Emerging Concepts in Liquid Biopsies Samantha Perakis1 and Michael R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Genetic Delineation of 2Q37.3 Deletion in Autism and Osteodystrophy: Report of a Case and of New Markers for Deletion Screening by PCR
UC Irvine UC Irvine Previously Published Works Title Molecular genetic delineation of 2q37.3 deletion in autism and osteodystrophy: report of a case and of new markers for deletion screening by PCR. Permalink https://escholarship.org/uc/item/83f0x61r Journal Cytogenetics and cell genetics, 94(1-2) ISSN 0301-0171 Authors Smith, M Escamilla, JR Filipek, P et al. Publication Date 2001 DOI 10.1159/000048775 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Original Article Cytogenet Cell Genet 94:15–22 (2001) Molecular genetic delineation of 2q37.3 deletion in autism and osteodystrophy: report of a case and of new markers for deletion screening by PCR M. Smith, J.R. Escamilla, P. Filipek, M.E. Bocian, C. Modahl, P. Flodman, and M.A. Spence Department of Pediatrics, University of California, Irvine CA (USA) Abstract. We recently studied a patient who meets criteria us to determine the parental origin of the deletion in our for autistic disorder and has a 2q37 deletion. Molecular cyto- patient. DNA from 8–13 unrelated individuals was used to genetic studies were carried out using DNA isolated from 22 determine heterozygosity estimates for these markers. We re- different 2q37 mapped BACs to more precisely define the view four genes deleted in our patient – genes whose known extent of the chromosome deletion. We also analyzed 2q37 functions and sites of expression in the brain and/or bone make mapped polymorphic markers. In addition DNA sequences of them candidates for involvement in autism and/or the osteo- BACs in the deletion region were scanned to identify microsa- dystrophy observed in patients with 2q37.3 deletions. -
A Study on Tumor Suppressor Genes Mutations Associated with Different Pppathologicalpathological Cccolorectalcolorectal Lllesions.Lesions
A Study on Tumor Suppressor Genes Mutations Associated with Different PPPathologicalPathological CCColorectalColorectal LLLesions.Lesions. Thesis Submitted for partial fulfillment of the requirements for the Ph.D. degree of Science in Biochemistry By Salwa Naeim Abd ElEl----KaderKader Mater M.Sc. in Biochemistry, 2002 Biological Applications Department Nuclear Research Center Atomic Energy Authority Under the supervision of Prof. Dr. Amani F.H Nour El ---Deen Prof. Dr. Abdel Hady Ali Abdel Wahab Professor of Biochemistry Professor of Biochemistry Biochemistry Department and Molecular Biology Faculty of Science Cancer Biology Department Ain Shams University National Cancer Institute Cairo University Prof. DrDr.MohsenMohsen Ismail Mohamed Dr. Azza Salah Helmy Professor of Clinical Pathology Biological Assistant Professor of Biochemistry Applications Department Biochemistry Department Nuclear Research Center Faculty of Science Atomic Energy Authority Ain Shams University 2012011111 ﺑﺴﻢ ﺍﷲ ﺍﻟﺮﺣﻤﻦ ﺍﻟﺮﺣﻴﻢ ﺇِﻧﻤﺎ ﺃﹶﻣﺮﻩ ﺇِﺫﹶﺍ ﺃﹶﺭﺍﺩ ﺷﻴﺌﹰﺎ ﺃﹶﹾﻥ ﻳﹸﻘﻮﻝﹶ ﻟﹶﻪ ﻛﹸـﻦ ﻓﹶﻴﻜﹸـﻮ ﻥ ﹸ ””” ٨٢٨٨٢٢٨٢““““ﻓﹶﺴﺒﺤﺎﻥﹶ ﺍﱠﻟﺬِﻱ ﺑِﻴﺪِﻩِ ﻣﻠﹶﻜﹸﻮﺕ ﻛﹸـﻞﱢ ﺷـﻲﺀٍ ﻭﺇِﻟﹶﻴـﻪِ ﺗﺮﺟﻌﻮﻥﹶ ””” ٨٣٨٨٣٣٨٣““““ ﺻﺪﻕ ﺍﷲ ﺍﻟﻌﻈﻴﻢ رة (٨٢-٨٣) I declare that this thesis has been composed by myself and the work there in has not been submitted for a degree at this or any other university. Salwa Naeim Abd El-Kader Matter To my dear husband and family Their love, encouragement and help made my studies possible and to them I owe everything. Thank you Salwa Naeim Abd El-Kader Matter Acknowledgement First of all, thanks to Allah the most merciful for guiding me and giving me the strength to complete this work. It is pleasure to express my deepest thanks and profound respect to Prof. -
Understanding Your Pathology Report: Benign Breast Conditions
cancer.org | 1.800.227.2345 Understanding Your Pathology Report: Benign Breast Conditions When your breast was biopsied, the samples taken were studied under the microscope by a specialized doctor with many years of training called a pathologist. The pathologist sends your doctor a report that gives a diagnosis for each sample taken. Information in this report will be used to help manage your care. The questions and answers that follow are meant to help you understand medical language you might find in the pathology report from a breast biopsy1, such as a needle biopsy or an excision biopsy. In a needle biopsy, a hollow needle is used to remove a sample of an abnormal area. An excision biopsy removes the entire abnormal area, often with some of the surrounding normal tissue. An excision biopsy is much like a type of breast-conserving