Microbenchmark-Based Graph Database Evaluation

Total Page:16

File Type:pdf, Size:1020Kb

Microbenchmark-Based Graph Database Evaluation Beyond Macrobenchmarks: Microbenchmark-based Graph Database Evaluation Matteo Lissandrini Martin Brugnara Yannis Velegrakis Aalborg University University of Trento University of Trento [email protected] [email protected] [email protected] ABSTRACT There are two categories of graph management systems Despite the increasing interest in graph databases their re- that address two complementary yet distinct sets of func- quirements and specifications are not yet fully understood tionalities. The first is that of graph processing systems [27, by everyone, leading to a great deal of variation in the sup- 42,44], which analyze graphs to discover characteristic prop- ported functionalities and the achieved performances. In erties, e.g., average connectivity degree, density, and mod- this work, we provide a comprehensive study of the exist- ularity. They also perform batch analytics at large scale, ing graph database systems. We introduce a novel micro- implementing computationally expensive graph algorithms, benchmarking framework that provides insights on their per- such as PageRank [54], SVD [23], strongly connected com- formance that go beyond what macro-benchmarks can of- ponents identification [63], and core identification [12, 20]. fer. The framework includes the largest set of queries and Those are systems like GraphLab, Giraph, Graph Engine, operators so far considered. The graph database systems and GraphX [67]. The second category is that of graph are evaluated on synthetic and real data, from different do- databases (GDB for short) [5]. Their focus is on storage mains, and at scales much larger than any previous work. and querying tasks where the priority is on high-throughput The framework is materialized as an open-source suite and and transactional operations. Examples in this category are is easily extended to new datasets, systems, and queries1. Neo4j [51], OrientDB [53], Sparksee [60] (formerly known as DEX), Titan [64] (recently renamed to JanusGraph), PVLDB Reference Format: ArangoDB [11] and BlazeGraph [62]. To make this distinc- Matteo Lissandrini, Martin Brugnara, and Yannis Velegrakis. Be- tion clear, graph processing systems, can, in some sense, be yond Macrobenchmarks: Microbenchmark-based Graph Database Evaluation. PVLDB, 12(4): 390–403, 2018. seen as the graph world parallel to OLAP systems, while DOI: https://doi.org/10.14778/3297753.3297759 graph databases as the parallel to the OLTP systems. Graph processing systems and their evaluation have re- 1. INTRODUCTION ceived considerable attention [27, 32, 42, 44]. Instead, graph databases lag far behind. Our focus is specifically on graph Graphs have become increasingly important for a wide databases aiming to reduce this gap, with a two-fold contri- range of applications [17, 41] and domains, including bi- bution. First, the introduction of a novel evaluation method- ological data [16], knowledge graphs [61], and social net- ology for graph databases that complements existing ap- works [31]. As graph data is becoming prevalent, larger, proaches, and second, the generation of a number of insights and more complex, the need for efficient and effective graph on the performance of the existing GDBs. Some experi- management is becoming apparent. Since graph manage- mental comparisons of graph databases do exist [22, 37, 38]. ment systems are a relatively new technology, their features, However, they test a limited set of features providing a par- performances, and capabilities are not yet fully understood tial understanding of the systems, experiment at small scale neither agreed upon. Thus, there is a need for effective making assumptions not verifiable at large scale [37, 38], benchmarks to provide a comprehensive picture of the dif- sometimes provide contradicting results, and fail to pinpoint ferent systems. This is of major importance for practition- the fine-grained limitations that each system has. ers, in order to understand the capabilities and limitations Motivated by the above, we provide a complete and sys- of each system, for researchers to decide where to invest tematic evaluation of existing graph databases, that is not their efforts, and for developers to be able to evaluate their provided by any other existing work to date. We test 35 systems and compare with competitors. classes of operations with both single queries and batch 1https://graphbenchmark.com workloads for a total of about 70 different tests, as opposed to the 4-13 that existing studies have done, and we scale our experiments up to 76M nodes/ 314M edges, as opposed This work is licensed under the Creative Commons Attribution- to the 250K nodes/2.2M edges of existing works. Our tests NonCommercial-NoDerivatives 4.0 International License. To view a copy cover all the types of insert-select-update-delete queries that of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For have so far been considered, and in addition, cover a whole any use beyond those covered by this license, obtain permission by emailing new spectrum of use-cases, data-types and scales. Moreover, [email protected]. Copyright is held by the owner/author(s). Publication rights we study workloads and datasets both synthetic and real. licensed to the VLDB Endowment. Proceedings of the VLDB Endowment, Vol. 12, No. 4 Micro-benchmarking. In designing the evaluation method- ISSN 2150-8097. ology we follow a principled micro-benchmarking approach. DOI: https://doi.org/10.14778/3297753.3297759 390 To substantiate our choice, we look at the test queries pro- 32,43,45,68]. Such systems are designed for computationally vided by the popular LDBC Social Network benchmark [26], expensive algorithms that often require traversing all the and show how the produced results are ambiguous and lim- graph multiple times to obtain an answer, like page rank, or ited in providing a clear picture of the advantages of each community detection. Such systems are very different in na- system. So, instead of considering queries with such a com- ture from graph database systems, thus, in their evaluation, plex structure, we opt for a set of primitive operators. The “needle in the haystack” queries like those that are typical of primitive operators are derived by decomposing the complex transactional workloads are not considered. Of course, there queries found in LDBC, the related literature, and some real are proposals for unified graph processing and database sys- application scenarios. Their advantage is that they are often tems [27], but this idea is in its infancy. Our focus is not on implemented by opaque components in the system, thus, by graph processing systems or their functionalities. identifying the underperformed operators one can pinpoint Evaluating Graph Databases. In contrast to graph pro- the exact components that underperform. Furthermore, any cessing systems, graph databases are designed for transac- complex query can be typically decomposed into a combi- tional workloads and “needle in the haystack” operations, nation of primitive operations, thus, its performance can be i.e., queries that identify and retrieve a small part of the explained by the performance of the components implement- data. Existing evaluation works [3, 5] for such systems are ing them. Query optimizers may change the order of the limited in describing the systems implementation, data mod- basic operators, or select among different implementations, elling, and query capabilities, but provide no experimental but the primitive operator performance is always a signif- evaluation. A different group of studies provides an exper- icant performance factor. This evaluation model is known imental comparison but is incomplete and fails to deliver as micro-benchmarking [15] and is similar to the principles a consistent picture. In particular, one work [22] analyzes that have been successfully followed in the design of bench- only four systems, two of which are no longer supported, marks in many other areas [2,22,35,36,37,38]. Note micro- with small graphs and a restricted set of operations. Two benchamrking is not intended to replace macro-benchamrks. other empirical works [37,38] compared almost the same set Macro-benchmarks are equally important in order to eval- of graph databases over datasets of comparable small sizes, uate the overall performance of query planners, optimizers, but agree only partially on the concluded results. Moreover, and caches. They are, however, limited in identifying un- all existing studies do not test with graphs at large scale and derperforming operators at a fine grain. with rich structures. Our work comes to fill exactly this gap Our evaluation provides numerous specific insights. Among in graph database evaluation, by providing the most exten- them, three are of particular importance: (i) we highlight sive evaluation of the state of the art systems in a complete the different insights that micro and macro benchmarks can and principled manner. provide; (ii) we experimentally demonstrate limitations of the tested hybrid systems when dealing with localized traver- Distribution & Cluster Evaluation. In the era of Big sal queries that span across multiple long paths, such as the Data, it is important to understand the abilities of graph breadth-first search; and (iii) we identify the trade-offs be- databases in exploiting parallel processing and distributed tween the logical and physical data organizations, support- architectures. This has already been done in graph process- ing the choice of the native graph-databases we study to ing systems
Recommended publications
  • Graph Database for Collaborative Communities Rania Soussi, Marie-Aude Aufaure, Hajer Baazaoui
    Graph Database for Collaborative Communities Rania Soussi, Marie-Aude Aufaure, Hajer Baazaoui To cite this version: Rania Soussi, Marie-Aude Aufaure, Hajer Baazaoui. Graph Database for Collaborative Communities. Community-Built Databases, Springer, pp.205-234, 2011. hal-00708222 HAL Id: hal-00708222 https://hal.archives-ouvertes.fr/hal-00708222 Submitted on 14 Jun 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Graph Database For collaborative Communities 1, 2 1 Rania Soussi , Marie-Aude Aufaure , Hajer Baazaoui2 1Ecole Centrale Paris, Applied Mathematics & Systems Laboratory (MAS), SAP Business Objects Academic Chair in Business Intelligence 2Riadi-GDL Laboratory, ENSI – Manouba University, Tunis Abstract Data manipulated in an enterprise context are structured data as well as un- structured data such as emails, documents, social networks, etc. Graphs are a natural way of representing and modeling such data in a unified manner (Structured, semi-structured and unstructured ones). The main advantage of such a structure relies in the dynamic aspect and the capability to represent relations, even multiple ones, between objects. Recent database research work shows a growing interest in the definition of graph models and languages to allow a natural way of handling data appearing.
    [Show full text]
  • Property Graph Vs RDF Triple Store: a Comparison on Glycan Substructure Search
    RESEARCH ARTICLE Property Graph vs RDF Triple Store: A Comparison on Glycan Substructure Search Davide Alocci1,2, Julien Mariethoz1, Oliver Horlacher1,2, Jerven T. Bolleman3, Matthew P. Campbell4, Frederique Lisacek1,2* 1 Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, 1211, Switzerland, 2 Computer Science Department, University of Geneva, Geneva, 1227, Switzerland, 3 Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, 1211, Switzerland, 4 Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia * [email protected] Abstract Resource description framework (RDF) and Property Graph databases are emerging tech- nologies that are used for storing graph-structured data. We compare these technologies OPEN ACCESS through a molecular biology use case: glycan substructure search. Glycans are branched Citation: Alocci D, Mariethoz J, Horlacher O, tree-like molecules composed of building blocks linked together by chemical bonds. The Bolleman JT, Campbell MP, Lisacek F (2015) molecular structure of a glycan can be encoded into a direct acyclic graph where each node Property Graph vs RDF Triple Store: A Comparison on Glycan Substructure Search. PLoS ONE 10(12): represents a building block and each edge serves as a chemical linkage between two build- e0144578. doi:10.1371/journal.pone.0144578 ing blocks. In this context, Graph databases are possible software solutions for storing gly- Editor: Manuela Helmer-Citterich, University of can structures and Graph query languages, such as SPARQL and Cypher, can be used to Rome Tor Vergata, ITALY perform a substructure search. Glycan substructure searching is an important feature for Received: July 16, 2015 querying structure and experimental glycan databases and retrieving biologically meaning- ful data.
    [Show full text]
  • Application of Graph Databases for Static Code Analysis of Web-Applications
    Application of Graph Databases for Static Code Analysis of Web-Applications Daniil Sadyrin [0000-0001-5002-3639], Andrey Dergachev [0000-0002-1754-7120], Ivan Loginov [0000-0002-6254-6098], Iurii Korenkov [0000-0002-8948-2776], and Aglaya Ilina [0000-0003-1866-7914] ITMO University, Kronverkskiy prospekt, 49, St. Petersburg, 197101, Russia [email protected], [email protected], [email protected], [email protected], [email protected] Abstract. Graph databases offer a very flexible data model. We present the approach of static code analysis using graph databases. The main stage of the analysis algorithm is the construction of ASG (Abstract Source Graph), which represents relationships between AST (Abstract Syntax Tree) nodes. The ASG is saved to a graph database (like Neo4j) and queries to the database are made to get code properties for analysis. The approach is applied to detect and exploit Object Injection vulnerability in PHP web-applications. This vulnerability occurs when unsanitized user data enters PHP unserialize function. Successful exploitation of this vulnerability means building of “object chain”: a nested object, in the process of deserializing of it, a sequence of methods is being called leading to dangerous function call. In time of deserializing, some “magic” PHP methods (__wakeup or __destruct) are called on the object. To create the “object chain”, it’s necessary to analyze methods of classes declared in web-application, and find sequence of methods called from “magic” methods. The main idea of author’s approach is to save relationships between methods and functions in graph database and use queries to the database on Cypher language to find appropriate method calls.
    [Show full text]
  • Database Software Market: Billy Fitzsimmons +1 312 364 5112
    Equity Research Technology, Media, & Communications | Enterprise and Cloud Infrastructure March 22, 2019 Industry Report Jason Ader +1 617 235 7519 [email protected] Database Software Market: Billy Fitzsimmons +1 312 364 5112 The Long-Awaited Shake-up [email protected] Naji +1 212 245 6508 [email protected] Please refer to important disclosures on pages 70 and 71. Analyst certification is on page 70. William Blair or an affiliate does and seeks to do business with companies covered in its research reports. As a result, investors should be aware that the firm may have a conflict of interest that could affect the objectivity of this report. This report is not intended to provide personal investment advice. The opinions and recommendations here- in do not take into account individual client circumstances, objectives, or needs and are not intended as recommen- dations of particular securities, financial instruments, or strategies to particular clients. The recipient of this report must make its own independent decisions regarding any securities or financial instruments mentioned herein. William Blair Contents Key Findings ......................................................................................................................3 Introduction .......................................................................................................................5 Database Market History ...................................................................................................7 Market Definitions
    [Show full text]
  • GRAPH DATABASE THEORY Comparing Graph and Relational Data Models
    GRAPH DATABASE THEORY Comparing Graph and Relational Data Models Sridhar Ramachandran LambdaZen © 2015 Contents Introduction .................................................................................................................................................. 3 Relational Data Model .............................................................................................................................. 3 Graph databases ....................................................................................................................................... 3 Graph Schemas ............................................................................................................................................. 4 Selecting vertex labels .............................................................................................................................. 4 Examples of label selection ....................................................................................................................... 4 Drawing a graph schema ........................................................................................................................... 6 Summary ................................................................................................................................................... 7 Converting ER models to graph schemas...................................................................................................... 9 ER models and diagrams ..........................................................................................................................
    [Show full text]
  • Weaver: a High-Performance, Transactional Graph Database Based on Refinable Timestamps
    Weaver: A High-Performance, Transactional Graph Database Based on Refinable Timestamps Ayush Dubey Greg D. Hill Robert Escriva Cornell University Stanford University Cornell University Emin Gun¨ Sirer Cornell University ABSTRACT may erroneously conclude that n7 is reachable from n1, even Graph databases have become a common infrastructure com- though no such path ever existed. ponent. Yet existing systems either operate on offline snap- Providing strongly consistent queries is particularly chal- shots, provide weak consistency guarantees, or use expensive lenging for graph databases because of the unique charac- concurrency control techniques that limit performance. teristics of typical graph queries. Queries such as traversals In this paper, we introduce a new distributed graph data- often read a large portion of the graph, and consequently base, called Weaver, which enables efficient, transactional take a long time to execute. For instance, the average degree graph analyses as well as strictly serializable ACID transac- of separation in the Facebook social network is 3.5 [8], which tions on dynamic graphs. The key insight that allows Weaver implies that a breadth-first traversal that starts at a random to combine strict serializability with horizontal scalability vertex and traverses 4 hops will likely read all 1.59 billion and high performance is a novel request ordering mecha- users. On the other hand, typical key-value and relational nism called refinable timestamps. This technique couples queries are much smaller; the NewOrder transaction in the coarse-grained vector timestamps with a fine-grained timeline TPC-C benchmark [7], which comprises 45% of the frequency oracle to pay the overhead of strong consistency only when distribution, consists of 26 reads and writes on average [21].
