Projects on BONIC?

Total Page:16

File Type:pdf, Size:1020Kb

Projects on BONIC? PRESENTED BY: SAJIN GEORGE PRIYANKA ANGADI Overview of the talk ● GRID and Cluster computing and what are their differences. ● What is BOINC and how it works ? ● Key features of BOINC. ● Power consumption and Energy consumption. ● Projects that are currently using BOINC ● BONIC interface and Client Software. ● How to setup your own BOINC. GRID COMPUTING A distributed computing environment that uses its own resources to handle computational tasks. Grid VS Cluster Loosely coupled Tightly coupled systems (Decentralization) Single system image Diversity and Dynamism Centralized Job Distributed Job management & scheduling Management & scheduling system Volunteer computing. Volunteer computing is an arrangement in which people (volunteers) provide computing resources to projects, which use the resources to do distributed computing and/or storage. ● Volunteers are typically members of the general public who own Internet-connected PCs. Organizations such as schools and businesses may also volunteer the use of their computers. ● Projects are typically academic (university-based) and do scientific research. But there are exceptions; for example, GIMPS and distributed.net (two major projects) are not academic www.bonic.com What is B.O.I.N.C ? is a massive open-source grid computing tool by the university of berkeley. How BOINC works ? How the software works CREDIT The project's server keeps track of how much work your computer has done; this is called credit. To ensure that credit is granted fairly, most BOINC projects work as follows: ● Each task may be sent to two computers. ● When a computer reports a result, it claims a certain amount of credit, based on how much CPU time was used. ● When at least two results have been returned, the server compares them. If the results agree, then users are granted the smaller of the claimed credits. Why B.O.I.N.C ? ● Super computers are expesive ● Not accessible to everyone ● SAVES ENERGY* ● Help save "Mankind" Super-Computers Vs BOINC The Worlds' best Super Computer... source:i.top500.com Stats form Bonic source:bonicstat.com How BOINC does 6,283,554 GFLOPS POWER ? Expense? The desktop grid system implemented at the University of Westminster consists of 1500 laboratory PCs – roughly half the total number of PCs in the university which is equivalent, in raw computational power terms, to a £500,000 cluster procurement or supercomputer -http://www.westminster.ac.uk/news-and-events/ Projects on BONIC? Biology and Medicine Multiple applications SAT@home LHC@home Test4Theory Superlink@Technion Yoyo@home ABC@home eOn SIMAP World Community Grid Mersenne@home SETI@home Rosetta@home Ibercivis sudoku@vtaiwan Orbit@home Malariacontrol.net EDGeS@Home Chess960@home uFluids@home Docking@Home CAS@home DistrRTgen Milkyway@home GPUGrid.net Mathematics, computing, and games primaboinca Einstein@home The Lattice Project Collatz Conjecture Surveill@Home Cognitive science and artifical intelligence POEM@HOME VTU@home Astronomy/Physics/Chemistry FreeHAL Earth Sciences NFS@home Quantum Monte Carlo at Home Virtual Prairie Enigma@Home Spinhenge@home Climateprediction.net SZTAKI Desktop Grid LHC@home PrimeGrid Leiden Classical Cosmology@Home LHC@home Test4Theory Open source? how? ● Universities can use BOINC to create a 'Virtual Campus Supercomputing Center' (VCSC). ● A VCSC can provide researchers with the computational power of a large cluster or supercomputer, for a small fraction of the cost. A VCSC is a BOINC project whose applications are supplied by campus researchers. ● The computing power is supplied by campus PCs - computing lab machines, desktop and laptops belonging to faculty, staff, and students, and home PCs belonging to university alumni and the public. ● As an example, suppose that a VSCS recruits the participation of 10,000 PCs, running an average of 50% of the time. ● In terms of computing power, this is roughly equivalent to a 5,000-node cluster, for which the initial hardware cost is roughly $5 million, with ongoing yearly energy and maintenance costs