Aleatoric Music Is Music That Has Some Element Aleatoric Music of Unpredictability to It

Total Page:16

File Type:pdf, Size:1020Kb

Aleatoric Music Is Music That Has Some Element Aleatoric Music of Unpredictability to It music theory for musicians and normal people by toby w. rush globe theatre london, england also known as chance music or indeterminacy, aleatoric music is music that has some element Aleatoric Music of unpredictability to it. the word “aleatoric” comes from the greek root alea, which means dice! you could argue that almost all live music has a bit of unpredictability... different performers might interpret the same piece a little bit differently. but aleatoric music is defined aleatoric music can be thought of as music which has more intentional as being in two different categories... unpredictabilty than that! though a piece could use both kinds! aleatoric aleatoric composition performance a composer might use randomness to a composer might instead decide to decide how to write a piece... which design a piece to leave part or all of it notes to play, how long to chance... making the piece sound they should last, or different every time it is performed! which instruments the result is a to use, for example. fixed piece: one that for example, a repeat ad lib sounds the same piece might have j œ #œ bœ #œ each time it is sections where & ‰ œ bœ bœ œ nœ ‰ œ J ‰ played! performers are instructed to repeat a certain passage an one of the pioneers of unspecified number of times, at their aleatoric composition is own tempo, independent from each other. greek composer this is called senza misura! iannis xenakis, who would use natural of course, there are endless possibilities: phenomena to performers directed to play whatever they compose music... want, specific passages played at unspecifed like using patterns of times, or performances which depend on x e n a k is molecular motion to unpredictable elements, like coin flips or write his 1975 work audience participation! n’shima for brass, cello and heads again... vocalists. This use of natural trombones, randomness is called stochastic music! you’re up! one of the most famous examples of I love sounds just as they are... And I have aleatoric music is john cage’s 1952 no need for them to be anything more than piece 4’33”, which involves one or more what they are! I don't want them to be musicians on stage, doing nothing, psychological, I don't want a sound to for four minutes and thirty-three pretend that it's a bucket, or that it's seconds. president, or that it's in love with another sound; I just want it to be a sound! the piece is sometimes ridiculed as an example of nonsensical modern john cage, 1991 art run amok, but cage saw it as an opportunity to take advantage of the expectations of concert etiquette pieces like 4’33” represent the to force the audience to actively ultimate aleatoric experience; listen together in a silent the performer has no control environment! over the piece, other than creating the framework of a performance. cage pointed out that 4’33” was not intended to be a performance of as a result, it causes us, as listeners silence, but a chance to listen to cage and as music theorists, to consider ambient sounds: nearby traffic, rain the very definition of music itself! falling on the roof, or even whispered conversations! licensed under a creative commons BY-NC-ND license - visit tobyrush.com for more.
Recommended publications
  • A New Approach for Dynamic Stochastic Fractal Search with Fuzzy Logic for Parameter Adaptation
    fractal and fractional Article A New Approach for Dynamic Stochastic Fractal Search with Fuzzy Logic for Parameter Adaptation Marylu L. Lagunes, Oscar Castillo * , Fevrier Valdez , Jose Soria and Patricia Melin Tijuana Institute of Technology, Calzada Tecnologico s/n, Fracc. Tomas Aquino, Tijuana 22379, Mexico; [email protected] (M.L.L.); [email protected] (F.V.); [email protected] (J.S.); [email protected] (P.M.) * Correspondence: [email protected] Abstract: Stochastic fractal search (SFS) is a novel method inspired by the process of stochastic growth in nature and the use of the fractal mathematical concept. Considering the chaotic stochastic diffusion property, an improved dynamic stochastic fractal search (DSFS) optimization algorithm is presented. The DSFS algorithm was tested with benchmark functions, such as the multimodal, hybrid, and composite functions, to evaluate the performance of the algorithm with dynamic parameter adaptation with type-1 and type-2 fuzzy inference models. The main contribution of the article is the utilization of fuzzy logic in the adaptation of the diffusion parameter in a dynamic fashion. This parameter is in charge of creating new fractal particles, and the diversity and iteration are the input information used in the fuzzy system to control the values of diffusion. Keywords: fractal search; fuzzy logic; parameter adaptation; CEC 2017 Citation: Lagunes, M.L.; Castillo, O.; Valdez, F.; Soria, J.; Melin, P. A New Approach for Dynamic Stochastic 1. Introduction Fractal Search with Fuzzy Logic for Metaheuristic algorithms are applied to optimization problems due to their charac- Parameter Adaptation. Fractal Fract. teristics that help in searching for the global optimum, while simple heuristics are mostly 2021, 5, 33.
