H-R Diagram Lab Vocabulary: Luminosity: Brightness – Dependent

Total Page:16

File Type:pdf, Size:1020Kb

H-R Diagram Lab Vocabulary: Luminosity: Brightness – Dependent H-R Diagram Lab Vocabulary: luminosity: brightness – dependent on a star’s size; temperature and distance spectral class: classification of stars by their spectrum and luminosity magnitude: measure of the brightness of a star or other celestial objects The development of the H-R Diagram began with Danish astronomer Ejnar Hertzsprung who began plotting the stars around 1911. American astronomer Henry Norris Russell independently developed his own diagram. These two scientists independently discovered that comparing magnitudes and spectral class (color) of stars yielded a lot of information about them. Together, they created a diagram on which they mapped stars by magnitude and spectral class. After the astronomers had completed graphing the stars, they noticed that several patterns appeared. First, they noticed that ninety per cent of the stars fell along a diagonal line from the top-left corner to the bottom-right corner. These are called main sequence stars, of which our Sun is a member. Another pattern they noticed was that the Cepheid’s (class of variable stars that brighten and dim in a regular fashion); giants; super-giants and dwarfs fell into groupings quite separate from the main sequence stars. The white dwarfs were on the bottom-left; the red super-giants were in the upper-right; red giants were on the diagonal that those two made; blue giants were slightly to the right of the start of the main sequence; Cepheid’s were in the upper middle. Objective: Investigate the relationship between stars temperature, brightness and diameter. Background: The H-R diagram is a graph of star brightness versus star temperature. When many stars are plotted on an H-R diagram, it is found that they fall into groups. These groupings indicate star sizes and are clues to how the stars change during their lifetime. The measure of star brightness used in the H-R diagram is termed absolute magnitude. A star’s absolute magnitude is not affected by its distance from Earth. The smaller the absolute magnitude, the brighter the star. The very brightest stars have negative magnitudes. Materials: Pencil, graph paper Procedure: 1. Using the graph below, plot the stars from Group 1. 2. Once you have plotted the stars from Group 1, answer the following questions. Label this group of questions as “Group 1 Questions.” a. What would you tell someone who thinks that all stars are very similar (be sure to discuss temperature and brightness)? b. How does our sun compare to other stars in brightness and temperature? c. Are the stars scattered randomly on the graph, or is there a pattern? Explain. d. Would you expect hotter stars to be dim or bright? Does the graph agree with this answer? 3. Using the same graph, plot the stars from Group 2. 4. Once you have plotted the stars from Group 2, answer the following questions. Label this group of questions as “Group 2 Questions.” a. Do the Group 2 stars follow the same pattern as the Group 1 stars that you plotted? Explain. b. Overall, are the stars in Group 2 very bright or very dim? c. Are these stars hot or cool compared to other stars? d. Is the relationship of brightness to temperature for these stars puzzling, or does it make sense? Explain. 5. Using the same graph, plot the stars from Group 3. 6. Once you have plotted the stars from Group 3, answer the following questions. Label this group of questions as “Group 3 Questions.” a. Compare the areas of the graph where the Group 2 and Group 3 stars are plotted. How are they different? b. Overall, are the stars in Group 3 very bright or very dim? c. Are these stars hot or cool compared to other stars? d. Is the relationship of brightness to temperature for these stars puzzling, or does it make sense? Explain. 7. Conclusion – you may wish to consult your textbook and use the internet to assist in answering the following questions. a. As you can see from the Group 1 stars, the cooler or hotter a star is, the brighter the star. The Group 2 and Group 3 stars do not follow this pattern. Hence, there must be something besides temperature that can affect the brightness of stars. Describe your own theory about these stars (Group 2 and Group 3). Why would their brightness not be strictly related to their temperature? b. What is the "Main Sequence?" c. Label the Main Sequence on your H-R Diagram. d. What percent of all stars are on the Main Sequence? e. Label “dwarfs" and "giants" on your H-R Diagram. f. Explain the process of Nuclear Fusion. g. Why is the process of nuclear fusion important? h. Summarize the history and probable future of our sun (a main sequence star). How did it begin and how will it end its life cycle? Be sure to include the following terms in your discussion: nebula; fusion; gravity; giant; white dwarf. i. Define the following terms: super-giant; supernova; neutron star; black hole. j. What determines if a star will end its life as a white dwarf, a neutron star or a black hole? k. At the beginning of the universe, scientists believe it contained only what two elements? l. Where were all of the other elements formed? m. Why aren’t the Group 2 and Group 3 stars not on the Main Sequence? Graph: Data: Group 1 Visual Distance Temperature Luminosity Magnitude (light-years) (Kelvin) (Sun = 1) (Apparent) (Absolute) * 1 Sun -26.7 0.00002 5,800 1.00 * 2 Alpha Centauri A -0.01 4.3 5,800 1.5 * 3 Alpha Centauri B +1.4 4.3 4,200 0.33 * 4 Alpha Centauri C +11.0 4.3 2,800 0.0001 * 5 Wolf 359 +13.66 7.7 2,700 0.00003 * 6 Lalande 21185 +7.47 8.1 3,200 0.0055 * 7 Sirius A -1.43 8.7 10,400 23.0 * 8 Luyten 726-8 A +12.5 8.7 2,700 0.00006 * 9 Luyten 726-8 B +12.9 8.7 2,700 0.00002 * 10 Ross 154 +10.6 9.6 2,800 0.00041 * 11 Ross 248 +12.24 10.3 2,700 0.00011 * 12 Epsilon Eridani +3.73 10.8 4,500 0.30 * 13 Ross 128 +11.13 11.0 2,800 0.00054 * 14 61 Cygni A +5.19 11.1 4,200 0.084 * 15 61 Cygni B +6.02 11.1 3,900 0.039 * 16 Procyon A +0.38 11.3 6,500 7.3 * 17 Epsilon Indi +4.73 11.4 4,200 0.14 * 18 Vega +0.04 26.0 10,700 55.0 * 19 Achernar +0.51 65.0 14,000 200.0 * 20 Beta Centauri +0.63 300.0 21,000 5,000.0 * 21 Altair +0.77 16.5 8,000 11.0 * 22 Spica +0.91 260.0 21,000 2,800.0 * 23 Delta Aquarii A +3.28 84 9,400 24.0 * 24 70 Ophiuchi A +4.3 17 5,100 0.6 * 25 Delta Persei +3.03 590 17,000 1,300.0 * 26 Zeta Persei A +2.83 465 24,000 16,000.0 * 27 Tau Scorpii +2.82 233 25,000 2,500.0 Data: Group 2 Visual Distance Temperature Luminosity Magnitude (light-years) (Kelvin) (Sun = 1) (Apparent) (Absolute) * 28 Arcturus -0.06 36.0 4,500 110.0 * 29 Betelgeuse +0.41 500.0 3,200 17,000.0 * 30 Aldebaran +0.86 53.0 4,200 100.0 * 31 Antares +0.92 400.0 3,400 5,000.0 * 32 Delta Aquarii B +2.86 1030 6,000 4,300.0 Data: Group 3 Visual Distance Temperature Luminosity Magnitude (light-years) (Kelvin) (Sun = 1) (Apparent) (Absolute) * 33 Sirius B +8.5 8.7 10,700 0.0024 * 34 Procyon B +10.7 11.3 7,400 0.00055 * 35 Grw +70 8247 +13.19 49 9,800 0.0013 * 36 L 879-14 +14.10 63? 6,300 0.00068 * 37 Van Maanen's Star +12.36 14 7,500 0.00016 * 38 W 219 +15.20 46 7,400 0.00021 * 39 Barnard's Star +9.54 6.0 2,800 0.00045 * 40 Luyten 789-6 +12.58 11.0 2,700 0.00009 * 41 Canopus -0.72 100.0 7,400 1,500.0 * 42 Capella +0.05 47.0 5,900 170.0 * 43 Rigel +0.14 800.0 11,800 40,000.0 * 44 Alpha Crucis +1.39 400.0 21,000 4,000.0 * 45 Fomalhaut +1.19 23.0 9,500 14.0 * 46 Deneb +1.26 1,400.0 9,900 60,000.0 * 47 Beta Crucis +1.28 500.0 22,000 6,000.0 Website Used: http://www.sir-ray.com/H-R%20Diagram%20Print.htm .
Recommended publications
  • Modeling Super-Earth Atmospheres in Preparation for Upcoming Extremely Large Telescopes
    Modeling Super-Earth Atmospheres In Preparation for Upcoming Extremely Large Telescopes Maggie Thompson1 Jonathan Fortney1, Andy Skemer1, Tyler Robinson2, Theodora Karalidi1, Steph Sallum1 1University of California, Santa Cruz, CA; 2Northern Arizona University, Flagstaff, AZ ExoPAG 19 January 6, 2019 Seattle, Washington Image Credit: NASA Ames/JPL-Caltech/T. Pyle Roadmap Research Goals & Current Atmosphere Modeling Selecting Super-Earths for State of Super-Earth Tool (Past & Present) Follow-Up Observations Detection Preliminary Assessment of Future Observatories for Conclusions & Upcoming Instruments’ Super-Earths Future Work Capabilities for Super-Earths M. Thompson — ExoPAG 19 01/06/19 Research Goals • Extend previous modeling tool to simulate super-Earth planet atmospheres around M, K and G stars • Apply modified code to explore the parameter space of actual and synthetic super-Earths to select most suitable set of confirmed exoplanets for follow-up observations with JWST and next-generation ground-based telescopes • Inform the design of advanced instruments such as the Planetary Systems Imager (PSI), a proposed second-generation instrument for TMT/GMT M. Thompson — ExoPAG 19 01/06/19 Current State of Super-Earth Detections (1) Neptune Mass Range of Interest Earth Data from NASA Exoplanet Archive M. Thompson — ExoPAG 19 01/06/19 Current State of Super-Earth Detections (2) A Approximate Habitable Zone Host Star Spectral Type F G K M Data from NASA Exoplanet Archive M. Thompson — ExoPAG 19 01/06/19 Atmosphere Modeling Tool Evolution of Atmosphere Model • Solar System Planets & Moons ~ 1980’s (e.g., McKay et al. 1989) • Brown Dwarfs ~ 2000’s (e.g., Burrows et al. 2001) • Hot Jupiters & Other Giant Exoplanets ~ 2000’s (e.g., Fortney et al.
    [Show full text]
  • A Spectroscopic Atlas of Deneb (A2 Iae) $\Lambda\Lambda$3826–5212
    A&A 400, 1043–1049 (2003) Astronomy DOI: 10.1051/0004-6361:20030014 & c ESO 2003 Astrophysics A spectroscopic atlas of Deneb (A2 Iae) λλ3826–5212? B. Albayrak1,A.F.Gulliver2,??,S.J.Adelman3,??, C. Aydın1,andD.Ko¸cer4 1 Ankara University, Science Faculty, Department of Astronomy and Space Sciences, 06100, Tando˘gan, Ankara, Turkey e-mail: albayrak@astro1.science.ankara.edu.tr; aydin@astro1.science.ankara.edu.tr 2 Department of Physics and Astronomy, Brandon University, Brandon, MB, R7A 6A9, Canada e-mail: gulliver@brandonu.ca 3 Department of Physics, The Citadel, 171 Moultrie Street, Charleston, SC 29409, USA e-mail: adelmans@citadel.edu 4 Istanbul˙ K¨ult¨ur University, Science & Art Faculty, Department of Mathematics, E5 Karayolu Uzeri,¨ 34510, S¸irinevler, Istanbul,˙ Turkey e-mail: d.kocer@iku.edu.tr Received 2 December 2002 / Accepted 6 January 2003 Abstract. We present a spectroscopic atlas of Deneb (A2 Iae) obtained with the long camera of the 1.22-m telescope of the 1 Dominion Astrophysical Observatory using Reticon and CCD detectors. For λλ3826–5212 the inverse dispersion is 2.4 Å mm− with a resolution of 0.072 Å. At the continuum the mean signal-to-noise ratio is 1030. The wavelengths in the laboratory frame, the equivalent widths, and the identifications of the various spectral features are given. This atlas should provide useful guidance for studies of other stars with similar spectral types. The stellar and synthetic spectra with their corresponding line identifications can be examined at http://www.brandonu.ca/physics/gulliver/atlases.html Key words. atlases – stars: early type – stars: individual: Deneb – stars: supergiants 1.
    [Show full text]
  • 100 Closest Stars Designation R.A
    100 closest stars Designation R.A. Dec. Mag. Common Name 1 Gliese+Jahreis 551 14h30m –62°40’ 11.09 Proxima Centauri Gliese+Jahreis 559 14h40m –60°50’ 0.01, 1.34 Alpha Centauri A,B 2 Gliese+Jahreis 699 17h58m 4°42’ 9.53 Barnard’s Star 3 Gliese+Jahreis 406 10h56m 7°01’ 13.44 Wolf 359 4 Gliese+Jahreis 411 11h03m 35°58’ 7.47 Lalande 21185 5 Gliese+Jahreis 244 6h45m –16°49’ -1.43, 8.44 Sirius A,B 6 Gliese+Jahreis 65 1h39m –17°57’ 12.54, 12.99 BL Ceti, UV Ceti 7 Gliese+Jahreis 729 18h50m –23°50’ 10.43 Ross 154 8 Gliese+Jahreis 905 23h45m 44°11’ 12.29 Ross 248 9 Gliese+Jahreis 144 3h33m –9°28’ 3.73 Epsilon Eridani 10 Gliese+Jahreis 887 23h06m –35°51’ 7.34 Lacaille 9352 11 Gliese+Jahreis 447 11h48m 0°48’ 11.13 Ross 128 12 Gliese+Jahreis 866 22h39m –15°18’ 13.33, 13.27, 14.03 EZ Aquarii A,B,C 13 Gliese+Jahreis 280 7h39m 5°14’ 10.7 Procyon A,B 14 Gliese+Jahreis 820 21h07m 38°45’ 5.21, 6.03 61 Cygni A,B 15 Gliese+Jahreis 725 18h43m 59°38’ 8.90, 9.69 16 Gliese+Jahreis 15 0h18m 44°01’ 8.08, 11.06 GX Andromedae, GQ Andromedae 17 Gliese+Jahreis 845 22h03m –56°47’ 4.69 Epsilon Indi A,B,C 18 Gliese+Jahreis 1111 8h30m 26°47’ 14.78 DX Cancri 19 Gliese+Jahreis 71 1h44m –15°56’ 3.49 Tau Ceti 20 Gliese+Jahreis 1061 3h36m –44°31’ 13.09 21 Gliese+Jahreis 54.1 1h13m –17°00’ 12.02 YZ Ceti 22 Gliese+Jahreis 273 7h27m 5°14’ 9.86 Luyten’s Star 23 SO 0253+1652 2h53m 16°53’ 15.14 24 SCR 1845-6357 18h45m –63°58’ 17.40J 25 Gliese+Jahreis 191 5h12m –45°01’ 8.84 Kapteyn’s Star 26 Gliese+Jahreis 825 21h17m –38°52’ 6.67 AX Microscopii 27 Gliese+Jahreis 860 22h28m 57°42’ 9.79,
    [Show full text]
  • Books, Magazines and Organizations
    Contents 1 Some Background ..................................................................................... 1 The Many Types of Objects ........................................................................ 2 Telescope and Observing Essentials ........................................................... 3 Binoculars or Telescopes? ....................................................................... 3 Magnification .......................................................................................... 5 Resolution ............................................................................................... 8 Limiting Magnitude ................................................................................ 10 Field of View ........................................................................................... 11 Atmospheric Effects ................................................................................ 12 Dark Adaption and Averted Vision ......................................................... 14 Clothing................................................................................................... 16 Recording Observations .......................................................................... 17 The Science of Astronomy .......................................................................... 17 Angular Measurements ........................................................................... 18 Date and Time ......................................................................................... 18
    [Show full text]
  • A Joint ESA-CONSTELLATION Workshop on the Formation of Brown Dwarfs