of at least $1 million. The VSCS, in contrast, has hardware costs of about $10K. www.boinc.com Project Seti@home University of Berkeley ● SETI (Search for Extraterrestrial Intelligence) is a scientific area whose goal is to detect intelligent life outside Earth. ● One approach, known as radio SETI, uses radio telescopes to listen for narrow- bandwidth radio signals from space. ● Such signals are not known to occur naturally, so a detection would provide evidence of extraterrestrial technology. ● Radio telescope signals consist primarily of noise (from celestial sources and the receiver's electronics) and man-made signals such as TV stations, radar, and satellites. Modern radio SETI projects analyze the data digitally. ● More computing power enables searches to cover greater frequency ranges with more sensitivity. Radio SETI, therefore, has an insatiable appetite for computing power. http://setiathome.berkeley.edu/sah_about.php Project Climateprediction.net university of Oxford ● The aim of climateprediction.net is to investigate the approximations that have to be made in state-of-the-art climate models. ● These models are run thousands of times (a 'large ensemble') to find out how the model responds to slight tweaks to these approximations - slight enough to not make the approximations any less realistic. ● This helps to improve the understanding of how sensitive the models are to small changes and also to things like changes in carbon dioxide and the sulphur cycle. ● Used to estimate how climate may change in the next century under a wide range of different scenarios. http://climateprediction.net/content/about-climatepredictionnet-project Tools: Bonic Server (open source) Bonic Client (open source) Bonic APIs (helps you with your code)! Requirements: --Ubuntu /Debian suported OS-server --Any os WIN, MAC Linux -Clients --233 MHZ -cpu,64MB ram,20MB HDD BOINC task structures ● Task Should be Modular: Each partition should should be independent and should not wait / block on other tasks for completion. ● Task Communication: Each task-block is downloaded from the MASTER server via XML,client and posts back data to master via XML when they are done. MASTER server sends same task-block to multiple slaves to check for accuracy and to have a PLAB B if a node fails. ● Server is the man in the middle: Server parses all communication data and send XML files to whichever node needs data Demo and Questions?.
Recommended publications
  • Tesi Di Laurea La Solidarietà Digitale
    Tesi di Laurea La Solidarietà Digitale Da Seti@home a Boinc. Ipotesi di una società dell’elaborazione. di Francesco Morello 1 INDICE Introduzione............................................................... 4 Capitolo I Calcolo Vontario....................................... 5 1.1 Dai media di massa al calcolo distribuito......... 5 1.2 Calcolo Distribuito............................................... 6 1.3 Calcolo Volontario............................................... 8 1.3.1 Come funziona il calcolo volontario ?.......... 10 1.3.2 Applicazioni del Calcolo Volontario.............. 11 Capitolo II Analisi di BOINC.................................... 23 2.1 Piattaforma per il calcolo volontario............... 23 2.2 Architettura di BOINC........................................ 25 2.2.1 L'interfaccia di BOINC.................................... 25 2.2.2 Progetti e Volontari......................................... 31 2.2.3 Checkpointing e Work unit............................ 32 2.2.4 Crediti e ridondanza....................................... 32 2.2.5 Gli scopi di BOINC.......................................... 33 Capitolo III Aspetti tecnici del calcolo distribuito 36 3.1 Grid Computing vs Volunteer Computing....... 36 3.2 Hardware e Software per il Distributed Computing38 3.2.1 La Playstation 3 per raggiungere il Petaflop.41 Capitolo IV Aspetti sociali del calcolo volontario 45 4.1 Riavvicinarci alla scienza.................................. 45 2 4.2 Volontari oltre la CPU........................................ 47 4.2.1 Forum, Blog
    [Show full text]
