication of Minnesota Trout Unlimited - June 2015 MNTU Photo Contest Winners! Vermillion River Update MNTU Photo Contest Winners Book Review - Sea Winter Salmon Summer Volunteer Opportunities! And Lots More! without written permisssion of Minnesota Trout Unlimited. Trout Minnesota of permisssion written without Copyright 2015 Minnsota Trout Unlimited - No Portion of this publication may be reproduced reproduced be may publication this of Portion No - Unlimited Trout Minnsota 2015 Copyright Brook Trout Biology In Southeast Minnesota ROCHESTER, MN ROCHESTER, PERMIT NO. 281 NO. PERMIT Chanhassen, MN 55317-0845 MN Chanhassen, PAID P.O. Box 845 Box P.O. U.S. POSTAGE POSTAGE U.S. Non-Profit Org. Non-Profit Minnesota Trout Unlimited Trout Minnesota Trout Unlimited Minnesota Council Update MINNESOTA The Voice of MNTU Time to Fish By JP Little, Minnesota Council Chair On The Cover elcome to the 2015 summer and spawning and generally ignoring us Minnesota Trout Unlimited humans. A few steelhead even decided A pasture in the habitat improvement statewide newsletter. Sum- that our flies were worth taking – ‘twas section of Pickwick Creek (Trout W mer has broken out all over the great a glorious day. Brook) in Winona County at first light. state of Minnesota, and ‘tis the season Photo by Bruce Adelsman, MNTU to enjoy our many, many miles of trout I would like to welcome Dean Campbell 2015 Photo Contest Winner. streams. From Southeast to Central to as the incoming President of the Twin the North Shore, we have countless op- Cities chapter, and thank Mark John- portunities to chase trout and wild steel- son for his service to the Twin Cities head.
    [Show full text]
  • ROOT RIVER ONE WATERSHED, ONE PLAN -I- SWCD Soil and Water Conservation District
    Cold Snap Photography Prepared For: Root River Planning Partnership Prepared By: Houston Engineering, Inc. Photo by Bob Joachim Root River Watershed | ONE WATERSHED, ONE PLAN List of PLan Abbreviations i Plan Definitions iii Executive Summary iv 1. INTRODUCTION 1-1 1.1 Preamble 1-1 1.2 Plan Area 1-1 1.3 Watershed Characteristics 1-4 1.4 Plan Overview 1-4 1.5 Plan Partners and Roles in Plan Development 1-5 1.6 Incorporating Comments into the Plan __________________1-7 2. ANALYSIS AND PRIORITIZATION OF RESOURCES, CONCERNS, AND ISSUES CAUSING CONCERN 2-1 2.1 Definitions 2-1 2.2 Identifying Potential Resource Concerns and Issues 2-2 2.3 Prioritizing Potential Resource Concerns and Issues 2-13 2.4 Priority Resource Concerns and Issues 2-14 2.4.1 "A" Level Priorities 2-14 2.4.1.1 Description and Resource Concern Locations 2-14 2.4.1.2 Issues Affecting "A" Level Priority Resource Concerns 2-18 2.4.2 "B" Level Priorities 2-18 2.4.2.1 Description and Landscape Locations 2-18 2.4.2.2 Issues Affecting “B” Level Priority Resource Concerns 2-26 2.4.3 "C" Level Priorities 2-26 2.4.3.1 Issues Affecting “C” Level Priority Resource Concerns 2-35 2.5 Use of Priority Categories in Plan Implementation 2-35 2.6 Emerging Issues 2-35 2.6.1 "Scientific and Technical Emerging Issues 2-36 2.61.1 Climate Change and Infrastructure Resilience 2-36 2.6.1.2 Endocrine Active Compounds 2-37 2.6.1.3 Water Movement Within a Karst Landscape 2-37 2.6.1.4 Improving Soil Health 2-37 2.6.1.5 Buffers for Public Waters and Drainage Systems 2-38 2.6.1.6 Invasive Species 2-38 2.6.1.7
    [Show full text]
  • Rochester Water Primer 2013
    Rochester Water Primer 2013 Chapter 3 - Rochester’s Natural Water Features With the exception of about 660 acres of the southern portion of the airport property, Rochester lies within the South Fork Zumbro River watershed. That means that everything that is left on the land surface in Rochester has the potential to be washed into the South Fork of the Zumbro River after each rainstorm or snowmelt. A watershed is defined as all the land area that drains to a waterway. The boundaries of a watershed are based on topography. The highest elevations surrounding a water body become the boundaries or Source: Zumbro Watershed Partnership watershed divides. It is easy to imagine how the Continental Divide in the Rocky Mountains can separate flow from the Pacific to the Atlantic Oceans, but even flatter areas like Rochester have divides. They are represented by the black watershed boundaries shown on the map above. The Zumbro Watershed drains about 297,000 acres and is made up of three smaller subwatersheds, Watershed Features one for each tributary: the South Fork, the Middle Fork, and the North Fork. A common misconception is that water flows from north to south, or from the top of a map to the bottom. That’s not true. Water always runs downhill from divides; it does not follow a certain direction on a map. Look at the Zumbro River: it starts flowing from west to east, but then turns north before heading east again before it empties into the Mississippi River. These direction changes provide clues about how the glaciers formed our topography and the elevation changes in our watershed.