    [Show full text]
  • Document Vs Graph Database
    Document Vs Graph Database Is Cornelius tricentennial when Apollo reclothes telescopically? Carbonated Angelo defiling, his mainsheet ridicule paralysed mulishly. Agonistic and farinaceous Jerrold retimed her somniloquists burbles while Heinz rope some nymph tho. Recently due not the variety properties of instance data your database management systems GDBMSs have emerged as real important complement. When and augment to Choose Graph Databases over Relational. Mainly categorized into four types Key-value pair Column-oriented big-based and Document-oriented. Capture store analyze and manage collections of data. Graph databases can he thought through as a subcategory of the document store model in that they store began in documents and don't insist that data drive to a. Neo4J an sturdy and still heavily used graph paper had begun to gain. Since several of bath's data is conduct in relational database format how hot you convert any current journey to save graph database format See a. 5 Graph Databases to Consider ReadWrite. NoSQL databases or non-relational databases can be document based graph databases key-value pairs or wide-column stores NoSQL databases don't. This tape because mercury can arbitrarily decide what should rattle a vertex vs what should adorn a. Graph Databases NOSQL and Neo4j InfoQ. MongoDB and CouchDB are both examples of document stores Graph databases Last is the theater complex non-relational database will It's. An Entity Relationship Diagram commonly used to model data in SQL RDBMS vs. Column-oriented databases and document-oriented databases also belong to gauge family. Nosql Distilled was that NoSQL databases use aggregate data models than.
    [Show full text]
  • The Top 5 Use Cases of Graph Databases Unlocking New Possibilities with Connected Data
    The #1 Platform for Connected Data White Paper The Top 5 Use Cases of Graph Databases Unlocking New Possibilities with Connected Data Jim Webber Chief Scientist, Neo Technology & Ian Robinson Senior Engineer, Neo Technology neo4j.com The #1 Platform for Connected Data The Top 5 Use Cases of Graph Databases TABLE OF CONTENTS Introduction 1 The Top 5 Use Cases Fraud Detection 2 of Graph Databases Real-Time Recommendations 4 Unlocking New Possibilities with Connected Data Master Data Jim Webber & Ian Robinson Management 6 Network & IT Introduction Operations 8 “Big data” grows bigger every year, but today’s enterprise leaders don’t only need to manage larger volumes of data, but they critically need to generate insight from their existing data. So Identity & Access how should CIOs and CTOs generate those insights? Management 10 To paraphrase Seth Godin, businesses need to stop merely collecting data points, and start connecting them. In other words, the relationships between data points matter almost more Conclusion 12 than the individual points themselves. In order to leverage those data relationships, your organization needs a database technology that stores relationship information as a first-class entity. That technology is a graph database. Ironically, legacy relational database management systems (RDBMS) are poor at handling “Stop merely collecting relationships between data points. Their tabular data models and rigid schemas make it data points, and start difficult to add new or different kinds of connections. connecting them.” Graphs are the future. Not only do graph databases effectively store the relationships between data points, but they’re also flexible in adding new kinds of relationships oradapting a data model to new business requirements.
    [Show full text]
  • Trends in Development of Databases and Blockchain
    Trends in Development of Databases and Blockchain Mayank Raikwar∗, Danilo Gligoroski∗, Goran Velinov† ∗ Norwegian University of Science and Technology (NTNU) Trondheim, Norway † University Ss. Cyril and Methodius Skopje, Macedonia Email: {mayank.raikwar,danilog}@ntnu.no, goran.velinov@finki.ukim.mk Abstract—This work is about the mutual influence between some features which traditional database has. Blockchain can two technologies: Databases and Blockchain. It addresses two leverage the traditional database features by either integrat- questions: 1. How the database technology has influenced the ing the traditional database with blockchain or, to create a development of blockchain technology?, and 2. How blockchain technology has influenced the introduction of new functionalities blockchain-oriented distributed database. The inclusion of the in some modern databases? For the first question, we explain how database features will leverage the blockchain with low la- database technology contributes to blockchain technology by un- tency, high throughput, fast scalability, and complex queries on locking different features such as ACID (Atomicity, Consistency, blockchain data. Thus having the features of both blockchain Isolation, and Durability) transactional consistency, rich queries, and database, the application enhances its efficiency and real-time analytics, and low latency. We explain how the CAP (Consistency, Availability, Partition tolerance) theorem known security. Many of the blockchain platforms are now integrating for databases influenced
    [Show full text]
  • Relational to Graph Database: Migration
    Name: José A Alvarado-Guzmán Affiliation: Faculty Practice Organization, Columbia Medical Center, Columbia University Email: [email protected] Presentation type (s): Software Demonstration Relational to Graph Database: Migration José A. Alvarado-Guzmán, MS, Itay Keren, MS Data Science Institute, Columbia University, NY, NY, USA; Electronic Engineering, Columbia University, NY, NY , USA Abstract This paper describes the design and implementation of a Java application use as a data migration tool between a relational database and a graph database. Using the Observational Health Data Science and Informatics (OHDSI) White Rabbit and Rabbit In A Hat as a basis, we developed a user friendly multi-thread GUI that allow the migration of relational data to Neo4j. Introduction One of the greatest business trends of this millennium in Information Management is to leveraging high connected data with complex and dynamic relationships. The organization ability to understand and analyze this type of data will be key in determining how successful an organization could be among its competitors. For any significant size, graph databases are the best way of representing and query highly connected data. The increased popularity of graph data and graph thinking was mainly driven by the tremendous success of social media (Facebook & Twitter) and the commercial success of companies like Google that centered their business model on graph technologies. The easy and free accessibility of general purpose graph databases thanks to the open source community, Neo4j for example, is also impulsing the graph database usage and popularity. Despite the flexibility and performance of graph databases on high connected data, most developers still prefer to model this data using the relational model due to the learning curve that graph data storage and querying requires.
    [Show full text]
  • A Natural Language Interface for Querying Graph Databases Christina
    A Natural Language Interface for Querying Graph Databases by Christina Sun S.B., Computer Science and Engineering Massachusetts Institute of Technology, 2017 Submitted to the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Computer Science and Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2018 c Massachusetts Institute of Technology 2018. All rights reserved. Author............................................................. Department of Electrical Engineering and Computer Science May 25, 2018 Certified by . Sanjeev Mohindra Assistant Group Leader, Intelligence and Decision Technologies, MIT Lincoln Laboratory Thesis Supervisor Accepted by. Katrina LaCurts Chair, Master of Engineering Thesis Committee 2 A Natural Language Interface for Querying Graph Databases by Christina Sun Submitted to the Department of Electrical Engineering and Computer Science on May 25, 2018, in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Computer Science and Engineering Abstract An increasing amount of knowledge in the world is stored in graph databases. However, most people have limited or no understanding of database schemas and query languages. Providing a tool that translates natural language queries into structured queries allows peo- ple without this technical knowledge or specific domain expertise to retrieve information that was previously inaccessible. Many existing natural language interfaces to databases (NLIDB) propose solutions that may not generalize well to multiple domains and may re- quire excessive feature engineering, manual customization, or large amounts of annotated training data. We present a method for constructing subgraph queries which can repre- sent a graph of activities, events, persons, behaviors, and relations, for search against a graph database containing information from a variety of data sources.
    [Show full text]
  • The Distributed Graph Database
    WHITEPAPER InfiniteGraph: The Distributed Graph Database InfiniteGraph: The Distributed Graph Database A Performance and Distributed Performance Benchmark of InfiniteGraph and a Leading Open Source Graph Database Using Synthetic Data Objectivity, Inc. 640 West California Ave. Suite 240 Sunnyvale, CA 94086 Office: 408-992-7100 www.objectivity.com Copyright Objectivity, Inc. 2012 www.objectivity.com WHITEPAPER InfiniteGraph: The Distributed Graph Database Table of Contents High-level Overview – Open Source Graph Database Architecture ....................................................... 4 High-level Overview – InfiniteGraph Architecture .................................................................................. 5 Performance Benchmarks ........................................................................................................................ 6 Graph Construction (Ingesting Vertices and Building Relationships) ................................................. 7 Sampling for 64 Search Keys Based on a Unique Indexed Property (Vertex Lookup) ..................... 11 Reading Graph Objects from the Database ....................................................................................... 12 Graph Navigation/Traversal Using Breadth-first-search and Depth-first-search ............................ 12 Distributed Performance Benchmark of InfiniteGraph ................................................................... 14 Graph Construction ...............................................................................................................................
    [Show full text]