  • BRINGING RESEARCH INTO the CLASSROOM T H E C I T I Z E N S C I E N C E a P P R O a C H I N S C H O O L S a SCIENTIX OBSERVATORY REPORT - APRIL 2019
    BRINGING RESEARCH INTO THE CLASSROOM THE CITIZEN SCIENCE APPROACH IN SCHOOLS A SCIENTIX OBSERVATORY REPORT - APRIL 2019 B R T E C Scientix, the community for science education in Europe, facilitates regular dissemination and sharing of know-how and best practices in science education across the European Union (http://scientix.eu). In order to help the development and dissemination of different science education projects Scientix has set up the Scientix observatory which provides overviews on the state of play of different topics related to science education (http://www.scientix.eu/observatory). Publisher: European Schoolnet Please cite this publication as: Nistor, A. et al. (2019). Bringing Research into the Classroom – The Citizen Science approach in schools. Scientix Observatory report. April 2019, European Schoolnet, Brussels Keywords: Science, Technology, Engineering and Mathematics (STEM); Citizen Science; Participatory Science; School Education Authors: Nistor, A., Clemente-Gallardo, J., Angelopoulos, T., Chodzinska, K., Clemente-Gallardo, M., Gozdzik, A. , Gras-Velazquez, A., Grizelj, A., Kolenberg, K., Mitropoulou, D., Micallef Gatt, A. D., Tasiopoulou, E., Brunello, A., Echard, P., Arvaniti, V., Carroll, S., Cindea, N., Diamantopoulos, N., Duquenne, N. , Edrisy, S., Ferguson, E., Galani, L., Glezou, K., Kameas, A., Kirmaci, H., Koliakou, I., Konomi, E., Kontopidi, E., Kulic, S., Lefkos, I., Nikoletakis, G., Siotou, E., Šimac, A., Sormani, F., Tramonti, M., Tsapara, M., Tsourlidaki, E., Vojinovic, M. Design/DTP: Vanessa James Picture credit: Shutterstock, Pixabay Print run: 500 ISBN: 9789492913852 Published in April 2019. The views expressed in this publication are those of the authors and not necessarily those of EUN Partnership AISBL or the European Commission. The work presented in this document is supported by the European Commission’s Erasmus+ programme – project BRITEC, coordinated by the Institute of Geophysics, PAS and by the European Union’s H2020 research and innovation programme – project Scientix 3 (Grant agreement N.
    [Show full text]
  • BIOINFORMATICS APPLICATIONS NOTE Doi:10.1093/Bioinformatics/Btq011
    Vol. 26 no. 5 2010, pages 705–707 BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btq011 Databases and ontologies Advance Access publication January 19, 2010 ProteinWorldDB: querying radical pairwise alignments among protein sets from complete genomes Thomas Dan Otto1,2,∗, Marcos Catanho1, Cristian Tristão3, Márcia Bezerra3, Renan Mathias Fernandes4, Guilherme Steinberger Elias4, Alexandre Capeletto Scaglia4, Bill Bovermann5, Viktors Berstis5, Sergio Lifschitz3, Antonio Basílio de Miranda1 and Wim Degrave1 1Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil, 2Pathogen Genomics, Wellcome Trust Genome Campus, Hinxton, UK, 3Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 4IBM Brasil, Hortolândia, São Paulo, Brazil and 5IBM, Austin, TX, USA Associate Editor: Alfonso Valencia ABSTRACT nomenclature or might have no value when inferred from previous Motivation: Many analyses in modern biological research are incorrectly annotated sequences. Hence, secondary databases based on comparisons between biological sequences, resulting such as Swiss-Prot (http://www.expasy.ch/sprot/), PFAM (http:// in functional, evolutionary and structural inferences. When large pfam.sanger.ac.uk) or KEGG (http://www.genome.ad.jp/kegg), to numbers of sequences are compared, heuristics are often used mention only a few, have been implemented to analyze specific resulting in a certain lack of accuracy. In order to improve functional aspects and to improve the annotation procedures and and validate results of such comparisons, we have performed results. radical all-against-all comparisons of 4 million protein sequences Dynamic programming algorithms, or a fast approximation, belonging to the RefSeq database, using an implementation of the have been successfully applied to biological sequence comparison Smith–Waterman algorithm.