    [Show full text]
  • Delineation Percentage
    Lake Superior - North Rainy River - Headwaters Lake Superior - South Vermilion River Nemadji River Cloquet River Pine River Rainy River - Rainy Lake Little Fork River Mississippi River - Headwaters Leech Lake River Upper St. Croix River Root River Big Fork River Mississippi River - Winona Upper/Lower Red Lake Kettle River Mississippi River - Lake Pepin Mississippi River - Grand Rapids Mississippi River - La Crescent Crow Wing River Otter Tail River Mississippi River - Reno Mississippi River - Brainerd Zumbro River Redeye River Upper Big Sioux River Mississippi River - Twin Cities Snake River Des Moines River - Headwaters St. Louis River Rum River Lower Big Sioux River Lower St. Croix River Cottonwood River Minnesota River - Headwaters Cannon River Mississippi River - St. Cloud Long Prairie River Lake of the Woods Lower Rainy North Fork Crow River Mississippi River - Sartell Lac Qui Parle River Buffalo River Wild Rice River Minnesota River - Mankato Sauk River Rock River Redwood River Snake River Chippewa River Watonwan River Clearwater River East Fork Des Moines River Red River of the North - Sandhill River Upper Red River of the North Blue Earth River Red River of the North - Marsh River Roseau River Minnesota River - Yellow Medicine River Le Sueur River Little Sioux River Bois de Sioux River Cedar River Lower Minnesota River Pomme de Terre River Red Lake River Lower Des Moines River Upper Iowa River Red River of the North - Tamarac River Shell Rock River Two Rivers Rapid River Red River of the North - Grand Marais Creek Mustinka River South Fork Crow River Thief River Winnebago River Upper Wapsipinicon River 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% %Altered %Natural %Impounded %No Definable Channel wq-bsm1-06.
    [Show full text]
  • Tracing Sediment Sources with Meteoric 10Be: Linking Erosion And
    Tracing sediment sources with meteoric 10Be: Linking erosion and the hydrograph Final Report: submitted June 20, 2012 PI: Patrick Belmont Utah State University, Department of Watershed Sciences University of Minnesota, National Center for Earth-surface Dynamics Background and Motivation for the Study Sediment is a natural constituent of river ecosystems. Yet, in excess quantities sediment can severely degrade water quality and aquatic ecosystem health. This problem is especially common in rivers that drain agricultural landscapes (Trimble and Crosson, 2000; Montgomery, 2007). Currently, sediment is one of the leading causes of impairment in rivers of the US and globally (USEPA, 2011; Palmer et al., 2000). Despite extraordinary efforts, sediment remains one of the most difficult nonpoint-source pollutants to quantify at the watershed scale (Walling, 1983; Langland et al., 2007; Smith et al., 2011). Developing a predictive understanding of watershed sediment yield has proven especially difficult in low-relief landscapes. Challenges arise due to several common features of these landscapes, including a) source and sink areas are defined by very subtle topographic features that often cannot be detected even with relatively high resolution topography data (15 cm vertical uncertainty), b) humans have dramatically altered water and sediment routing processes, the effects of which are exceedingly difficult to capture in a conventional watershed hydrology/erosion model (Wilkinson and McElroy, 2007; Montgomery, 2007); and c) as sediment is routed through a river network it is actively exchanged between the channel and floodplain, a dynamic that is difficult to model at the channel network scale (Lauer and Parker, 2008). Thus, while models can be useful to understand sediment dynamics at the landscape scale and predict changes in sediment flux and water quality in response to management actions in a watershed, several key processes are difficult to constrain to a satisfactory degree.
    [Show full text]
  • Draft Environmental Assessment Fishing Program for the Iowa River
    U.S. Fish and Wildlife Service Draft Environmental Assessment Fishing Program for the Iowa River Corridor Project Port Louisa National Wildlife Refuge Regional Director Region 3, U. S. Fish and Wildlife Bloomington, MN 55111 Abstract: The United States Fish and Wildlife Service (Service) proposes to provide compatible fishing opportunities for game fish species on the Iowa River Corridor Project (IRCP) of Port Louisa National Wildlife Refuge located within 3 counties in east central Iowa. This draft environmental assessment evaluates three possible alternatives for fishing opportunities. The preferred alternative will establish compatible fishing opportunities while providing visitors with other priority public use opportunities i.e. hunting, wildlife observation, wildlife photography, environmental education and interpretation. The entire IRCP includes Service owned lands, Iowa Department of Natural Resources lands, and Natural Resources Conservation Service wetland easements. This environmental assessment involves only those lands owned in fee title by the Service. A fishing plan is being developed pursuant to the selection of an alternative. The general goals of a fishing program are to: 1. Provide safe and enjoyable fishing that is compatible with the IRCP purposes. 2. Provide quality angling opportunities that minimize conflict with other public use activities. 3. Contribute to a consistent regulatory framework across the patchwork of public and private holdings in the IRCP. 4. Provide opportunities to fish for species consistent with the laws and regulations of the State of Iowa that do not adversely affect local or regional populations, and are consistent with the 1997 National Wildlife Refuge System Improvement Act. For further information about the environmental assessment, please contact: Cathy Henry, Refuge Manager, Port Louisa National Wildlife Refuge, 10728 County Road X61, Wapello, Iowa 52653-9477.