    -ESA- Space Science Faculty Courtesy NASA/JPL-Caltech CONSTELLATION is a European Commission Sixth Framework Marie Curie Research Training Network (contract number MRTN-CT-2006-035890) A joint ESA-CONSTELLATION workshop on the formation of brown dwarfs Contact info: lspezzi@rssd.esa.int! www.rssd.esa.int/BD2009 Gemini Observatory/AURA WORKSHOP Recipes for making brownies: theory vs. observations Scientific Rationale: The origin of Brown Dwarfs (BDs) is an important component of the theory of star formation. Recent ground based and satellite observations are revealing an increasing number of BDs; however, their origin remains somewhat mysterious as their mass is 2 orders of magnitude below the average Jeans mass in star-forming clouds. Explaining why they are so common thus requires detailed understanding of the fragmentation processes during star formation, as well as exploring other formation scenarios. This workshop will focus on recent theoretical and observational progresses in the field of BD formation as well as explore current and future perspectives. Our purpose is to bring together the leading experts working in this field, foster new collabora- tions and, in particular, promote extended interactions among young PhD/post-doc researchers. SOC: L. Spezzi (chair, ESTEC) B. Mer´ın(ESAC) D. Stamatellos (University of Cardiff) V. Konyves (CEA/Saclay,SAp) C. Alves de Oliveira (LAOG, Grenoble) LOC: L. Spezzi (co-chair) J. Walcher (co-chair) G. Beccari Program: 9 September 2009 08:30 - 10:00 Registration + Coffee 10:00 - 10:15 Opening 10:15 - 11:00 I. Bonnell, BD formation, an introductory review Session 1: Observations of BDs Chairman: E. Mouraux 11:00 - 11:30 K.
    [Show full text]
  • SEPTEMBER 2014 OT H E D Ebn V E R S E R V ESEPTEMBERR 2014
    THE DENVER OBSERVER SEPTEMBER 2014 OT h e D eBn v e r S E R V ESEPTEMBERR 2014 FROM THE INSIDE LOOKING OUT Calendar Taken on July 25th in San Luis State Park near the Great Sand Dunes in Colorado, Jeff made this image of the Milky Way during an overnight camping stop on the way to Santa Fe, NM. It was taken with a Canon 2............................. First quarter moon 60D camera, an EFS 15-85 lens, using an iOptron SkyTracker. It is a single frame, with no stacking or dark/ 8.......................................... Full moon bias frames, at ISO 1600 for two minutes. Visible in this south-facing photograph is Sagittarius, and the 14............ Aldebaran 1.4˚ south of moon Dark Horse Nebula inside of the Milky Way. He processed the image in Adobe Lightroom. Image © Jeff Tropeano 15............................ Last quarter moon 22........................... Autumnal Equinox 24........................................ New moon Inside the Observer SEPTEMBER SKIES by Dennis Cochran ygnus the Swan dives onto center stage this other famous deep-sky object is the Veil Nebula, President’s Message....................... 2 C month, almost overhead. Leading the descent also known as the Cygnus Loop, a supernova rem- is the nose of the swan, the star known as nant so large that its separate arcs were known Society Directory.......................... 2 Albireo, a beautiful multi-colored double. One and named before it was found to be one wide Schedule of Events......................... 2 wonders if Albireo has any planets from which to wisp that came out of a single star. The Veil is see the pair up-close.
    [Show full text]
  • Exoplanet Exploration Program Updates
    Exoplanet Exploration Program Updates Dr. Gary H. Blackwood, Program Manager Dr. Karl R. Stapelfeldt, Program Chief Scientist Jet Propulsion Laboratory California Institute of Technology January 7, 2018 ExoPAG 17, National Harbor, Maryland © 2018 All rights reserved Artist concept of Kepler-16b Kepler / K2 Program Progress vs 2010 Decadal Priorities Program Science Updates NASA Exoplanet Exploration Program Astrophysics Division, NASA Science Mission Directorate NASA's search for habitable planets and life beyond our solar system Program purpose described in 2014 NASA Science Plan 1. Discover planets around other stars 2. Characterize their properties 3. Identify candidates that could harbor life ExEP serves the science community and NASA by implementing NASA’s space science vision for exoplanets https://exoplanets.nasa.gov WFIRST JWST2 PLATO Missions TESS Kepler LUVOIR5 CHEOPS 4 Spitzer Gaia Hubble1 Starshade HabEx5 CoRoT3 Rendezvous5 OST5 NASA Non-NASA Missions Missions W. M. Keck Observatory Large Binocular 1 NASA/ESA Partnership Telescope Interferometer NN-EXPLORE 2 NASA/ESA/CSA Partnership 3 CNES/ESA Ground Telescopes with NASA participation 5 4 ESA/Swiss Space Office 2020 Decadal Survey Studies NASA Exoplanet Exploration Program Space Missions and Mission Studies Communications Kepler & Probe-Scale Studies K2 Starshade Coronagraph Supporting Research & Technology Key NASA Exoplanet Science Institute Sustaining Occulting Technology Development Research Masks Deformable Mirrors NN-EXPLORE Keck Single Archives, Tools, Sagan Fellowships, Aperture Professional Engagement Imaging & RV High-Contrast Imaging Deployable Starshades Large Binocular Telescope Interferometer https://exoplanets.nasa.gov 4 NASA Exoplanet Exploration Program Astrophysics Division, Science Mission Directorate Program Office (JPL) PM- Dr. G. Blackwood DPM- K. Short Chief Scientist – Dr.
    [Show full text]
  • The Midnight Sky: Familiar Notes on the Stars and Planets, Edward Durkin, July 15, 1869 a Good Way to Start – Find North
    The expression "dog days" refers to the period from July 3 through Aug. 11 when our brightest night star, SIRIUS (aka the dog star), rises in conjunction* with the sun. Conjunction, in astronomy, is defined as the apparent meeting or passing of two celestial bodies. TAAS Fabulous Fifty A program for those new to astronomy Friday Evening, July 20, 2018, 8:00 pm All TAAS and other new and not so new astronomers are welcome. What is the TAAS Fabulous 50 Program? It is a set of 4 meetings spread across a calendar year in which a beginner to astronomy learns to locate 50 of the most prominent night sky objects visible to the naked eye. These include stars, constellations, asterisms, and Messier objects. Methodology 1. Meeting dates for each season in year 2018 Winter Jan 19 Spring Apr 20 Summer Jul 20 Fall Oct 19 2. Locate the brightest and easiest to observe stars and associated constellations 3. Add new prominent constellations for each season Tonight’s Schedule 8:00 pm – We meet inside for a slide presentation overview of the Summer sky. 8:40 pm – View night sky outside The Midnight Sky: Familiar Notes on the Stars and Planets, Edward Durkin, July 15, 1869 A Good Way to Start – Find North Polaris North Star Polaris is about the 50th brightest star. It appears isolated making it easy to identify. Circumpolar Stars Polaris Horizon Line Albuquerque -- 35° N Circumpolar Stars Capella the Goat Star AS THE WORLD TURNS The Circle of Perpetual Apparition for Albuquerque Deneb 1 URSA MINOR 2 3 2 URSA MAJOR & Vega BIG DIPPER 1 3 Draco 4 Camelopardalis 6 4 Deneb 5 CASSIOPEIA 5 6 Cepheus Capella the Goat Star 2 3 1 Draco Ursa Minor Ursa Major 6 Camelopardalis 4 Cassiopeia 5 Cepheus Clock and Calendar A single map of the stars can show the places of the stars at different hours and months of the year in consequence of the earth’s two primary movements: Daily Clock The rotation of the earth on it's own axis amounts to 360 degrees in 24 hours, or 15 degrees per hour (360/24).
    [Show full text]
  • The Photosphere and Circumstellar Environment of the Be Star Achernar
    New windows on massive stars: asteroseismology, interferometry, and spectropolarimetry Proceedings IAU Symposium No. 307, 2014 c International Astronomical Union 2015 G.Meynet,C.Georgy,J.H.Groh&Ph.Stee,eds. doi:10.1017/S1743921314006905 The photosphere and circumstellar environment of the Be star Achernar Daniel M. Faes1,2, Armando Domiciano de Souza2,AlexC.Carciofi1 and Philippe Bendjoya2 1 Instituto de Astronomia, Geof´ısica e Ciˆencias Atmosf´ericas, Universidade de S˜ao Paulo, Rua do Mat˜ao 1226, Cidade Universit´aria, 05508-900, S˜ao Paulo, SP, Brazil email: moser@usp.br 2 Lab. J.-L. Lagrange, UMR 7293 - Observatoire de la Cˆote d’Azur (OCA), Univ. de Nice-Sophia Antipolis (UNS), CNRS, Valrose, 06108 Nice, France Abstract. Achernar is a key target to investigate high stellar rotation and the Be phenonemon. It is also the hottest star for which detailed photospheric information is available. Here we report our results to determine the photospheric parameters of Achernar and evaluate how the emission of a Viscous Decretion Disk (VDD) around it would be observable. The analysis is based on interferometric data (PIONIER and AMBER at ESO-VLTI), complemented by spectroscopy and polarimetry for the circumstellar emission. For the first time fundamental parameters of a Be photosphere were determined. The presence of a residual disk at the quiescent phase and some characteristics of the new formed disk (2013 activity) are also discussed. This is rare opportunity to precisely determine the stellar brightness distribution and evaluate the evolution of a just formed Be disk. Keywords. stars: individual (Achernar), stars: fundamental parameters, techniques: interfero- metric, circumstellar matter, stars: emission-line, Be 1.
    [Show full text]
  • 2021 Solar Rituality and Ephemerides
    HE LANETARY YSTEM T P S Ideas, Formulas and Forms for a new Culture/Civilization 2021 SOLAR RITUALITY AND EPHEMERIDES (December 2020) info@theplanetarysystem.org 1 2021 SOLAR RITUALITY AND EPHEMERIDES A rhythmic and ritual coordination and sowing for a planetary Order The TPS solar Sowing Ia, Fa a F a C a Ca intends to a a a" a aa " a ba a " the cyclic pulsations of the higher Creators, the planetary, solar and cosmic Entities: the conscious Dream of a New Culture and Civilization, as a manifestation on Earth of the evolutionary Plan and of a new human planetary Order.1 By working we learn to work, and in this Workshop of spatial Thought we learn together to build more and more knowingly Harmonic Thought-forms, as a result of a right or heavenly way of being and existing, in order to set up a better Future and to progressively release our humanity from its lower trammels. Humanity can and has to spread, in an impersonal and disinterested way, Seeds or Ideas capable of fertilizing consciousness making it resound to infinity: "Culture is a treasure of consciousness, therefore the field of the sowing of the new Thought is the human consciousness ... It is a vast field like Heaven: no one knows its boundaries. Thus the seeds to be spread have no number or form ... Only with formless seeds an infinite field can be cultivated. And the soil of human consciousness is ready to welcome them: many signs prove it, both above and below, and sowing cannot be deferred".