    [Show full text]
  • Volunteer Computing Different Grids for Different Needs
    From the Web to the Grid How did the Grid start? • Name “Grid” chosen by analogy with electric power grid (Foster and Kesselman 1997) • Vision: plug-in computer for processing power just like plugging in toaster for electricity. • Concept has been around for decades (distributed computing, metacomputing) • Key difference with the Grid is to realise the vision on a global scale. From the Web to the Grid – 2007 HST 2011: Grids and Volunteer Computing Different Grids for different needs There is as yet no unified Grid, like there is a single web. Rather there are many Grids for many applications: • Enterprise Grids link together PCs within one company. • Volunteer computing links together public computers. • Scientific Grids link together major computing centres. • Latest trend federates national Grids into global Grid infrastructure. • High Energy Physics is a driving force for this. HST 2011: Grids and Volunteer Computing The LHC data challenge 1 Megabyte (1MB) • 40 million bunch collisions per second A digital photo 1 Gigabyte (1GB) = 1000MB • After filtering, ~100 collisions of 5GB = A DVD movie interest per second per detector 1 Terabyte (1TB) = 1000GB World annual book production • > 1 Megabyte of data per collision 1 Petabyte (1PB) recording rate > 1 Gigabyte/sec = 1000TB Annual production of one LHC experiment 10 • 10 collisions recorded each year 1 Exabyte (1EB) stored data ~15 Petabytes/year = 1000 PB 3EB = World annual information production …for more than 10 years HST 2011: Grids and Volunteer Computing Data Storage for the LHC Balloon (30 Km) • LHC data correspond to about 20 million CDs each year! CD stack with 1 year LHC data! (~ 20 Km) Concorde Where will the (15 Km) experiments store all of these data? Mt.
    [Show full text]
  • Spin-Off Successes of SETI Research at Berkeley
    **FULL TITLE** ASP Conference Series, Vol. **VOLUME**, c **YEAR OF PUBLICATION** **NAMES OF EDITORS** Spin-Off Successes of SETI Research at Berkeley K. A. Douglas School of Physics, University of Exeter, Exeter, United Kingdom D. P. Anderson, R. Bankay, H. Chen, J. Cobb, E.J. Korpela, M. Lebofsky, A. Parsons, J. Von Korff, D. Werthimer Space Sciences Laboratory, University of California Berkeley, Berkeley CA, USA 94720 Abstract. Our group contributes to the Search for Extra-Terrestrial Intelligence (SETI) by developing and using world-class signal processing computers to analyze data collected on the Arecibo telescope. Although no patterned signal of extra-terrestrial origin has yet been detected, and the immediate prospects for making such a detection are highly uncertain, the SETI@home project has nonetheless proven the value of pursuing such research through its impact on the fields of distributed computing, real-time signal pro- cessing, and radio astronomy. The SETI@home project has spun off the Center for Astronomy Signal Processing and Electronics Research (CASPER) and the Berkeley Open Infrastructure for Networked Computing (BOINC), both of which are responsi- ble for catalyzing a smorgasbord of new research in scientific disciplines in countries around the world. Futhermore, the data collected and archived for the SETI@home project is proving valuable in data-mining experiments for mapping neutral galatic hy- drogen and for detecting black-hole evaporation. 1 The SETI@home Project at UC Berkeley SETI@home is a distributed computing project harnessing the power from millions of volunteer computers around the world (Anderson 2002). Data collected at the Arecibo radio telescope via commensal observations are filtered and calibrated using real-time signal processing hardware, and selectable channels are recorded to disk.