    [Show full text]
  • By David L. Lorenz and Gregory A. Payne
    SELECTED DATA FOR STREAM SUBBASINS IN THE LE SUEUR RIVER BASIN, SOUTH-CENTRAL MINNESOTA By David L. Lorenz and Gregory A. Payne ABSTRACT This report presents selected data that describe the characteristics of stream basins upstream from selected points on streams in the Le Sueur River basin. The points on the streams include outlets of subbasins of about five square miles, sewage treatment plant outlets, and U.S. Geological Survey streamflow-gaging stations in the basin. INTRODUCTION The Le Sueur River upstream from its confluence with the Blue Earth River drains an area of 1,110 mi (square miles). It is located in the counties of Blue Earth, Faribault, Freeborn, Le Sueur, Steele, and Waseca in south-central Minnesota. This report is one of several gazateers providing basin characteristics of streams in Minnesota. It provides selected data for subbasins larger thai about 5 mi , sewage-treatment-plant outlets, and U.S. Geological Survey (USG! streamflow-gaging stations located in the Le Sueur River basin. Methods USGS 7-1/2 minute series topographic maps were used as base maps to obtain the data presented in this report. Data were compiled with a geograph­ ic information system (CIS) and were stored in an Albers equal-area projec­ tion. Data-base functions and other capabilities of the CIS were used to aggregate the data, determine drainage area of the subbasins, and determine stream channel lengths. Elevation data for the streams were recorded at the point were topographic-contour lines interescted the stream traces. Points on the stream channel 10 percent and 85 percent of the stream-channel length from the basin outlet to the drainage divide were located by the CIS, and the elevations of these points were interpolated from the data recorded in the CIS.
    [Show full text]
  • 7050.0470 CLASSIFICATIONS for SURFACE WATERS in MAJOR DRAINAGE BASINS. Subpart 1. Lake Superior Basin. the Water Use Classifica
    1 REVISOR 7050.0470 7050.0470 CLASSIFICATIONS FOR SURFACE WATERS IN MAJOR DRAINAGE BASINS. Subpart 1. Lake Superior basin. The water use classifications for the listed waters in the Lake Superior basin are as identified in items A to D. See parts 7050.0425 and 7050.0430 for the classifications of waters not listed. A. Streams: (1) Ahlenius Creek, (T.53, R.14, S.9, 10): 1B, 2A, 3B; (2) Amenda Creek, (T.59, R.5, S.19, 20, 29, 30, 31; T.59, R.6, S.36): 1B, 2A, 3B; (3) Amity Creek, (T.50, R.13, S.5, 6; T.50, R.14, S.1; T.51, R.13, S.31, 32; T.51, R.14, S.26, 27, 28, 35, 36): 1B, 2A, 3B; (4) Amity Creek, East Branch (T.51, R.13, S.30, 31; T.51, R.14, S.13, 14, 15, 22, 24, 25, 36): 1B, 2A, 3B; (5) Anderson Creek, Carlton County, (T.46, R.17, S.11, 14, 15, 22, 26, 27): 1B, 2A, 3B; (6) Anderson Creek, St. Louis County, (T.49, R.15, S.16, 17, 18; T.49, R.16, S.12, 13): 1B, 2A, 3B; (7) Artichoke Creek, (T.52, R.17, S.7, 17, 18): 1B, 2A, 3B; (8) Assinika Creek, (T.63, R.1E, S.1; T.63, R.2E, S.7, 8, 16, 17, 21; T.64, R.1E, S.36; T.64, R.2E, S.31): 1B, 2A, 3B; (9) Bally Creek, (T.61, R.1W, S.3, 4, 5, 6, 7, 8, 9, 10, 11; T.61, R.2W, S.12): 1B, 2A, 3B; (10) Baptism River, East Branch, (T.57, R.6, S.6; T.57, R.7, S.1, 2, 3, 9, 10, 11, 12, 16, 17, 20; T.58, R.6, S.30, 31; T.58, R.7, S.13, 17, 19, 20, 21, 22, 23, 24, 25, 26, 29, 30, 36; T.58, R.8, S.22, 23, 24, 25, 26): 1B, 2A, 3B; (11) Baptism River, Main Branch, (T.56, R.7, S.3, 4, 5, 9, 10, 14, 15; T.57, R.7, S.20, 27, 28, 29, 33, 34): 1B, 2A, 3B; (12) Baptism River, West Branch, (T.57, R.7, S.7, 17, 18, 20; T.57, R.8, S.1, 2, 12; T.58, R.8, S.2, 3, 4, 9, 10, 11, 15, 16, 20, 21, 22, 28, 33, 34, 35, 36; T.59, R.8, S.
    [Show full text]