"Challenges and Formal Aspects of Volunteer Computing"

Total Page:16

File Type:pdf, Size:1020Kb

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS FACULTY OF ELECTRICAL ENGINEERING AND INFORMATICS DEPARTMENT OF AUTOMATION AND APPLIED INFORMATICS Attila Csaba Marosi Önkéntes Számítási Rendszerek Kihívásai és Formális Aspektusai Challenges and Formal Aspects of Volunteer Computing Ph.D. Thesis Thesis Advisors: Péter Kacsuk MTA SZTAKI, LPDS Sándor Juhász BME, AUT Budapest, 2016. ‘‘The important thing is not to stop questioning. Curiosity has its own reason for existing. One cannot help but be in awe when he contemplates the mysteries of eternity, of life, of the marvelous structure of reality. It is enough if one tries merely to comprehend a little of this mystery every day. Never lose a holy curiosity.’’ -- Albert Einstein Abstract Volunteer Computing (VC) and Desktop Grid (DG) systems collect and make available the donated the resources from non-dedicated computers like office and home desktops. VC systems are usually deployed to solve a grand compute intensive problem by researchers who either don’t have access to or don’t have the resources to buy a dedicated infrastruc- ture; or simply don’t want to maintain such an infrastructure. VC and DG paradigms seem similar, however they target different use cases and environments: DG systems operate within the boundaries of institutes, while VC systems collect resources from the publicly accessible internet. Evidently VC resembles DGs whereas DGs are not fully equivalent to VC. Contrary to “traditional grids” [1,2] there is no formal definition for the relationship of DG and VC that could be used to categorize existing systems. There are informal at- tempts to categorize them and compare with grid systems [3,4,5]. There is also a formal model for VC, but it is based on an existing implementation [6]. In the first theorem group I evaluate DG/VC systems using formal methods: contrary to informal methods, that compare using selected characteristics, using formal methods I seize the semantics of the systems. I develop formal reference models and definitions, that make possible evaluating existing systems. Utilizing my formal models I determine the relationship of DG and VC, and their relationship with grid computing. Finally I create a formal reference model for an existing system and evaluate it against my previous DG/VC models Finally I create a formal reference model for an existing system and evaluate it against my previous DG/VC models. In The second half of this thesis I investigate three – what I consider – major challenges and future directions of VC: (i) workload sharing between DG/VC systems; Creating Vol- unteer Cloud Computing (VCC), in detail with overcoming the heterogeneity of resources and systems, and (iii) reducing the “tail-effect” for round-trip times of batches of jobs caused by the volatility of resources. I present my results in the second theorem group. Multiple national and international R&D projects benefited from my results that I pre- sented in this thesis. For example, based on the second theorem group I developed several open source frameworks. These were used to adapt – so far – 59 scientific applications to DG/VC systems from all over the world. Additionally implementations belonging to the methods and algorithms I developed are running in real-world environments and are part of open source systems (e.g., BOINC). Összefoglaló Az Önkéntes Számítási Rendszerek (Volunteer Computing - VC) és Desktop Gridek (DG- ek) nem dedikált, hanem a már használatban lévő, például irodai vagy önkéntesek által felajánlott – saját – számítógépek kihasználatlan kapacitásait gyűjtik és teszik elérhetővé. A VC rendszereket általában egy-egy számításigényes probléma megoldására alapítják olyan kutatók, akiknek nincs hozzáférésük, illetve nem akarnak vagy nem tudnak dedikált infrastruktúrát fenntartani. A DG és VC paradigma bár hasonlónak tűnik, azonban két különböző használati esetet és környezetet céloz meg: a DG rendszerek alapvetően in- tézményen belül működnek, míg a VC rendszerek publikusan, az interneten. Így bár A DG nagyban hasonlít a VC-hoz, de a két rendszer mégis alapvetően eltérő célokat szol- gál. A “hagyományos” gridekkel ellentétben – amelyekre létezik formális definíció és mod- ell [1,2] – nincs egyértelmű definíció ami alapján meghatározható a VC és DG rendszerek