surgery2 called a lumpectomy. What does it mean if my report uses any of the following terms: adenosis, sclerosing adenosis, apocrine metaplasia, cysts, columnar cell change, columnar cell hyperplasia, collagenous spherulosis, duct ectasia, columnar alteration with prominent apical snouts and secretions (CAPSS), papillomatosis, or fibrocystic changes? All of these are terms that describe benign (non-cancerous) changes that the pathologist might see under the microscope. They do not need to be treated. They are of no concern when found along with cancer. More information about many of these can be found in Non-Cancerous Breast Conditions3. What does it mean if my report says fat necrosis? Fat necrosis is a benign condition that is not linked to cancer risk. -
Role of Glypican-6 and Ng2 As Metastasis Promoting Factors
UNIVERSITA’ DEGLI STUDI DI PARMA Dottorato di ricerca in Fisiopatologia Sistemica Ciclo XX ROLE OF GLYPICAN-6 AND NG2 AS METASTASIS PROMOTING FACTORS Coordinatore: Chiar.mo Prof. Ezio Musso Tutor: Chiar.mo Prof.Roberto Perris Dottoranda: Katia Lacrima Anni Accademici 2005-2008 To Indy L'anima libera e' rara, ma quando la vedi la riconosci: soprattutto perché provi un senso di benessere, quando gli sei vicino. (Charles Bukowski ) Index Summary ……………………………………………………..................................................... 3 1. Introduction …………………………………………………………………………………… 5 1.1. Proteoglycans (PGs)………………………………………………………………......... 6 1.2. Membrane associated proteoglycans……………………………………………..…... 8 1.3. Syndecans……………………………………………………………………………..…. 9 1.4. Glypicans……………………………………………………………………………...….. 11 1.5. GPC6……………………………………………………………………………….…….. 13 1.6. NG2/CSPG4……………………………………………………………………….…….. 14 1.7. Metastasis………………………………………………………………………….….…. 16 1.8. Soft Tissue Sarcoma (STS)…………………………………………………………….. 17 1.9. Membrane PGs and tumour……………………………………………………………. 18 1.10. Membrane PGs in sarcoma…………………………………………………………….. 24 2. Material and Methods ……………………………………………………………………… 26 2.1. Cell Culture……………………………………………………………………….………. 27 2.2. RNA extraction……………………………………………………………………….…. 28 2.3. Real Time quantitative PCR……………………………………………….………….. 28 2.4. DNA extraction…………………………………………….……………………………. 30 2.5. Plasmids and Transfection………………………………………….………………… 30 2.6. Western Blotting………………………………………………………………………... 31 2.7. Preparation of ECM substrates………………………………………….…………… -
Case Presentation
Open Access Case Report DOI: 10.7759/cureus.2892 Nasal Chondromesenchymal Hamartoma with Skull Base and Orbital Involvement: Case Presentation Denis A. Golbin 1 , Anastasia P. Ektova 2 , Maxim O. Demin 3 , Nikolay Lasunin 4 , Vasily A. Cherekaev 1 1. Skull Base and Craniofacial Surgery, N.N. Burdenko National Medical Research Center for Neurosurgery, Moscow, RUS 2. Pathology, Russian Children's Clinical Hospital, Moscow, RUS 3. Pediatric Neurosurgery, N.N. Burdenko, Moscow, RUS 4. Neuro-Oncology, N.N. Burdenko National Medical Research Center for Neurosurgery, Moscow, RUS Corresponding author: Denis A. Golbin, [email protected] Abstract Nasal chondromesenchymal hamartoma (NCMH) is a rare benign tumor of the sinonasal tract in children with possible orbit and skull base involvement. We present the 57th published observation of this kind of tumor. A 25-month-old female patient presented with recurrent mass lesion of the sinonasal tract. According to her history, she had feeding difficulties and nasal obstruction since birth. She underwent partial resection at eight months of age via transfacial approach in the local hospital. Due to progression of tumor remnants, a second surgery was performed using an endoscopic endonasal approach resulting in subtotal resection. At 12 months of follow-up, a good postoperative result was observed with no signs of tumor progression despite incomplete resection. Histological and immunohistochemical examination of the biopsy specimens is presented. Comparison of specimens obtained from each of the two surgeries showed a difference in histological patterns. Endoscopic endonasal approach is the mainstay of surgical management. In case of incomplete resection, careful follow-up MRI studies should be recommended. -
BRAIN TUMORS Info Sheet