    [Show full text]
  • Introduction to Stochastic Processes - Lecture Notes (With 33 Illustrations)
    Introduction to Stochastic Processes - Lecture Notes (with 33 illustrations) Gordan Žitković Department of Mathematics The University of Texas at Austin Contents 1 Probability review 4 1.1 Random variables . 4 1.2 Countable sets . 5 1.3 Discrete random variables . 5 1.4 Expectation . 7 1.5 Events and probability . 8 1.6 Dependence and independence . 9 1.7 Conditional probability . 10 1.8 Examples . 12 2 Mathematica in 15 min 15 2.1 Basic Syntax . 15 2.2 Numerical Approximation . 16 2.3 Expression Manipulation . 16 2.4 Lists and Functions . 17 2.5 Linear Algebra . 19 2.6 Predefined Constants . 20 2.7 Calculus . 20 2.8 Solving Equations . 22 2.9 Graphics . 22 2.10 Probability Distributions and Simulation . 23 2.11 Help Commands . 24 2.12 Common Mistakes . 25 3 Stochastic Processes 26 3.1 The canonical probability space . 27 3.2 Constructing the Random Walk . 28 3.3 Simulation . 29 3.3.1 Random number generation . 29 3.3.2 Simulation of Random Variables . 30 3.4 Monte Carlo Integration . 33 4 The Simple Random Walk 35 4.1 Construction . 35 4.2 The maximum . 36 1 CONTENTS 5 Generating functions 40 5.1 Definition and first properties . 40 5.2 Convolution and moments . 42 5.3 Random sums and Wald’s identity . 44 6 Random walks - advanced methods 48 6.1 Stopping times . 48 6.2 Wald’s identity II . 50 6.3 The distribution of the first hitting time T1 .......................... 52 6.3.1 A recursive formula . 52 6.3.2 Generating-function approach .
    [Show full text]
  • Comp. 09 Program Layout.Cwk
    T h i r t y - S e c o n d S e a s o n 2 0 0 9 - 2 0 1 0 Celebrating Lukas Tuesday, March 2, 2010, 7:30 p.m. Free admission Alea III celebrates the life and work of Lukas Foss, a great master, with an evening devoted exclusively to his music. ALEA III Echoi For Toru Elegy for Anne Frank For Aaron Plus Theodore Antoniou, Eighteen Epigrams Music Director a new work written by Lukas Foss’s students: Apostolos Paraskevas, Panos Liaropoulos, Michalis Economou, Jakov Jakoulov, Contemporary Music Ensemble Mark Berger, Frank Wallace, Ronald G. Vigue, Julian Wachner, Jeremy Van Buskirk, in residence at Mauricio Pauly, Matt Van Brink, Ivana Lisak, Ramon Castillo, Pedro Malpica, Boston University Paul Vash, Po-Chun Wang, Margaret McAllister, Sunggone Hwang. Theodore Antoniou, conductor Saxes and Horns Wednesday, April 28, 2010, 7:30 p.m. Free admission 27th International Composition Works of unusual instrumentation, featuring 18 saxophones Competition and 9 French horns. Pierre Boulez Dialogue de l’ombre double Theodore Antoniou Music for Nine Gunther Schuller Perpetuum Mobile Sofia Gubaidulina Duo TSAI Performance Center Georgia Spiropoulos Rotations October 4, 2009, 7:00 pm Eric Hewitt la grenouille Eric Ruske, horn, Tsuyoshi Honjo, Eric Hewitt and Jared Sims, saxophones Special guest: Radnofsky Saxophone Ensemble Eric Hewitt, conductor Sponsored by Boston University and the George Demeter Realty. BOARD OF DIRECTORS BOARD OF ADVISORS OUR NEXT ALEA EVENTS President George Demeter Mario Davidovsky Hans Werner Henze Generations Chairman Milko Kelemen André de Quadros Oliver Knussen Monday, November 16, 2009, 7:30 p.m.