    [Show full text]
  • GTO Keypad Manual, V5.001
    ASTRO-PHYSICS GTO KEYPAD Version v5.xxx Please read the manual even if you are familiar with previous keypad versions Flash RAM Updates Keypad Java updates can be accomplished through the Internet. Check our web site www.astro-physics.com/software-updates/ November 11, 2020 ASTRO-PHYSICS KEYPAD MANUAL FOR MACH2GTO Version 5.xxx November 11, 2020 ABOUT THIS MANUAL 4 REQUIREMENTS 5 What Mount Control Box Do I Need? 5 Can I Upgrade My Present Keypad? 5 GTO KEYPAD 6 Layout and Buttons of the Keypad 6 Vacuum Fluorescent Display 6 N-S-E-W Directional Buttons 6 STOP Button 6 <PREV and NEXT> Buttons 7 Number Buttons 7 GOTO Button 7 ± Button 7 MENU / ESC Button 7 RECAL and NEXT> Buttons Pressed Simultaneously 7 ENT Button 7 Retractable Hanger 7 Keypad Protector 8 Keypad Care and Warranty 8 Warranty 8 Keypad Battery for 512K Memory Boards 8 Cleaning Red Keypad Display 8 Temperature Ratings 8 Environmental Recommendation 8 GETTING STARTED – DO THIS AT HOME, IF POSSIBLE 9 Set Up your Mount and Cable Connections 9 Gather Basic Information 9 Enter Your Location, Time and Date 9 Set Up Your Mount in the Field 10 Polar Alignment 10 Mach2GTO Daytime Alignment Routine 10 KEYPAD START UP SEQUENCE FOR NEW SETUPS OR SETUP IN NEW LOCATION 11 Assemble Your Mount 11 Startup Sequence 11 Location 11 Select Existing Location 11 Set Up New Location 11 Date and Time 12 Additional Information 12 KEYPAD START UP SEQUENCE FOR MOUNTS USED AT THE SAME LOCATION WITHOUT A COMPUTER 13 KEYPAD START UP SEQUENCE FOR COMPUTER CONTROLLED MOUNTS 14 1 OBJECTS MENU – HAVE SOME FUN!
    [Show full text]
  • The Spinning-Top Be Star Achernar from VLTI-VINCI
    A&A 407, L47–L50 (2003) Astronomy DOI: 10.1051/0004-6361:20030786 & c ESO 2003 Astrophysics The spinning-top Be star Achernar from VLTI-VINCI A. Domiciano de Souza1,P.Kervella2,S.Jankov3,L.Abe1, F. Vakili1,3,E.diFolco4, and F. Paresce4 1 Laboratoire Univ. d’Astroph. de Nice (LUAN), CNRS UMR 6525, Parc Valrose, 06108 Nice Cedex 02, France 2 European Southern Observatory (ESO), Alonso de Cordova 3107, Casilla 19001, Vitacura, Santiago 19, Chile 3 Observatoire de la Cˆote d’Azur, D´epartement FRESNEL, CNRS UMR 6528, Boulevard de l’Observatoire, Letter to the Editor BP 4229, 06304 Nice, France 4 European Southern Observatory (ESO), Karl-Schwarzschild str. 2, 85748 Garching, Germany Received 5 May 2003 / Accepted 22 May 2003 Abstract. We report here the first observations of a rapidly rotating Be star, α Eridani, using Earth-rotation synthesis on the Very Large Telescope (VLT) Interferometer. Our measures correspond to a 2a/2b = 1.56 0.05 apparent oblate star, 2a and 2b being the equivalent uniform disc angular diameters in the equatorial and polar direction. Considering± the presence of a circum- stellar envelope (CSE) we argue that our measurement corresponds to a truly distorted star since α Eridani exhibited negligible Hα emission during the interferometric observations. In this framework we conclude that the commonly adopted Roche approx- imation (uniform rotation and centrally condensed mass) should not apply to α Eridani. This result opens new perspectives to basic astrophysical problems, such as rotationally enhanced mass loss and internal angular momentum distribution. In addition to its intimate relation with magnetism and pulsation, rapid rotation thus provides a key to the Be phenomenon: one of the outstanding non-resolved problems in stellar physics.
    [Show full text]