    [Show full text]
  • Analysis and Predictions of DNA Sequence Transformations on Grids
    Analysis and Predictions of DNA Sequence Transformations on Grids A Thesis Submitted for the Degree of Master of Science (Engineering) in the Faculty of Engineering By Yadnyesh R. Joshi Supercomputer Education and Research Centre INDIAN INSTITUTE OF SCIENCE BANGALORE – 560 012, INDIA August 2007 Acknowledgments First of all I would like to extend my sincere thanks to my research supervisor Dr. Sathish Vadhiyar for his constant guidance and support during the entire period of my post-graduation at IISc. He was always approachable, supportive and ready to help in any sort of problem. I am very thankful to him for being extremely patient and understanding about the silly mistakes that I had made. Under his guidance I learned to approach problems in an organized manner and set realistic goals for my research. I thank him for his extreme patience and excellent technical guidance in writing and presenting research. Finally, he was and continues to be my role model for his hard work and passion for research. I am also thankful to Dr. Nagasuma Chandra, Dr. Debnath Pal from S.E.R.C. and Dr. Narendra Dixit from Chemical Engineering department for their very useful and interesting insights into the biological domain of our research. I am also thankful to all the faculty of S.E.R.C. for always inspiring us with their motivational talks. I would like to mention the names of my colleagues Sandip, Sanjay, Rakhi, Sundari, Antoine and Roshan for making their technical and emotional support. Special thanks to vatyaa kya group members for the adventures and the routines inside and outside the institute.
    [Show full text]
  • Distributed Computing with the Berkeley Open Infrastructure for Network Computing BOINC
    Distributed Computing with the Berkeley Open Infrastructure for Network Computing BOINC Eric Myers -19 Update COVID8 July 2020 1 September 2010 Mid-Hudson Linux Users Group 2 How BOINC Works …for like 8 to 12 hrs! BOINC Client BOINC is the software BOINC Server Windows framework that makes Linux Mac OS this all work. Linux 50+ separate projects (& Solaris, AIX, HP-UX, etc…) 1 September 2010 Mid-Hudson Valley Linux Users Group 3 BOINC Dataflow 1 September 2010 Mid-Hudson Valley Linux Users Group 4 http://setiathome.berkeley.edu SETI@home SETI@home is ”paused” in 2020 http://einstein.phys.uwm.edu/ or http://einsteinathome.orG Einstein@Home 78 new pulsars detected by 2020 7 Rosetta@home 1 September 2010 Mid-Hudson Valley Linux Users Group 8 http://www.worldcommunitygrid.orG/ World CommunityAs of 2010 Grid Active The Clean Energy Project - Phase 2 Help Cure Muscular Dystrophy – Phase 2 Funded and operated by IBM Help Fight Childhood Cancer Help Conquer Cancer Human Proteome Folding - Phase 2 Completed FightAIDS@Home Nutritious Rice for the World Intermittent AfricanClimate@Home Discovering Dengue Drugs - Together - Phase 2 Help Cure Muscular Dystrophy Influenza Antiviral Drug Search Genome Comparison The Clean Energy Project Help Defeat Cancer Discovering Dengue Drugs - Together Human Proteome Folding 1 September 2010 Mid-Hudson Valley Linux Users Group 9 To Join: 1. Download BOINC 2. Run BOINC ManaGer 3. Tools -> Add Project 1 September 2010 Mid-Hudson Valley Linux Users Group 10 Call to Action! Use your spare cycles to help fight COVID-19 World Community Grid Rosetta@home OpenPandemics - COVID-19 8 July 2020 HVopen 11 Rules and Policies Run BOINC only on authorized computers Run BOINC only on computers that you own, or for which you have obtained the owner’s permission.
    [Show full text]
  • Volunteer Computing and BOINC
    Volunteer Computing and BOINC David P. Anderson Space Sciences Lab UC Berkeley MAGIC October 5, 2016 Scientific Volunteer Consumer computing computing electronics BOINC ● Middleware for volunteer computing – Open-source, NSF-funded development – Community-maintained ● Server: used by scientists to make “projects” ● Client: runs on consumer devices – “attach” to projects – fetches/runs jobs in background Example projects ● Climateprediction.net ● Rosetta@home ● Einstein@home ● IBM World Community Grid ● CERN Current volunteered resources ● 500,000 active devices – BOINC + Folding@home ● 2.3M CPU cores, 290K GPUs ● 93 PetaFLOPS ● 85% Windows, 7% Mac, 7% Linux Performance potential ● 1 billion desktop/laptop PCs – CPUs: 10 ExaFLOPS – GPUs: 1,000 ExaFLOPS ● 5 billion smartphones – CPUs: 20 ExaFLOPS – GPUs: 1,500 ExaFLOPS Realistic potential ● Study: 5-10% of people who learn about VC would participate ● Devices compute 60% of the time ● So if we can tell the world about VC, could get 100 ExaFLOPS Cost cost of 1 TFLOPS/year 4.5 4 3.5 3 2.5 2 cost ($M) 1.5 1 0.5 0 CPU cluster Amazon EC2 BOINC BOINC job model ● An app can have many versions ● Submit jobs to apps, not versions ● The BOINC scheduler decides what version(s) to use in response to a particular request Per-platform apps ● Windows/Intel, 32 and 64 bit ● Mac OS X ● Linux/Intel ● Linux/ARM (works for Android too) Other types of apps ● Multicore ● GPU apps – CUDA (Nvidia) – CAL (AMD) – OpenCL (Nvidia, AMD, Intel) VM apps ● App is VM image + executable ● BOINC client interfaces via “Vbox
    [Show full text]
  • "Challenges and Formal Aspects of Volunteer Computing"
    BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS FACULTY OF ELECTRICAL ENGINEERING AND INFORMATICS DEPARTMENT OF AUTOMATION AND APPLIED INFORMATICS Attila Csaba Marosi Önkéntes Számítási Rendszerek Kihívásai és Formális Aspektusai Challenges and Formal Aspects of Volunteer Computing Ph.D. Thesis Thesis Advisors: Péter Kacsuk MTA SZTAKI, LPDS Sándor Juhász BME, AUT Budapest, 2016. ‘‘The important thing is not to stop questioning. Curiosity has its own reason for existing. One cannot help but be in awe when he contemplates the mysteries of eternity, of life, of the marvelous structure of reality. It is enough if one tries merely to comprehend a little of this mystery every day. Never lose a holy curiosity.’’ -- Albert Einstein Abstract Volunteer Computing (VC) and Desktop Grid (DG) systems collect and make available the donated the resources from non-dedicated computers like office and home desktops. VC systems are usually deployed to solve a grand compute intensive problem by researchers who either don’t have access to or don’t have the resources to buy a dedicated infrastruc- ture; or simply don’t want to maintain such an infrastructure. VC and DG paradigms seem similar, however they target different use cases and environments: DG systems operate within the boundaries of institutes, while VC systems collect resources from the publicly accessible internet. Evidently VC resembles DGs whereas DGs are not fully equivalent to VC. Contrary to “traditional grids” [1,2] there is no formal definition for the relationship of DG and VC that could be used to categorize existing systems. There are informal at- tempts to categorize them and compare with grid systems [3,4,5].
    [Show full text]
  • An Investigation Into Citizen Cyberscience
    When Scientists Meet the Public: An Investigation into Citizen Cyberscience Peter Darch Corpus Christi College University of Oxford A dissertation submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy Michaelmas Term 2011 Peter Darch Corpus Christi College When Scientists Meet the Public: An Investigation into Citizen Cyberscience Abstract Citizen Cyberscience Projects (CCPs) are projects mediated through the Internet, in which teams of scientists recruit members of the public (volunteers) to assist in scientific research, typically through the processing of large quantities of data. This thesis presents qualitative ethnographic case studies of the communities that have formed around two such projects, climateprediction.net and Galaxy Zoo. By considering these social actors in the broader contexts in which they are situated (historical, institutional, social, scientific), I discuss the co-shaping of the interests of these actors, the nature of the relationships amongst these actors, and the infrastructure of the projects and the purposes and nature of the scientific work performed. The thesis focusses on two relationships in particular. The first is that between scientists and volunteers, finding that, although scientists in both projects are concerned with treating volunteers with respect, there are nevertheless considerable differences between the projects. These are related to a number of interconnecting factors, including the particular contexts in which each project is embedded, the nature of the scientific work that volunteers are asked to undertake, the possibilities and challenges for the future development of the projects as perceived by the scientists, and the tools at the disposal of the respective teams of scientists for mediating relationships with volunteers.
    [Show full text]
  • Proposta De Mecanismo De Checkpoint Com Armazenamento De Contexto Em Memória Para Ambientes De Computação Voluntária
    UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO RAFAEL DAL ZOTTO Proposta de Mecanismo de Checkpoint com Armazenamento de Contexto em Memória para Ambientes de Computação Voluntária Dissertação apresentada como requisito parcial para a obtenção do grau de Mestre em Ciência da Computação Prof. Dr. Cláudio Fernando Resin Geyer Orientador Porto Alegre, Setembro de 2010 CIP – CATALOGAÇÃO NA PUBLICAÇÃO Dal Zotto, Rafael Proposta de Mecanismo de Checkpoint com Armazenamento de Contexto em Memória para Ambientes de Computação Volun- tária / Rafael Dal Zotto. – Porto Alegre: PPGC da UFRGS, 2010. 134 f.: il. Dissertação (mestrado) – Universidade Federal do Rio Grande do Sul. Programa de Pós-Graduação em Computação, Porto Ale- gre, BR–RS, 2010. Orientador: Cláudio Fernando Resin Geyer. 1. Computação voluntária. 2. Mecanismos para Checkpoint. 3. Alto Desempenho. 4. Prevalência de Objetos. I. Geyer, Cláudio Fernando Resin. II. Título. UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL Reitor: Prof. Carlos Alexandre Netto Vice-Reitor: Prof. Rui Vicente Oppermann Pró-Reitor de Pós-Graduação: Prof. Aldo Bolten Lucion Diretor do Instituto de Informática: Prof. Flávio Rech Wagner Coordenador do PPGC: Profa. Álvaro Freitas Moreira Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro “An education isn’t how much you have committed to memory, or even how much you know. It’s being able to differentiate between what you do know and what you don’t.” —ANATOLE FRANCE AGRADECIMENTOS Nesta etapa final de minha escrita, gostaria de registrar minha gratidão a todos aqueles que participaram direta ou indiretamente dessa caminhada. Muito obrigado pelas conver- sas, apoio e incentivo oferecidos ao longo dessa jornada.
    [Show full text]
  • EDGES Project Meeting
    International Desktop Grid Federation - Support Project Contract number: FP7-312297 Desktop Grids for e-Science Road Map Project deliverable: D5.5.1 Due date of deliverable: 2013-10-31 Actual submission date: 2013-12-27 Lead beneficiary: AlmereGrid Workpackage: WP5 Dissemination Level: PU Version: 1.2 (Final) IDGF-SP is supported by the FP7 Capacities Programme under contract nr FP7-312297. D5.5.1 – Desktop Grids for e-Science Road Map CopyriGht (c) 2013. MemBers of IDGF-SP consortium, see http://IDGF-SP.eu for details on the copyriGht holders. You are permitted to copy and distriBute verBatim copies of this document containinG this copyriGht notice But modifyinG this document is not allowed. You are permitted to copy this document in whole or in part into other documents if you attach the followinG reference to the copied elements: ‘Copyright (c) 2013. Members of IDGF-SP consortium - http://IDGF-SP.eu’. The commercial use of any information contained in this document may require a license from the proprietor of that information. The IDGF-SP consortium memBers do not warrant that the information contained in the deliveraBle is capaBle of use, or that use of the information is free from risk, and accept no liaBility for loss or damaGe suffered By any person and orGanisation usinG this information. WP3 © 2013. Members of IDGF-SP consortium - http://IDGF-SP.eu 2/8 D5.5.1 – Desktop Grids for e-Science Road Map Table of Contents 1 Status and ChanGe History .................................................................................................
    [Show full text]