ROSWELL PARK COMPREHENSIVE CANCER CENTER BRAIN TUMORS Info Sheet FAST FACTS WHAT YOU SHOULD KNOW When cells in the brain grow and multiply out of control, they can form a tumor which may be malignant (cancerous) or benign (not cancerous). Roswell Park treats both malignant and benign tumors in the brain. Malignant brain tumors contain cancer cells and tend to grow rapidly and invade healthy brain tissue. Many of these are treatable and new therapies can help patients live longer and preserve quality of life. THERE ARE Benign brain tumors do not contain cancer cells. They rarely invade nearby MORE THAN tissue or spread to other parts of the body. Although a benign tumor is not DIFFERENT cancerous, it still needs treatment because it can press on the brain as it 120 TYPES OF grows in the skull. BRAIN TUMORS ARE YOU AT RISK? Brain tumors are relatively rare. They can occur at any age but are most Brain tumors common in children and older adults. You may have an increased risk for occur mostly in developing a brain tumor if you have one of these factors: children younger in adults Prior radiation treatment for other medical conditions such as leukemia. than older than Certain genetic conditions in your family. About 5% of brain tumors are linked to: 15 65 Neurofibromatosis Tuberous sclerosis & Von Hippel-Lindau disease Li-Frameni syndrome SYMPTOMS TO TELL YOUR DOCTOR The chance Persistent daily headaches of developing Changes in speech, vision or hearing a malignant Problems balancing or walking brain Changes in mood, personality or ability to concentrate tumor Confusion or difficulty with memory is LESS Muscle jerking or twitching THAN (seizures or convulsions) Numbness, weakness or 1% tingling in arms or legs 1-800-ROSWELL (1-800-767-9355) | RoswellPark.org If you have a brain tumor, WHY ROSWELL PARK FOR BRAIN TUMORS? you need a second opinion. -
Prognostic Value of Glypican Family Genes in Early-Stage Pancreatic Ductal Adenocarcinoma After Pancreaticoduodenectomy and Possible Mechanisms
Prognostic value of Glypican family genes in early-stage pancreatic ductal adenocarcinoma after pancreaticoduodenectomy and possible mechanisms Jun-qi Liu Guangxi Medical University First Aliated Hospital Xi-wen Liao Guangxi Medical University First Aliated Hospital Xiang-kun Wang Guangxi Medical University First Aliated Hospital Cheng-kun Yang Guangxi Medical University First Aliated Hospital Xin Zhou Guangxi Medical University First Aliated Hospital Zheng-qian Liu Guangxi Medical University First Aliated Hospital Quan-fa Han Guangxi Medical University First Aliated Hospital Tian-hao Fu Guangxi Medical University First Aliated Hospital Guang-zhi Zhu Guangxi Medical University First Aliated Hospital Chuang-ye Han Guangxi Medical University First Aliated Hospital Hao Su Guangxi Medical University First Aliated Hospital Jian-lu Huang Guangxi Medical University First Aliated Hospital Guo-tian Ruan Guangxi Medical University First Aliated Hospital Ling Yan Guangxi Medical University First Aliated Hospital Xin-ping Ye Guangxi Medical University First Aliated Hospital Tao Peng ( [email protected] ) the rst aliated hospital of guangxi medical university Research article Keywords: GPC family genes, pancreatic ductal adenocarcinoma, prognostic indicator, mechanism Posted Date: December 9th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-48421/v3 Page 1/32 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on December 10th, 2020. See the published version at https://doi.org/10.1186/s12876-020-01560-0. Page 2/32 Abstract Background: This study explored the prognostic signicance of Glypican (GPC) family genes in patients with pancreatic ductal adenocarcinoma (PDAC) after pancreaticoduodenectomy using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). -
Evaluation of Circulating Tumor DNA in Patients with Ovarian Cancer Harboring Somatic PIK3CA Or KRAS Mutations
pISSN 1598-2998, eISSN 2005-9256 Cancer Res Treat. 2020;52(4):1219-1228 https://doi.org/10.4143/crt.2019.688 Original Article Open Access Evaluation of Circulating Tumor DNA in Patients with Ovarian Cancer Harboring Somatic PIK3CA or KRAS Mutations Aiko Ogasawara, MD1 Purpose Taro Hihara, PhD2 Circulating tumor DNA (ctDNA) is an attractive source for liquid biopsy to understand Daisuke Shintani, MD1 molecular phenotypes of a tumor non-invasively, which is also expected to be both a diag- nostic and prognostic marker. PIK3CA and KRAS are among the most frequently mutated Akira Yabuno, MD1 genes in epithelial ovarian cancer (EOC). In addition, their hotspot mutations have already MD, PhD1 Yuji Ikeda, been identified and are ready for a highly sensitive analysis. Our aim is to clarify the signifi- 2 Kenji Tai, MSc cance of PIK3CA and KRAS mutations in the plasma of EOC patients as tumor-informed 1 Keiichi Fujiwara, MD, PhD ctDNA. Keisuke Watanabe, BSc2 Materials and Methods Kosei Hasegawa, MD, PhD1 We screened 306 patients with ovarian tumors for somatic PIK3CA or KRAS mutations. A total of 85 EOC patients had somatic PIK3CA and/or KRAS mutations, and the correspon- ding mutations were subsequently analyzed using a droplet digital polymerase chain reac- 1Department of Gynecologic Oncology, tion in their plasma. Saitama Medical University International Results Medical Center, Hidaka, 2Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Japan The detection rates for ctDNA were 27% in EOC patients. Advanced stage and positive peritoneal cytology were associated with higher frequency of ctDNA detection. Preopera- tive ctDNA detection was found to be an indicator of outcomes, and multivariate analy- sis revealed that ctDNA remained an independent risk factor for recurrence (p=0.010). -