relációja, illetve a létező rendszerek egyértelműen kategorizálhatóak. Az összehasonlítá- suk (egymással és a hagyományos gridekkel) informális alapon létezik [3,4,5]. Teljes VC modell, formális alapokon, konkrét implementációból származtatva készült [6]. Az első téziscsoportban formális módszerekkel jellemzem a DG/VC rendszereket: az in- formális módszerekkel szemben, amelyek általában egy-egy karakterisztika alapján hason- lítanak össze, a formális módszerek segítségével a rendszerek szemantikáját ragadom meg. Definíciókat és formális referencia modelleket alkotok, melyek segítségével létező rendsz- erek kiértékelhetőek. A formális modelljeimet felhasználva meghatározom a DG és VC rendszerek viszonyát, egyrészt egymással kapcsolatban valamint a hagyományos gridekkel szemben. Végül elkészítem egy létező rendszer formális modelljét, majd ezt kiértékelem a DG/VC modelljeimmel szemben. A disszertációm második felében a VC rendszerek három – általam – azonosított kihivásával foglalkozom: (i) DG/VC rendszerek közötti feladatmegosztás kialakításával; valamint az önkéntes számítási felhők (Volunteer Cloud Computing - VCC) megalkotásá- val, ezen belül (ii) az erőforrások és rendszerek heterogenitásának kiküszöbölésével és az (iii) önkéntes erőforrások volatilitása okozta, kötegelt feladatok futtatásánál jelen- tkező, “farok-hatás” csökkentésével. Az eredményeimet egy – a második – téziscsoportban foglalom össze. A disszertációmban beutatott eredményeimet több hazai és nemzetközi K+F projekt hasznosította. Például a második téziscsoport eredményei alapján több nyílt forráskódú keretrendszert alkottam, melynek segítségével eddig 59 tudományos alkalmazást adaptál- tak DG/VC rendszerekre szerte a világon. Valamint az általam alkotott algoritmusokhoz és módszerekhez tartozó implementációk valós körülmények között futnak, illetve nyílt forráskódú rendszerek (pl.: BOINC) részét képezik. Statement of authorship Declaration I, Attila Csaba Marosi, confirm that this doctoral thesis has been written solely by myself, and I have used only those sources that have been explicitly identified. Every part that has been adopted from external sources, either quoted or rephrased, has been unequivocally referenced, with proper attribution to the source. Budapest, October 5, 2016 Nyilatkozat1 Alulírott Marosi Attila Csaba kijelentem, hogy ezt a doktori értekezést magam készítettem, és abban csak a megadott forrásokat használtam fel. Minden olyan részt, amelyet szó szerint, vagy azonos tartalomban, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával megjelöltem. Budapest, 2016. október 5. Marosi Attila Csaba 1A bírálatok és a védésről készült jegyzőkönyv a későbbiekben a Dékáni Hivatalban elérhetőek. Köszönetnyilvánítás Számos embernek tartozom hálával e dolgozat létrejöttéért, néhányat szeretnék közülük kiemelni. Mindenekelőtt a családomat, akik mindvégig támogattak és mellettem álltak. Köszönöm szüleimnek, Gabinak és fiamnak, Ádámnak, a tőlük kapott szeretetet, a végtelen türelmet és kitartást mialatt eme hosszú, és többször rögös út végére próbáltam eljutni. Hálás vagyok Kacsuk Péternek, aki megteremtette az anyagi és emberi feltételeket a kutatásomhoz. Szintén köszönettel tartozom az Automatizálási és Alkalmazott Informatikai Tan- széknek, különösen Charaf Hassannak, Vajk Istvánnak és Juhász Sándornak. Köszönet a MTA Számítástechnikai és Automatizálási Kutatóintézetének, és munkatársaimnak az ottani Párhuzamos és Elosztott Rendszerek Laboratóri- umában: Németh Zsoltnak, az ASM modellezés kapcsan nyújtott felbecsülhetetlen segítségéért, valamint a disszertációm újabb és újabb változatainak rendületlen véleményezéséért; Kovács Józsefnek és Kecskeméti Gábornak a tőlük kapott tanác- sokért és véleményezésekért; valamint Lovas Róbertnek a támogatásáért. Nélkülük nem készülhetett volna el ez a dolgozat. Contents 1 Introduction1 1.1 Motivation and goal of this thesis.......................1 1.2 Structure....................................2 2 Formal models for desktop grids and volunteer computing5 2.1 Characterization of desktop grids and volunteer computing.........6 2.1.1 Related work.............................. 10 2.2 Modelling desktop grids............................ 12 2.2.1 Assumptions.............................. 12 2.2.2 Universes and signatures........................ 14 2.2.3 Initial state............................... 18 2.2.4 Functionalities............................. 19 2.2.5 Job phase transition rules....................... 21 2.2.6 Correspondence of MGRID and MGROUND−DG ........... 25 2.2.6.1 Equivalence of user mapping service in MGRID and MGROUND−DG ........................ 25 2.2.6.2 Equivalence of resource mapping service in MGRID and MGROUND−DG ........................ 25 2.2.7 Definition for Desktop Grid...................... 26 2.2.7.1 Discussion of existing middleware............. 27 2.3 Modelling volunteer computing........................ 29 2.3.1 Assumptions.............................. 30 2.3.2 MVC−V OT E: model for voting based result certification....... 32 2.3.2.1 Universes and signatures.................. 32 2.3.2.2 Initial state.......................... 35 2.3.2.3 Functionalities........................ 36 2.3.2.4 Job phase transition rules.................. 39 2.3.3 Correspondence
Recommended publications
  • Volunteer Computing Different Grids for Different Needs
    From the Web to the Grid How did the Grid start? • Name “Grid” chosen by analogy with electric power grid (Foster and Kesselman 1997) • Vision: plug-in computer for processing power just like plugging in toaster for electricity. • Concept has been around for decades (distributed computing, metacomputing) • Key difference with the Grid is to realise the vision on a global scale. From the Web to the Grid – 2007 HST 2011: Grids and Volunteer Computing Different Grids for different needs There is as yet no unified Grid, like there is a single web. Rather there are many Grids for many applications: • Enterprise Grids link together PCs within one company. • Volunteer computing links together public computers. • Scientific Grids link together major computing centres. • Latest trend federates national Grids into global Grid infrastructure. • High Energy Physics is a driving force for this. HST 2011: Grids and Volunteer Computing The LHC data challenge 1 Megabyte (1MB) • 40 million bunch collisions per second A digital photo 1 Gigabyte (1GB) = 1000MB • After filtering, ~100 collisions of 5GB = A DVD movie interest per second per detector 1 Terabyte (1TB) = 1000GB World annual book production • > 1 Megabyte of data per collision 1 Petabyte (1PB) recording rate > 1 Gigabyte/sec = 1000TB Annual production of one LHC experiment 10 • 10 collisions recorded each year 1 Exabyte (1EB) stored data ~15 Petabytes/year = 1000 PB 3EB = World annual information production …for more than 10 years HST 2011: Grids and Volunteer Computing Data Storage for the LHC Balloon (30 Km) • LHC data correspond to about 20 million CDs each year! CD stack with 1 year LHC data! (~ 20 Km) Concorde Where will the (15 Km) experiments store all of these data? Mt.
    [Show full text]
  • Analysis and Predictions of DNA Sequence Transformations on Grids
    Analysis and Predictions of DNA Sequence Transformations on Grids A Thesis Submitted for the Degree of Master of Science (Engineering) in the Faculty of Engineering By Yadnyesh R. Joshi Supercomputer Education and Research Centre INDIAN INSTITUTE OF SCIENCE BANGALORE – 560 012, INDIA August 2007 Acknowledgments First of all I would like to extend my sincere thanks to my research supervisor Dr. Sathish Vadhiyar for his constant guidance and support during the entire period of my post-graduation at IISc. He was always approachable, supportive and ready to help in any sort of problem. I am very thankful to him for being extremely patient and understanding about the silly mistakes that I had made. Under his guidance I learned to approach problems in an organized manner and set realistic goals for my research. I thank him for his extreme patience and excellent technical guidance in writing and presenting research. Finally, he was and continues to be my role model for his hard work and passion for research. I am also thankful to Dr. Nagasuma Chandra, Dr. Debnath Pal from S.E.R.C. and Dr. Narendra Dixit from Chemical Engineering department for their very useful and interesting insights into the biological domain of our research. I am also thankful to all the faculty of S.E.R.C. for always inspiring us with their motivational talks. I would like to mention the names of my colleagues Sandip, Sanjay, Rakhi, Sundari, Antoine and Roshan for making their technical and emotional support. Special thanks to vatyaa kya group members for the adventures and the routines inside and outside the institute.
    [Show full text]
  • Analyzing Daily Computing Runtimes on the World Community Grid
    https://doi.org/10.48009/3_iis_2020_289-297 Issues in Information Systems Volume 21, Issue 3, pp. 289-297, 2020 EXPLORING GRID COMPUTING & VOLUNTEER COMPUTING: ANALYZING DAILY COMPUTING RUNTIMES ON THE WORLD COMMUNITY GRID Kieran Raabe, Bloomsburg University of Pennsylvania, [email protected] Loreen M. Powell, Bloomsburg University of Pennsylvania, [email protected] ABSTRACT In the early 1990s, the concept of grid computing was little more than a simple comparison which stated that making computing power as accessible as electricity from a power grid. Today, grid computing is far more complex. Grid computing involves utilizing unused computing power from devices across the globe to run calculations and simulations and submit the results to move a project closer to its goal. Some projects, such as World Community Grid, work to achieve numerous goals, herein referred to as subprojects. The goal of this research is to explore grid computing and volunteer computing. Specifically, this research involved a daily collection of statistics on daily results returned to World Community Grid and daily computing runtimes for three subprojects named Africa Rainfall Project, Microbiome Immunity Project, and Help Stop TB. The data collection lasted four weeks and resulted in five graphs for each subproject being created with the collected data. Results revealed a correlation between daily results returned and daily runtimes, with each data point for results returned being slightly lower than the runtime data point from the same day. Keywords: Grid Computing, Volunteer Computing, BOINC, World Community Grid INTRODUCTION The concept of grid computing has existed since the early 1990s. Originally “a metaphor for making computer power as easy to access by the user as electricity from a power grid” (Dutton & Jeffreys, 2010).
    [Show full text]
  • The Social Cloud for Public Eresearch
    The Social Cloud for Public eResearch by Koshy John A thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Master of Engineering in Network Engineering. Victoria University of Wellington 2012 Abstract Scientific researchers faced with extremely large computations or the re- quirement of storing vast quantities of data have come to rely on dis- tributed computational models like grid and cloud computing. However, distributed computation is typically complex and expensive. The Social Cloud for Public eResearch aims to provide researchers with a platform to exploit social networks to reach out to users who would otherwise be unlikely to donate computational time for scientific and other research ori- ented projects. This thesis explores the motivations of users to contribute computational time and examines the various ways these motivations can be catered to through established social networks. We specifically look at integrating Facebook and BOINC, and discuss the architecture of the functional system and the novel social engineering algorithms that power it. ii Acknowledgments I would first like to thank my parents, John Koshy and Susan John, for their unwavering love and support in all my endeavours. I would like to thank my supervisor, Kris Bubendorfer, for his valuable guidance and support throughout my thesis. Kyle Chard and Ben Palmer have my thanks for their contributions and feedback in the course of au- thoring the IEEE e-Science paper on the Social Cloud for Public eResearch. Many thanks are also due to Andy Linton for his help with managing the development and test server for the Social Cloud for Public eResearch.
    [Show full text]
  • EDGES Project Meeting
    International Desktop Grid Federation - Support Project Contract number: FP7-312297 Desktop Grids for e-Science Road Map Project deliverable: D5.5.1 Due date of deliverable: 2013-10-31 Actual submission date: 2013-12-27 Lead beneficiary: AlmereGrid Workpackage: WP5 Dissemination Level: PU Version: 1.2 (Final) IDGF-SP is supported by the FP7 Capacities Programme under contract nr FP7-312297. D5.5.1 – Desktop Grids for e-Science Road Map CopyriGht (c) 2013. MemBers of IDGF-SP consortium, see http://IDGF-SP.eu for details on the copyriGht holders. You are permitted to copy and distriBute verBatim copies of this document containinG this copyriGht notice But modifyinG this document is not allowed. You are permitted to copy this document in whole or in part into other documents if you attach the followinG reference to the copied elements: ‘Copyright (c) 2013. Members of IDGF-SP consortium - http://IDGF-SP.eu’. The commercial use of any information contained in this document may require a license from the proprietor of that information. The IDGF-SP consortium memBers do not warrant that the information contained in the deliveraBle is capaBle of use, or that use of the information is free from risk, and accept no liaBility for loss or damaGe suffered By any person and orGanisation usinG this information. WP3 © 2013. Members of IDGF-SP consortium - http://IDGF-SP.eu 2/8 D5.5.1 – Desktop Grids for e-Science Road Map Table of Contents 1 Status and ChanGe History .................................................................................................
    [Show full text]
  • Toward Crowdsourced Drug Discovery: Start-Up of the Volunteer Computing Project Sidock@Home
    Toward crowdsourced drug discovery: start-up of the volunteer computing project SiDock@home Natalia Nikitina1[0000-0002-0538-2939] , Maxim Manzyuk2[000-0002-6628-0119], Marko Juki´c3;4[0000-0001-6083-5024], Crtomirˇ Podlipnik5[0000-0002-8429-0273], Ilya Kurochkin6[0000-0002-0399-6208], and Alexander Albertian6[0000-0002-6586-8930] 1 Institute of Applied Mathematical Research, Karelian Research Center of the Russian Academy of Sciences, Petrozavodsk, Russia, [email protected] 2 Internet portal BOINC.ru, Moscow, Russia, [email protected] 3 Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia 4 Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia [email protected] 5 Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia, [email protected] 6 Federal Research Center \Computer Science and Control" of the Russian Academy of Sciences, Moscow, Russia, [email protected], [email protected], [email protected] Abstract. In this paper, we describe the experience of setting up a computational infrastructure based on BOINC middleware and running a volunteer computing project on its basis. We characterize the first series of computational experiments and review the project's development in its first six months. The gathered experience shows that BOINC-based Desktop Grids allow to to efficiently aid drug discovery at its early stages. Keywords: Desktop Grid · Distributed computing · Volunteer comput- ing · BOINC · Virtual drug screening · Molecular docking · SARS-CoV-2 1 Introduction Among the variety of high-performance computing (HPC) systems, Desktop Grids hold a special place due to their enormous potential and, at the same time, high availability.
    [Show full text]
  • Multiagent Social Computing
    56 International Journal of Web Portals, 3(4), 56-68, October-December 2011 Multiagent Social Computing Ben Choi, Louisiana Tech University, USA ABSTRACT This article provides a framework for extending social networks to social computing. When people join social networks, such as Facebook and discussion groups, their personal computers can also join the social networks. This framework facilitates sharing of computing resources among friends and groups. Computers of friends and groups act autonomously to help each other perform various tasks. The framework combines many key technologies, including intelligent agents, multi-agent system, object space, and parallel and distributed computing, into a new computing platform, which has been successfully implemented and tested. With this framework, any person will have access to not only the computing power of his or her own personal computer but also the vast computing power of a community of computers. The collective capabilities of humans and computers working in communities will create complementary capabilities of computing to achieve behaviors that transcend those of people and computers in isolation. The future of computing is moving from personal computers to societies of computers. Keywords: Cloud Computing, Intelligent Agents, Multi-Agent System, Parallel Distributed Processing, Social Computing, Social Network INTRODUCTION Internet can join computing communities and so does any networked computers, creating social This article extends the concept of socially computing systems ranging
    [Show full text]
  • Volunteer Down: How COVID-19 Created the Largest Idling Supercomputer on Earth
    future internet Perspective Volunteer Down: How COVID-19 Created the Largest Idling Supercomputer on Earth Nane Kratzke Department for Electrical Engineering and Computer Science, Lübeck University of Applied Sciences, 23562 Lübeck, Germany; [email protected] Received: 25 May 2020; Accepted: 3 June 2020; Published: 6 June 2020 Abstract: From close to scratch, the COVID-19 pandemic created the largest volunteer supercomputer on earth. Sadly, processing resources assigned to the corresponding Folding@home project cannot be shared with other volunteer computing projects efficiently. Consequently, the largest supercomputer had significant idle times. This perspective paper investigates how the resource sharing of future volunteer computing projects could be improved. Notably, efficient resource sharing has been optimized throughout the last ten years in cloud computing. Therefore, this perspective paper reviews the current state of volunteer and cloud computing to analyze what both domains could learn from each other. It turns out that the disclosed resource sharing shortcomings of volunteer computing could be addressed by technologies that have been invented, optimized, and adapted for entirely different purposes by cloud-native companies like Uber, Airbnb, Google, or Facebook. Promising technologies might be containers, serverless architectures, image registries, distributed service registries, and all have one thing in common: They already exist and are all tried and tested in large web-scale deployments. Keywords: volunteer computing; cloud computing; grid computing; HPC; supercomputing; microservice; nanoservice; container; cloud-native; serverless; platform; lessons-learned; COVID-19 1. Introduction On 28 April 2020, Greg Bowman—director of the volunteer computing (VC) project Folding@home— posted this on Twitter https://twitter.com/drGregBowman/status/1255142727760543744: @Folding@home is continuing its growth spurt! There are now 3.5 M devices participating, including 2.8 M CPUs (19 M cores!) and 700 K GPUs.
    [Show full text]
  • Integrated Service and Desktop Grids for Scientific Computing
    Integrated Service and Desktop Grids for Scientific Computing Robert Lovas Computer and Automation Research Institute, Hungarian Academy of Sciences, Budapest, Hungary [email protected] Ad Emmen AlmereGrid, Almere, The Nederlands [email protected] RI-261561 GRID 2010, DUBNA Why Desktop Grids are important? http://knowledgebase.ehttp://knowledgebase.e--irg.euirg.eu RI-261561 GRID 2010, DUBNA Introduction RI-261561 WP4 Author: Robert Lovas, Ad Emmen version: 1.0 Prelude - what do people at home and SME’s think about grid computing Survey of EDGeS project Questionnaires all across Europe Get an idea of the interest in people and SMEs to donate computing time for science to a Grid Get an idea of the interest in running a Grid inside an SME RI-261561 GRID 2010, DUBNA Survey amongst the General Public and SME’s RI-261561 GRID 2010, DUBNA Opinions about Grid computing RI-261561 GRID 2010, DUBNA Survey - Conclusions Overall: there is interest in Desktop Grid computing in Europe. However, that people are willing to change their current practice and say that they want to participate in Grid efforts does not mean that they are actually going to do that. Need to generate trust in the organisation that manages the Grid. People want to donate computing time for scientific applications, especially medical applications. They do not like to donate computing time to commercial or defense applications. People want feedback on the application they are running. No clear technical barriers perceived by the respondents: so this does not need much attention. Overall the respondents were rather positive about donating computing time for a Grid or about running applications on a Grid.
    [Show full text]
  • Secure Volunteer Computing for Distributed Cryptanalysis
    ysis SecureVolunteer Computing for Distributed Cryptanal Nils Kopal Secure Volunteer Computing for Distributed Cryptanalysis ISBN 978-3-7376-0426-0 kassel university 9 783737 604260 Nils Kopal press kassel university press ! "# $ %& & &'& #( )&&*+ , #()&- ( ./0 12.3 - 4 # 5 (!!&& & 6&( 7"#&7&12./ 5 -839,:,3:3/,2;1/,2% ' 5 -839,:,3:3/,2;13,3% ,' 05( (!!<& &!.2&.81..!")839:3:3/2;133 "=( (!!, #& !(( (2221,;2;13/ '12.97 # ?@7 & &, & ) ? “With magic, you can turn a frog into a prince. With science, you can turn a frog into a Ph.D. and you still have the frog you started with.” Terry Pratchett Abstract Volunteer computing offers researchers and developers the possibility to distribute their huge computational jobs to the computers of volunteers. So, most of the overall cost for computational power and maintenance is spread across the volunteers. This makes it possible to gain computing resources that otherwise only expensive grids, clusters, or supercomputers offer. Most volunteer computing solutions are based on a client-server model. The server manages the distribution of subjobs to the computers of volunteers, the clients, which in turn compute the subjobs and return the results to the server. The Berkeley Open Infrastructure for Network Computing (BOINC) is the most used middleware for volunteer computing. A drawback of any client-server architecture is the server being the single point of control and failure. To get rid of the single point of failure, we developed different distribution algorithms (epoch distribution algorithm, sliding-window distribution algorithm, and extended epoch distribution algorithm) based on unstructured peer-to-peer networks. These algorithms enable the researchers and developers to create volunteer computing networks without any central server.
    [Show full text]
  • Addressing Selfishness in the Design of Cooperative Systems Guido Lena Cota
    Addressing selfishness in the design of cooperative systems Guido Lena Cota To cite this version: Guido Lena Cota. Addressing selfishness in the design of cooperative systems. Computer Science and Game Theory [cs.GT]. Université de Lyon; Università degli studi (Milan, Italie). Convegno di studi (2000 ; Milano), 2017. English. NNT : 2017LYSEI023. tel-02191480 HAL Id: tel-02191480 https://tel.archives-ouvertes.fr/tel-02191480 Submitted on 23 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2017LYSEI023 DOCTORAL THESIS Cotutelle-de-thèse INSTITUT NATIONAL DES SCIENCES APPLIQUÉES DE LYON ÉCOLE DOCTORALE ED 512 – INFORMATIQUE ET MATHÉMATIQUES DE LYON SPÉCIALITÉ INFORMATIQUE DIRECTOR: PROF. LUCA Q. ZAMBONI UNIVERSITÁ DEGLI STUDI DI MILANO DEPARTMENT OF COMPUTER SCIENCE CORSO DI DOTTORATO IN INFORMATICA (XXVIII CYCLE) – INF/01 COORDINATOR: PROF. PAOLO BOLDI Defended on 24 March 2017, by : Guido LENA COTA Addressing Selfishness in the Design of Cooperative Systems Supervisors: Prof. Lionel BRUNIE INSA de Lyon Prof. Ernesto DAMIANI Università degli Studi di Milano Cosupervisors: Dr. Sonia BEN MOKHTAR INSA de Lyon Dr. Gabriele GIANINI Università degli Studi di Milano EXAMINATION COMMITTEE: Reviewers: Prof. Harald KOSCH Universität Passau, Germany Prof.
    [Show full text]
  • Predicting Climate Change Through Volunteer Computing
    climateprediction.net Predicting Climate Change Through Volunteer Computing University of Oxford Department of Atmospheric Physics Oxford e-Research Centre climateprediction.net The Goals: To harness the power of idle home and business PCs to help forecast the climate of the 21st century. To improve public understanding of the nature of uncertainty in climate prediction. The Method: Invite the public to download a full resolution, 3D climate model and run it locally on their PC. Use each PC to run a single member of a massive, perturbed physics ensemble. Provide visualization software and educational packages to maintain interest and facilitate school and undergraduate projects etc. Volunteer Computing A specialized form of “distributed computing” which is really an “old idea” in computer science -- using remote computers to perform a same or similar tasks Along the lines of Condor, which now supports BOINC VC projects as “backfill” – so we’re all grid now! Was around before '99 but took off with SETI@home Offers high CPU power at low cost (need a few developers/sysadmins to run the “supercomputer”) Processing Power SETI@home peak cap with 500K users about 1 PF = 1000 TF climateprediction.net (CPDN) running at about 60 TF (60K concurrent users each 1GF machine average, i.e. P.IV 2GHz conservatively rated) For comparison, Earth Sim in Yokohama = 35TF max. CPDN Volunteer Computing Challenges... Climate models (ESM's, AOGCM's etc) are very large, complex systems developed by physicists sometimes over decades (& proprietary
    [Show full text]