    [Show full text]
  • 1 Stochastic Processes and Their Classification
    1 1 STOCHASTIC PROCESSES AND THEIR CLASSIFICATION 1.1 DEFINITION AND EXAMPLES Definition 1. Stochastic process or random process is a collection of random variables ordered by an index set. ☛ Example 1. Random variables X0;X1;X2;::: form a stochastic process ordered by the discrete index set f0; 1; 2;::: g: Notation: fXn : n = 0; 1; 2;::: g: ☛ Example 2. Stochastic process fYt : t ¸ 0g: with continuous index set ft : t ¸ 0g: The indices n and t are often referred to as "time", so that Xn is a descrete-time process and Yt is a continuous-time process. Convention: the index set of a stochastic process is always infinite. The range (possible values) of the random variables in a stochastic process is called the state space of the process. We consider both discrete-state and continuous-state processes. Further examples: ☛ Example 3. fXn : n = 0; 1; 2;::: g; where the state space of Xn is f0; 1; 2; 3; 4g representing which of four types of transactions a person submits to an on-line data- base service, and time n corresponds to the number of transactions submitted. ☛ Example 4. fXn : n = 0; 1; 2;::: g; where the state space of Xn is f1; 2g re- presenting whether an electronic component is acceptable or defective, and time n corresponds to the number of components produced. ☛ Example 5. fYt : t ¸ 0g; where the state space of Yt is f0; 1; 2;::: g representing the number of accidents that have occurred at an intersection, and time t corresponds to weeks. ☛ Example 6. fYt : t ¸ 0g; where the state space of Yt is f0; 1; 2; : : : ; sg representing the number of copies of a software product in inventory, and time t corresponds to days.
    [Show full text]
  • Monte Carlo Sampling Methods
    [1] Monte Carlo Sampling Methods Jasmina L. Vujic Nuclear Engineering Department University of California, Berkeley Email: [email protected] phone: (510) 643-8085 fax: (510) 643-9685 UCBNE, J. Vujic [2] Monte Carlo Monte Carlo is a computational technique based on constructing a random process for a problem and carrying out a NUMERICAL EXPERIMENT by N-fold sampling from a random sequence of numbers with a PRESCRIBED probability distribution. x - random variable N 1 xˆ = ---- x N∑ i i = 1 Xˆ - the estimated or sample mean of x x - the expectation or true mean value of x If a problem can be given a PROBABILISTIC interpretation, then it can be modeled using RANDOM NUMBERS. UCBNE, J. Vujic [3] Monte Carlo • Monte Carlo techniques came from the complicated diffusion problems that were encountered in the early work on atomic energy. • 1772 Compte de Bufon - earliest documented use of random sampling to solve a mathematical problem. • 1786 Laplace suggested that π could be evaluated by random sampling. • Lord Kelvin used random sampling to aid in evaluating time integrals associated with the kinetic theory of gases. • Enrico Fermi was among the first to apply random sampling methods to study neutron moderation in Rome. • 1947 Fermi, John von Neuman, Stan Frankel, Nicholas Metropolis, Stan Ulam and others developed computer-oriented Monte Carlo methods at Los Alamos to trace neutrons through fissionable materials UCBNE, J. Vujic Monte Carlo [4] Monte Carlo methods can be used to solve: a) The problems that are stochastic (probabilistic) by nature: - particle transport, - telephone and other communication systems, - population studies based on the statistics of survival and reproduction.
    [Show full text]
  • Scambi Fushi Tarazu: a Musical Representation of a Drosophila Gene Expression Pattern
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 January 2020 doi:10.20944/preprints202001.0026.v1 Scambi fushi tarazu: A Musical Representation of a Drosophila Gene Expression Pattern Derek Gatherer Division of Biomedical & Life Sciences Lancaster University Lancaster LA1 4YW, UK [email protected] Abstract: The term Bio-Art has entered common usage to describe the interaction between the arts and the biological sciences. Although Bio-Art implies that Bio-Music would be one of its obvious sub- disciplines, the latter term has been much less frequently used. Nevertheless, there has been no shortage of projects that have brought together music and the biological sciences. Most of these projects have allowed the biological data to dictate to a large extent the sound produced, for instance the translation of genome or protein sequences into musical phrases, and therefore may be regarded as process compositions. Here I describe a Bio-Music process composition that derives its biological input from a visual representation of the expression pattern of the gene fushi tarazu in the Drosophila embryo. An equivalent pattern is constructed from the Scambi portfolio of short electronic music fragments created by Henri Pousseur in the 1950s. This general form of the resulting electronic composition follows that of the fushi tarazu pattern, while satisfying the rules of the Scambi compositional framework devised by Pousseur. The range and flexibility of Scambi make it ideally suited to other Bio-Music projects wherever there is a requirement, or desire, to build larger sonic structures from small units. Keywords: Scambi; fushi tarazu; Drosophila; BioArt; BioMusic; Music; process composition 1 © 2020 by the author(s).
    [Show full text]
  • Random Numbers and Stochastic Simulation
    Stochastic Simulation and Randomness Random Number Generators Quasi-Random Sequences Scientific Computing: An Introductory Survey Chapter 13 – Random Numbers and Stochastic Simulation Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted for noncommercial, educational use only. Michael T. Heath Scientific Computing 1 / 17 Stochastic Simulation and Randomness Random Number Generators Quasi-Random Sequences Stochastic Simulation Stochastic simulation mimics or replicates behavior of system by exploiting randomness to obtain statistical sample of possible outcomes Because of randomness involved, simulation methods are also known as Monte Carlo methods Such methods are useful for studying Nondeterministic (stochastic) processes Deterministic systems that are too complicated to model analytically Deterministic problems whose high dimensionality makes standard discretizations infeasible (e.g., Monte Carlo integration) < interactive example > < interactive example > Michael T. Heath Scientific Computing 2 / 17 Stochastic Simulation and Randomness Random Number Generators Quasi-Random Sequences Stochastic Simulation, continued Two main requirements for using stochastic simulation methods are Knowledge of relevant probability distributions Supply of random numbers for making random choices Knowledge of relevant probability distributions depends on theoretical or empirical information about physical system being simulated By simulating large number of trials, probability
    [Show full text]
  • Anselm Mcdonnell)
    DOCTOR OF PHILOSOPHY A Portfolio of Original Compositions (Anselm McDonnell) McDonnell, Anselm Award date: 2020 Awarding institution: Queen's University Belfast Link to publication Terms of use All those accessing thesis content in Queen’s University Belfast Research Portal are subject to the following terms and conditions of use • Copyright is subject to the Copyright, Designs and Patent Act 1988, or as modified by any successor legislation • Copyright and moral rights for thesis content are retained by the author and/or other copyright owners • A copy of a thesis may be downloaded for personal non-commercial research/study without the need for permission or charge • Distribution or reproduction of thesis content in any format is not permitted without the permission of the copyright holder • When citing this work, full bibliographic details should be supplied, including the author, title, awarding institution and date of thesis Take down policy A thesis can be removed from the Research Portal if there has been a breach of copyright, or a similarly robust reason. If you believe this document breaches copyright, or there is sufficient cause to take down, please contact us, citing details. Email: [email protected] Supplementary materials Where possible, we endeavour to provide supplementary materials to theses. This may include video, audio and other types of files. We endeavour to capture all content and upload as part of the Pure record for each thesis. Note, it may not be possible in all instances to convert analogue formats to usable digital formats for some supplementary materials. We exercise best efforts on our behalf and, in such instances, encourage the individual to consult the physical thesis for further information.
    [Show full text]
  • Nash Q-Learning for General-Sum Stochastic Games
    Journal of Machine Learning Research 4 (2003) 1039-1069 Submitted 11/01; Revised 10/02; Published 11/03 Nash Q-Learning for General-Sum Stochastic Games Junling Hu [email protected] Talkai Research 843 Roble Ave., 2 Menlo Park, CA 94025, USA Michael P. Wellman [email protected] Artificial Intelligence Laboratory University of Michigan Ann Arbor, MI 48109-2110, USA Editor: Craig Boutilier Abstract We extend Q-learning to a noncooperative multiagent context, using the framework of general- sum stochastic games. A learning agent maintains Q-functions over joint actions, and performs updates based on assuming Nash equilibrium behavior over the current Q-values. This learning protocol provably converges given certain restrictions on the stage games (defined by Q-values) that arise during learning. Experiments with a pair of two-player grid games suggest that such restric- tions on the game structure are not necessarily required. Stage games encountered during learning in both grid environments violate the conditions. However, learning consistently converges in the first grid game, which has a unique equilibrium Q-function, but sometimes fails to converge in the second, which has three different equilibrium Q-functions. In a comparison of offline learn- ing performance in both games, we find agents are more likely to reach a joint optimal path with Nash Q-learning than with a single-agent Q-learning method. When at least one agent adopts Nash Q-learning, the performance of both agents is better than using single-agent Q-learning. We have also implemented an online version of Nash Q-learning that balances exploration with exploitation, yielding improved performance.
    [Show full text]
  • Stochastic Versus Uncertainty Modeling
    Introduction Analytical Solutions The Cloud Model Conclusions Stochastic versus Uncertainty Modeling Petra Friederichs, Michael Weniger, Sabrina Bentzien, Andreas Hense Meteorological Institute, University of Bonn Dynamics and Statistic in Weather and Climate Dresden, July 29-31 2009 P.Friederichs, M.Weniger, S.Bentzien, A.Hense Stochastic versus Uncertainty Modeling 1 / 21 Introduction Analytical Solutions Motivation The Cloud Model Outline Conclusions Uncertainty Modeling I Initial conditions { aleatoric uncertainty Ensemble with perturbed initial conditions I Model error { epistemic uncertainty Perturbed physic and/or multi model ensembles Simulations solving deterministic model equations! P.Friederichs, M.Weniger, S.Bentzien, A.Hense Stochastic versus Uncertainty Modeling 2 / 21 Introduction Analytical Solutions Motivation The Cloud Model Outline Conclusions Stochastic Modeling I Stochastic parameterization { aleatoric uncertainty Stochastic model ensemble I Initial conditions { aleatoric uncertainty Ensemble with perturbed initial conditions I Model error { epistemic uncertainty Perturbed physic and/or multi model ensembles Simulations solving stochastic model equations! P.Friederichs, M.Weniger, S.Bentzien, A.Hense Stochastic versus Uncertainty Modeling 3 / 21 Introduction Analytical Solutions Motivation The Cloud Model Outline Conclusions Outline Contrast both concepts I Analytical solutions of simple damping equation dv(t) = −µv(t)dt I Simplified, 1-dimensional, time-dependent cloud model I Problems P.Friederichs, M.Weniger, S.Bentzien,
    [Show full text]
  • Stochastic Optimization,” in Handbook of Computational Statistics: Concepts and Methods (2Nd Ed.) (J
    Citation: Spall, J. C. (2012), “Stochastic Optimization,” in Handbook of Computational Statistics: Concepts and Methods (2nd ed.) (J. Gentle, W. Härdle, and Y. Mori, eds.), Springer−Verlag, Heidelberg, Chapter 7, pp. 173–201. dx.doi.org/10.1007/978-3-642-21551-3_7 STOCHASTIC OPTIMIZATION James C. Spall The Johns Hopkins University Applied Physics Laboratory 11100 Johns Hopkins Road Laurel, Maryland 20723-6099 U.S.A. [email protected] Stochastic optimization algorithms have been growing rapidly in popularity over the last decade or two, with a number of methods now becoming “industry standard” approaches for solving challenging optimization problems. This chapter provides a synopsis of some of the critical issues associated with stochastic optimization and a gives a summary of several popular algorithms. Much more complete discussions are available in the indicated references. To help constrain the scope of this article, we restrict our attention to methods using only measurements of the criterion (loss function). Hence, we do not cover the many stochastic methods using information such as gradients of the loss function. Section 1 discusses some general issues in stochastic optimization. Section 2 discusses random search methods, which are simple and surprisingly powerful in many applications. Section 3 discusses stochastic approximation, which is a foundational approach in stochastic optimization. Section 4 discusses a popular method that is based on connections to natural evolution—genetic algorithms. Finally, Section 5 offers some concluding remarks. 1 Introduction 1.1 General Background Stochastic optimization plays a significant role in the analysis, design, and operation of modern systems. Methods for stochastic optimization provide a means of coping with inherent system noise and coping with models or systems that are highly nonlinear, high dimensional, or otherwise inappropriate for classical deterministic methods of optimization.
    [Show full text]
  • 7. Concepts in Probability, Statistics and Stochastic Modelling
    wrm_ch07.qxd 8/31/2005 12:18 PM Page 168 7. Concepts in Probability, Statistics and Stochastic Modelling 1. Introduction 169 2. Probability Concepts and Methods 170 2.1. Random Variables and Distributions 170 2.2. Expectation 173 2.3. Quantiles, Moments and Their Estimators 173 2.4. L-Moments and Their Estimators 176 3. Distributions of Random Events 179 3.1. Parameter Estimation 179 3.2. Model Adequacy 182 3.3. Normal and Lognormal Distributions 186 3.4. Gamma Distributions 187 3.5. Log-Pearson Type 3 Distribution 189 3.6. Gumbel and GEV Distributions 190 3.7. L-Moment Diagrams 192 4. Analysis of Censored Data 193 5. Regionalization and Index-Flood Method 195 6. Partial Duration Series 196 7. Stochastic Processes and Time Series 197 7.1. Describing Stochastic Processes 198 7.2. Markov Processes and Markov Chains 198 7.3. Properties of Time-Series Statistics 201 8. Synthetic Streamflow Generation 203 8.1. Introduction 203 8.2. Streamflow Generation Models 205 8.3. A Simple Autoregressive Model 206 8.4. Reproducing the Marginal Distribution 208 8.5. Multivariate Models 209 8.6. Multi-Season, Multi-Site Models 211 8.6.1. Disaggregation Models 211 8.6.2. Aggregation Models 213 9. Stochastic Simulation 214 9.1. Generating Random Variables 214 9.2. River Basin Simulation 215 9.3. The Simulation Model 216 9.4. Simulation of the Basin 216 9.5. Interpreting Simulation Output 217 10. Conclusions 223 11. References 223 wrm_ch07.qxd 8/31/2005 12:18 PM Page 169 169 7 Concepts in Probability, Statistics and Stochastic Modelling Events that cannot be predicted precisely are often called random.
    [Show full text]