Brain Tumors
Understanding Brain Tumors Jana, diagnosed in 1999, with her husband, Paul. SAMPLE COPYRIGHTED What Is a Brain Tumor? A brain tumor, like other tumors, is a collection of cells that multiply at a rapid rate. The tumor may cause damage by pressing on or spreading into healthy parts of the brain and interfering with function. Brain tumors can be benign or malignant. They can develop outside or inside the brain. A benign tumor is noncancerous but not necessarily harmless. Benign tumors tend to grow slowly. Symptoms may not appear for a long time. These tumors are often detected incidentally, or by accident. For example, a benign tumor may be discovered when a brain scan is performed because of a headache or after a car accident. A benign tumor usually has distinct borders and is less likely to cause damage to surrounding tissue. Malignant tumors are cancerous. Malignant tumors tend to grow aggressively and spread to surrounding tissues. Despite treatment, they may recur either in the same place or in another location. A malignant tumor, if left untreated, can ultimately lead to death. Malignant brain tumors are among the most difficult types of cancer to fight. Malignant brain tumors are classified as either primary or secondary. A primary tumor means the cancerous cells start in the brain. In a secondary—or metastatic—tumor, the cancerous cells start elsewhere in the body. They then spread through the bloodstream to the brain. This process is known as metastasis. More than 120 different types of brain tumors have been identified. What Causes Brain Tumors? When diagnosed with a brain tumor, a person might wonder, why me? Unfortunately, the current understanding of the causes and possible risk factors for brain tumors is limited. -
Glypicans Shield the Wnt Lipid Moiety to Enable Signalling at a Distance
Article Glypicans shield the Wnt lipid moiety to enable signalling at a distance https://doi.org/10.1038/s41586-020-2498-z Ian J. McGough1,3, Luca Vecchia2,3, Benjamin Bishop2, Tomas Malinauskas2, Karen Beckett1, Dhira Joshi1, Nicola O’Reilly1, Christian Siebold2, E. Yvonne Jones2,4 ✉ & Jean-Paul Vincent1 ✉ Received: 8 August 2019 Accepted: 23 April 2020 A relatively small number of proteins have been suggested to act as morphogens— Published online: 22 July 2020 signalling molecules that spread within tissues to organize tissue repair and the Check for updates specifcation of cell fate during development. Among them are Wnt proteins, which carry a palmitoleate moiety that is essential for signalling activity1–3. How a hydrophobic lipoprotein can spread in the aqueous extracellular space is unknown. Several mechanisms, such as those involving lipoprotein particles, exosomes or a specifc chaperone, have been proposed to overcome this so-called Wnt solubility problem4–6. Here we provide evidence against these models and show that the Wnt lipid is shielded by the core domain of a subclass of glypicans defned by the Dally-like protein (Dlp). Structural analysis shows that, in the presence of palmitoleoylated peptides, these glypicans change conformation to create a hydrophobic space. Thus, glypicans of the Dlp family protect the lipid of Wnt proteins from the aqueous environment and serve as a reservoir from which Wnt proteins can be handed over to signalling receptors. Wnt proteins are lipidated1, with a palmitoleate2 appended to a con- glycophosphatidylinositol (GPI) membrane anchor (DlpΔGPI) was used served serine residue (Ser209 in human WNT3A). Crystal structures as a positive control (Extended Data Fig. -
Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing -
A Master Autoantigen-Ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases
bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A Master Autoantigen-ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases Julia Y. Wang1*, Michael W. Roehrl1, Victor B. Roehrl1, and Michael H. Roehrl2* 1 Curandis, New York, USA 2 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA * Correspondence: [email protected] or [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer.