Blocking CD40-TRAF6 Interactions by Small-Molecule Inhibitor 6860766 Ameliorates the Complications of Diet-Induced Obesity in Mice

Total Page:16

File Type:pdf, Size:1020Kb

Blocking CD40-TRAF6 Interactions by Small-Molecule Inhibitor 6860766 Ameliorates the Complications of Diet-Induced Obesity in Mice International Journal of Obesity (2015) 39, 782–790 © 2015 Macmillan Publishers Limited All rights reserved 0307-0565/15 www.nature.com/ijo ORIGINAL ARTICLE Blocking CD40-TRAF6 interactions by small-molecule inhibitor 6860766 ameliorates the complications of diet-induced obesity in mice SM van den Berg1,7, TTP Seijkens1,7, PJH Kusters1, B Zarzycka2, L Beckers1, M den Toom1, MJJ Gijbels1,3,4, A Chatzigeorgiou5, C Weber2,6, MPJ de Winther1, T Chavakis5, GAF Nicolaes2 and E Lutgens1,6 BACKGROUND: Immune processes contribute to the development of obesity and its complications, such as insulin resistance, type 2 diabetes mellitus and cardiovascular disease. Approaches that target the inflammatory response are promising therapeutic strategies for obesity. In this context, we recently demonstrated that the interaction between the costimulatory protein CD40 and its downstream adaptor protein tumor necrosis factor receptor-associated factor 6 (TRAF6) promotes adipose tissue inflammation, insulin resistance and hepatic steatosis in mice in the course of diet-induced obesity (DIO). METHODS: Here we evaluated the effects of a small-molecule inhibitor (SMI) of the CD40-TRAF6 interaction, SMI 6860766, on the development of obesity and its complications in mice that were subjected to DIO. RESULTS: Treatment with SMI 6860766 did not result in differences in weight gain, but improved glucose tolerance. Moreover, SMI 6860766 treatment reduced the amount of CD45+ leucocytes in the epididymal adipose tissue by 69%. Especially, the number of adipose tissue CD4+ and CD8+ T cells, as well as macrophages, was significantly decreased. CONCLUSIONS: Our results indicate that small-molecule-mediated inhibition of the CD40-TRAF6 interaction is a promising therapeutic strategy for the treatment of metabolic complications of obesity by improving glucose tolerance, by reducing the accumulation of immune cells to the adipose tissue and by skewing of the immune response towards a more anti-inflammatory profile. International Journal of Obesity (2015) 39, 782–790; doi:10.1038/ijo.2014.198 INTRODUCTION cardiovascular disease.5–10 Strategies that modulate the inflam- Obesity and its associated conditions, including insulin resistance, matory response are therefore promising therapeutic modalities type 2 diabetes mellitus and cardiovascular diseases, affect more for obesity and its complications. than 1000 million people worldwide, a number that is increasing The costimulatory dyad CD40 and its ligand CD40L (CD154) and is expected to do so for the next decades.1,2 Chronic caloric have a well-known role in immune cell activation and fl 11 excess may shorten healthy lifespan of humans by 5 − 20 years, in ammation. After binding of CD40L, CD40 recruits adaptor which results in a tremendous socioeconomic burden.1 Hence, the proteins, the tumor necrosis factor receptor-associated factors (TRAFs).11 The intracellular domain of CD40 contains two binding development of novel therapeutic strategies for obesity and its sites for these proteins: a proximal site that binds TRAF2/3/5 and a related disorders is a public health priority. distal site that binds TRAF6.11 After binding of the TRAF proteins Over the past decades, chronic inflammation has been to CD40, signal transduction is initiated, which eventually results identified as the pathological substrate of obesity and its 11 1,3,4 in the expression of inflammatory mediators. Mice with a complications. Elevated plasma levels of cytokines, such as genetic deficiency in the CD40-TRAF6 interaction, but not in the tumor necrosis factor and interleukin-6 (IL-6), characterize obese CD40-TRAF2/3/5 interaction, are protected against the develop- subjects and show a positive correlation with the extent of 5–9 ment of neointima formation and atherosclerosis, both exponents metabolic dysfunction. Obese adipose tissue (AT) exhibits of an ongoing inflammatory condition of the arterial wall.12,13 hallmarks of an ongoing inflammatory response, such as immune Accumulating evidence indicates that the CD40-CD40L dyad cell infiltration and activation, as well as the presence of has an important role in obesity.6,14–17 For example, plasma levels proinflammatory cytokines and adipokines, including tumor of soluble CD40L correlate with the body mass index in obese – necrosis factor, IL-6 and leptin.5 9 Moreover, chronic inflammation subjects and decrease after bariatric surgery.14 CD40-CD40L- has a pivotal role in the development of obesity-associated mediated interactions between adipocytes and AT immune cells, diseases, such as hepatic steatosis, type 2 diabetes mellitus and including T cells and macrophages, promote the expression of 1Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands; 2Department of Biochemistry, University of Maastricht, Maastricht, The Netherlands; 3Department of Pathology, Maastricht University, Maastricht, The Netherlands; 4Department of Molecular Genetics, Maastricht University, Maastricht,The Netherlands; 5Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technische Universität Dresden, Dresden, Germany and 6Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian’s University, Munich, Germany. Correspondence: Professor Dr E Lutgens, Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands. E-mail: [email protected] 7These authors contributed equally to this work. Received 4 September 2014; revised 10 October 2014; accepted 27 October 2014; accepted article preview online 13 November 2014; advance online publication, 9 December 2014 SMI-mediated CD40-TRAF6 inhibition in obesity SM van den Berg et al 783 proinflammatory cytokines and chemokines, which increase the mice were treated daily with SMI 6860766 (10 μmol kg − 1)(n = 12) or recruitment of other inflammatory cells to the AT.15,16 Ligation of vehicle (0.05% Tween-80, 5% dimethyl sulphoxide in phosphate-buffered CD40 on adipocytes promotes insulin resistance by decreasing saline)19 (n = 12) for 6 weeks. Mice had ad libitum access to food and water insulin receptor substrate-1 and glucose transporter type 4 and were maintained under a 12 h light–dark cycle. Food intake and body expression.15,16 Genetic deficiency or antibody-mediated inhibition weight were measured weekly. After the experimental procedure, mice of CD40L reduced the inflammatory and metabolic complications of were fasted overnight and subsequently killed. Blood was collected and fl diet-induced obesity (DIO).15,16 In contrast, deficiency of CD40 organs were dissected and processed for ow cytometric and histological aggravates the complications of DIO.18–20 To understand these analysis. All experimental procedures were approved by the Animal Experimentation Ethics Committee of the University of Amsterdam. opposing effects of CD40L and CD40, we previously investigated the role of different downstream adaptor proteins of the CD40-CD40L pathway. We found that deficiency of CD40-TRAF2/3/5 interactions Haematology and biochemical measurements increased the metabolic and inflammatory complications of DIO, Blood was obtained by cardiac puncture with EDTA-filled syringes. whereas deficiency of CD40-TRAF6 interactions rather improved AT Haematological analysis was performed on a ScilVet abc plus+ (ScilVet, inflammation and insulin resistance in DIO mice. Based on these Oostelbeers, The Netherlands). data, we developed a small-molecule inhibitor (SMI) against CD40- TRAF6 interactions, and we could show that treatment with SMI Insulin assay and calculation of HOMA-IR 6877002 improved insulin resistance, hepatic steatosis and M1 Fasting insulin was measured in plasma by enzyme-linked immunoabsor- macrophage accumulation into the epididymal AT (EpAT), when bent assay (Mercodia, Uppsala, Sweden) following the manufacturer's treatment was initiated 6 weeks after the beginning of the diet.19 protocol. Glucose levels were measured from whole blood upon killing Thus, inhibition of the CD40-TRAF6 interaction is a promising using a glucometer (Bayercontour, Basel, Switzerland). The homeostasis therapeutic strategy for obesity. model assessment of insulin resistance (HOMA-IR) was calculated using the − 1 Here we performed a more thorough analysis of the effects of following formula: HOMA-IR = fasting glucose (mmol l ) × fasting insulin − 1 SMI-mediated CD40-TRAF6 inhibition in DIO. We investigated the (m U l )/22.5. effects of SMI 6860766, an analogue of 6877002 with a lower IC50 (half-maximal inhibitory concentration),19 in DIO. In addition, we Glucose tolerance test here administered the CD40-TRAF6 inhibitor after 12 weeks of One week before and 3 and 6 weeks after the initiation of SMI 6860766 or high-fat diet (HFD), when obesity was much more progressed, and vehicle treatment, a glucose tolerance test was performed. Twelve-hour continued diet and treatment until week 18. Our data suggest that fasted mice were injected intraperitoneally with glucose (1 mg g − 1; Sigma- SMI-mediated CD40-TRAF6 inhibition is a promising novel Aldrich, Zwijndrecht, The Netherlands). Glucose levels were measured from therapeutic approach in DIO-related metabolic dysregulation. whole blood using a glucometer (Bayercontour, Basel, Switzerland) at times indicated in the figures. MATERIALS AND METHODS Real-time PCR TRAF6 C-domain expression, purification
Recommended publications
  • Megakaryopoiesis in Dengue Virus Infected K562 Cell Promotes Viral Replication Which Inhibits 2 Endomitosis and Accumulation of ROS Associated with Differentiation
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.25.172544; this version posted June 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title: Megakaryopoiesis in Dengue virus infected K562 cell promotes viral replication which inhibits 2 endomitosis and accumulation of ROS associated with differentiation 3 Jaskaran Kaur *1, Yogita Rawat *1, Vikas Sood 2, Deepak Rathore1, Shrikant K. Kumar1, Niraj K. Kumar1 4 and Sankar Bhattacharyya1 5 1 Translational Health Science and Technology Institute, NCR Biotech Science Cluster, PO Box# 4, 6 Faridabad-Gurgaon expressway, Faridabad, Haryana-121001, India 7 2 Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard (Hamdard 8 University) Hamdard Nagar, New Delhi - 110062, India 9 10 *Equal contribution 11 Email for correspondence: [email protected] 12 13 14 Keywords: Dengue virus replication, Megakaryopoiesis, Reactive oxygen species, Endomitosis 15 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.25.172544; this version posted June 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 16 Abstract: In the human host blood Monocytes and bone marrow Megakaryocytes are implicated as major 17 sites supporting high replication. The human K562 cell line supports DENV replication and represent 18 Megakaryocyte-Erythrocyte progenitors (MEP), replicating features of in vivo Megakaryopoiesis upon 19 stimulation with Phorbol esters. In this article, we report results that indicate the mutual influence of 20 Megakaryopoiesis and DENV replication on each other, through comparison of PMA-induced 21 differentiation of either mock-infected or DENV-infected K562 cells.
    [Show full text]
  • Expression of the Tumor Necrosis Factor Receptor-Associated Factors
    Expression of the Tumor Necrosis Factor Receptor- Associated Factors (TRAFs) 1 and 2 is a Characteristic Feature of Hodgkin and Reed-Sternberg Cells Keith F. Izban, M.D., Melek Ergin, M.D, Robert L. Martinez, B.A., HT(ASCP), Serhan Alkan, M.D. Department of Pathology, Loyola University Medical Center, Maywood, Illinois the HD cell lines. Although KMH2 showed weak Tumor necrosis factor receptor–associated factors expression, the remaining HD cell lines also lacked (TRAFs) are a recently established group of proteins TRAF5 protein. These data demonstrate that consti- involved in the intracellular signal transduction of tutive expression of TRAF1 and TRAF2 is a charac- several members of the tumor necrosis factor recep- teristic feature of HRS cells from both patient and tor (TNFR) superfamily. Recently, specific members cell line specimens. Furthermore, with the excep- of the TRAF family have been implicated in promot- tion of TRAF1 expression, HRS cells from the three ing cell survival as well as activation of the tran- HD cell lines showed similar TRAF protein expres- ␬ scription factor NF- B. We investigated the consti- sion patterns. Overall, these findings demonstrate tutive expression of TRAF1 and TRAF2 in Hodgkin the expression of several TRAF proteins in HD. Sig- and Reed–Sternberg (HRS) cells from archived nificantly, the altered regulation of selective TRAF paraffin-embedded tissues obtained from 21 pa- proteins may reflect HRS cell response to stimula- tients diagnosed with classical Hodgkin’s disease tion from the microenvironment and potentially (HD). In a selective portion of cases, examination of contribute both to apoptosis resistance and cell HRS cells for Epstein-Barr virus (EBV)–encoded maintenance of HRS cells.
    [Show full text]
  • TRAF6, a Molecular Bridge Spanning Adaptive Immunity, Innate Immunity and Osteoimmunology Hao Wu1* and Joseph R
    Review articles TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology Hao Wu1* and Joseph R. Arron2 Summary receptor/Toll-like receptor (IL-1R/TLR) superfamily. Gene Tumor necrosis factor (TNF) receptor associated factor targeting experiments have identified several indispen- 6 (TRAF6) is a crucial signaling molecule regulating a sable physiological functions of TRAF6, and structural diverse array of physiological processes, including and biochemical studies have revealed the potential adaptive immunity, innate immunity, bone metabolism mechanisms of its action. By virtue of its many signaling and the development of several tissues including lymph roles, TRAF6 represents an important target in the regu- nodes, mammary glands, skin and the central nervous lation of many disease processes, including immunity, system. It is a member of a group of six closely related inflammation and osteoporosis. BioEssays 25:1096– TRAF proteins, which serve as adapter molecules, coupl- 1105, 2003. ß 2003 Wiley Periodicals, Inc. ing the TNF receptor (TNFR) superfamily to intracellular signaling events. Among the TRAF proteins, TRAF6 is unique in that, in addition to mediating TNFR family Introduction signaling, it is also essential for signaling downstream of The tumor necrosis factor (TNF) receptor associated factors an unrelated family of receptors, the interleukin-1 (IL-1) (TRAFs) were first identified as two intracellular proteins, TRAF1 and TRAF2, associated with TNF-R2,(1) a member of 1Department of Biochemistry, Weill Medical College of Cornell the TNF receptor (TNFR) superfamily. There are currently six University, New York. mammalian TRAFs (TRAF1-6), which have emerged as 2Tri-Institutional MD-PhD Program, Weill Medical College of Cornell important proximal signal transducers for the TNFR super- University, New York.
    [Show full text]
  • Association of Polymorphisms in the Myd88, IRAK4 and TRAF6 Genes
    Molecular and Cellular Endocrinology 429 (2016) 114e119 Contents lists available at ScienceDirect Molecular and Cellular Endocrinology journal homepage: www.elsevier.com/locate/mce Association of polymorphisms in the MyD88, IRAK4 and TRAF6 genes and susceptibility to type 2 diabetes mellitus and diabetic nephropathy in a southern Han Chinese population Congcong Guo a, 1, Liju Zhang a, 1, Lihong Nie b, 1, Na Zhang a, Di Xiao a, Xingguang Ye a, Meiling Ou a, Yang Liu a, Baohuan Zhang a, Man Wang a, Hansheng Lin c, ** * Guang Yang d, e, , Chunxia Jing a, e, a Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, 510632, China b Department of Endocrine, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China c Department of Medical Statistics, School of Medicine, Jinan University, Guangzhou 510632, China d Department of Parasitology, School of Medicine, Jinan University, Guangzhou 510632, China e Key Laboratory of Environmental Exposure and Health in Guangzhou, Jinan University, Guangzhou 510632, China article info abstract Article history: Type 2 diabetes mellitus (T2DM) has been linked to a state of low-grade inflammation resulting from Received 17 February 2016 abnormalities in the innate immune pathway. MyD88 is an essential adaptor protein for TLR signaling, Received in revised form which is involved in activating NF-kB through IRAK4 and TRAF6. To investigate the effects of the MyD88, 5 April 2016 IRAK4 and TRAF6 polymorphisms in the susceptibility of T2DM and diabetic vascular complications, Accepted 6 April 2016 eight SNPs were analyzed in 553 T2DM patients and 553 matched healthy controls. Gene-gene in- Available online 8 April 2016 teractions and haplotype associations were also evaluated.
    [Show full text]
  • DDIAS Promotes STAT3 Activation by Preventing STAT3 Recruitment To
    Im et al. Oncogenesis (2020)9:1 https://doi.org/10.1038/s41389-019-0187-2 Oncogenesis ARTICLE Open Access DDIAS promotes STAT3 activation by preventing STAT3 recruitment to PTPRM in lung cancer cells Joo-Young Im 1,Bo-KyungKim 1,Kang-WooLee2, So-Young Chun1, Mi-Jung Kang1 and Misun Won1,3 Abstract DNA damage-induced apoptosis suppressor (DDIAS) regulates cancer cell survival. Here we investigated the involvement of DDIAS in IL-6–mediated signaling to understand the mechanism underlying the role of DDIAS in lung cancer malignancy. We showed that DDIAS promotes tyrosine phosphorylation of signal transducer and activator of transcription 3 (STAT3), which is constitutively activated in malignant cancers. Interestingly, siRNA protein tyrosine phosphatase (PTP) library screening revealed protein tyrosine phosphatase receptor mu (PTPRM) as a novel STAT3 PTP. PTPRM knockdown rescued the DDIAS-knockdown-mediated decrease in STAT3 Y705 phosphorylation in the presence of IL-6. However, PTPRM overexpression decreased STAT3 Y705 phosphorylation. Moreover, endogenous PTPRM interacted with endogenous STAT3 for dephosphorylation at Y705 following IL-6 treatment. As expected, PTPRM bound to wild-type STAT3 but not the STAT3 Y705F mutant. PTPRM dephosphorylated STAT3 in the absence of DDIAS, suggesting that DDIAS hampers PTPRM/STAT3 interaction. In fact, DDIAS bound to the STAT3 transactivation domain (TAD), which competes with PTPRM to recruit STAT3 for dephosphorylation. Thus we show that DDIAS prevents PTPRM/STAT3 binding and blocks STAT3 Y705 dephosphorylation, thereby sustaining STAT3 activation in lung cancer. DDIAS expression strongly correlates with STAT3 phosphorylation in human lung cancer cell lines and tissues. Thus DDIAS may be considered as a potential biomarker and therapeutic target in malignant lung cancer cells with aberrant STAT3 activation.
    [Show full text]
  • Discovery of Small Molecule CD40−TRAF6 Inhibitors † ‡ § ∥ ∥ ⊥ Barbara Zarzycka, Tom Seijkens, Sander B
    Article pubs.acs.org/jcim Discovery of Small Molecule CD40−TRAF6 Inhibitors † ‡ § ∥ ∥ ⊥ Barbara Zarzycka, Tom Seijkens, Sander B. Nabuurs, , Tina Ritschel, Jochen Grommes, # † ‡ † # Oliver Soehnlein, Roy Schrijver, Claudia M. van Tiel, Tilman M. Hackeng, Christian Weber, ∇ ∇ ‡ # ∥ † Fabian Giehler, Arnd Kieser, Esther Lutgens, , Gert Vriend, and Gerry A. F. Nicolaes*, † Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands ‡ Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands § Lead Pharma Medicine, 5349 AC Oss, The Netherlands ∥ CMBI, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands ⊥ European Vascular Center Aachen-Maastricht, RWTH Aachen, 52062 Aachen, Germany # Institute for Cardiovascular Prevention, Ludwig Maximilians University, 80336 Munich, Germany ∇ Research Unit Gene Vectors, Helmholtz Zentrum München − German Research Center for Environmental Health, 81377 Munich, Germany *S Supporting Information ABSTRACT: The CD154−CD40 receptor complex plays a pivotal role in several inflammatory pathways. Attempts to inhibit the formation of this complex have resulted in systemic side effects. Downstream inhibition of the CD40 signaling pathway therefore seems a better way to ameliorate inflammatory disease. To relay a signal, the CD40 receptor recruits adapter proteins called tumor necrosis factor receptor-associated factors (TRAFs). CD40−TRAF6 interactions are known to play an essential role in several inflammatory diseases. We used in silico, in vitro, and in vivo experiments to identify and characterize compounds that block CD40−TRAF6 interactions. We present in detail our drug docking and optimization pipeline and show how we used it to find lead compounds that reduce inflammation in models of peritonitis and sepsis.
    [Show full text]
  • TNF Receptor-Associated Factor 6 Is an Essential Mediator of CD40
    TNF Receptor-Associated Factor 6 Is an Essential Mediator of CD40-Activated Proinflammatory Pathways in Monocytes and Macrophages This information is current as of September 26, 2021. Lata Mukundan, Gail A. Bishop, Kimberly Z. Head, Lihua Zhang, Larry M. Wahl and Jill Suttles J Immunol 2005; 174:1081-1090; ; doi: 10.4049/jimmunol.174.2.1081 http://www.jimmunol.org/content/174/2/1081 Downloaded from References This article cites 55 articles, 28 of which you can access for free at: http://www.jimmunol.org/content/174/2/1081.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology TNF Receptor-Associated Factor 6 Is an Essential Mediator of CD40-Activated Proinflammatory Pathways in Monocytes and Macrophages1 Lata Mukundan,* Gail A. Bishop,† Kimberly Z. Head,* Lihua Zhang,* Larry M.
    [Show full text]
  • Snapshot: Pattern-Recognition Receptors
    SnapShot: Pattern-Recognition Receptors SnapShot:Pattern-Recognition Kawai and Shizuo Akira Taro Osaka, Japan Diseases, Osaka University, Institute for Microbial Research 1024 Cell 129, June 1, 2007 ©2007 Elsevier Inc. DOI 10.1016/j.cell.2007.05.017 See online version for legend, abbreviations, and references. SnapShot: Pattern-Recognition Receptors Taro Kawai and Shizuo Akira Research Institute for Microbial Diseases, Osaka University, Osaka, Japan (A) Toll-like receptor signaling. Toll-like receptor (TLR) 3 recognizes polyinosinic-polycytidylic acid (poly IC), whereas TLR4 recognizes lipopolysaccharide (LPS). TLR2 recog- nizes various components such as lipoprotein and peptidoglycan (PGN). TLR5 detects flagellin. TLR7 and TLR9 detect single-stranded (ss)RNA and CpG DNA, respectively. Each TLR recruits a distinct set of Toll/interleukin-1 receptor (TIR) domain-containing adaptor molecules such as myeloid differentiation primary response gene 88 (MyD88), TIR-containing adaptor protein (TIRAP, also known as MAL), TIR-containing adaptor-inducing IFNβ (TRIF, also known as TICAM1) and TRIF-related adaptor molecule (TRAM, also known as TICAM2). TLR3 uses TRIF, and TLR5, 7, and 9 use MyD88. TLR2 uses MyD88 and TIRAP, and TLR4 uses MyD88, TIRAP, TRIF, and TRAM. MyD88 binds to inter- leukin-1 receptor-associated kinase 4 (IRAK4) and TRAF6. TRIF binds receptor-interacting protein 1 (RIP1) and TRAF6. TRAF6 forms a complex with Ubc13, Uev1A, and ECSIT (evolutionarily conserved signaling intermediate in Toll/IL-1R pathways) to activate a complex containing transforming growth factor-β-activated kinase 1 (TAK1), TAK1-binding protein 1 (TAB1), TAB2, and TAB3. TAK1 activates IκB kinase (IKK) complex consisting of IKKα, IKKβ, and Nemo (also known as IKKγ), which results in the phosphorylation and proteasomal degradation of IκB proteins and the release of a transcription factor NFκB to the nucleus to regulate expression of inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor α (TNFα).
    [Show full text]
  • THE ROLE of TRAF6 PHOSPHORYLATION in Src/ TRAF6-MEDIATED IKK, JNK, Akt ACTIVATION and TUMORIGENESIS
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 8-2014 THE ROLE OF TRAF6 PHOSPHORYLATION IN Src/ TRAF6-MEDIATED IKK, JNK, Akt ACTIVATION AND TUMORIGENESIS Yun Seong Jeong Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Biological Phenomena, Cell Phenomena, and Immunity Commons, and the Biology Commons Recommended Citation Jeong, Yun Seong, "THE ROLE OF TRAF6 PHOSPHORYLATION IN Src/TRAF6-MEDIATED IKK, JNK, Akt ACTIVATION AND TUMORIGENESIS" (2014). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 494. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/494 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. THE ROLE OF TRAF6 PHOSPHORYLATION IN Src/TRAF6-MEDIATED IKK, JNK, Akt ACTIVATION AND TUMORIGENESIS by Yun Seong
    [Show full text]
  • TRAF6 Phosphorylation Prevents Its Autophagic Degradation and Re-Shapes LPS-Triggered Signaling Networks
    cancers Article TRAF6 Phosphorylation Prevents Its Autophagic Degradation and Re-Shapes LPS-Triggered Signaling Networks Julia Busch 1, Rita Moreno 2, Laureano de la Vega 2 , Vera Vivian Saul 1, Susanne Bacher 1, Felix von Zweydorf 3 , Marius Ueffing 4 , Axel Weber 5 , Christian Johannes Gloeckner 3,6 , Uwe Linne 7 , Michael Kracht 5 and Michael Lienhard Schmitz 1,* 1 Institute of Biochemistry, Member of the German Center for Lung Research, Justus Liebig University, 35392 Giessen, Germany; [email protected] (J.B.); [email protected] (V.V.S.); [email protected] (S.B.) 2 Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, James Arrott Drive, Dundee DD1 9SY, UK; [email protected] (R.M.); [email protected] (L.d.l.V.) 3 German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany; [email protected] (F.v.Z.); [email protected] (C.J.G.) 4 Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; marius.ueffi[email protected] 5 Rudolf Buchheim Institute of Pharmacology, Member of the German Center for Lung Research, Justus Liebig University, 35392 Giessen, Germany; [email protected] (A.W.); [email protected] (M.K.) 6 Core Facility for Medical Bioanalytics, Center for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany 7 Mass Spectrometry Facility of the Department of Chemistry, Philipps University, 35043 Marburg, Germany; [email protected] Citation: Busch, J.; Moreno, R.; de la * Correspondence: [email protected] Vega, L.; Saul, V.V.; Bacher, S.; von Zweydorf, F.; Ueffing, M.; Weber, A.; Simple Summary: Here, we reveal that basal turnover and autophagy-induced decay of the ubiquitin Gloeckner, C.J.; Linne, U.; et al.
    [Show full text]
  • The Role of Janus Kinase 3 in CD4+ T Cell Homeostasis and Function: a Dissertation
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2004-09-13 The role of Janus Kinase 3 in CD4+ T Cell Homeostasis and Function: A Dissertation Shane Renee Mayack University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Amino Acids, Peptides, and Proteins Commons, Cells Commons, Enzymes and Coenzymes Commons, and the Hemic and Immune Systems Commons Repository Citation Mayack SR. (2004). The role of Janus Kinase 3 in CD4+ T Cell Homeostasis and Function: A Dissertation. GSBS Dissertations and Theses. https://doi.org/10.13028/4qq7-k514. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/94 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. THE ROLE OF JANUS KINASE 3 IN CD4+ T CELL HOMEOSTASIS AND FUNCTION A Dissertation Presented BY Shane Renee Mayack Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial llfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY September 13,2004 Interdisciplinary Graduate Program Department of Pathology Program in ImmunologyiVirology Copyright Information The content of this dissertation has appeared in the following publication: Mayack, S. Berg., L. (2004) Alternative CD4+ T cell differentiation in the absence of Jak3. Submitted for publication. Joonsoo Kang, Chair of Committee Alan Rothman, Member of Committee Robert Woodland, Member of Committee Katherine Luzuriaga, Member of Committee Gordon Freeman, Member of Committee Leslie J.
    [Show full text]
  • The Ubiquitin E3 Ligase TRAF6 Exacerbates Pathological Cardiac Hypertrophy Via TAK1-Dependent Signalling
    ARTICLE Received 9 Sep 2015 | Accepted 7 Mar 2016 | Published 1 Jun 2016 DOI: 10.1038/ncomms11267 OPEN The ubiquitin E3 ligase TRAF6 exacerbates pathological cardiac hypertrophy via TAK1-dependent signalling Yan-Xiao Ji1,2,3,*, Peng Zhang1,2,3,*, Xiao-Jing Zhang1,2,3,*, Yi-Chao Zhao4, Ke-Qiong Deng1,2,3, Xi Jiang1,2,3, Pi-Xiao Wang1,2,3, Zan Huang5 & Hongliang Li1,2,3 Tumour necrosis factor receptor-associated factor 6 (TRAF6) is a ubiquitin E3 ligase that regulates important biological processes. However, the role of TRAF6 in cardiac hypertrophy remains unknown. Here, we show that TRAF6 levels are increased in human and murine hypertrophied hearts, which is regulated by reactive oxygen species (ROS) production. Cardiac-specific Traf6 overexpression exacerbates cardiac hypertrophy in response to pressure overload or angiotensin II (Ang II) challenge, whereas Traf6 deficiency causes an alleviated hypertrophic phenotype in mice. Mechanistically, we show that ROS, generated during hypertrophic progression, triggers TRAF6 auto-ubiquitination that facilitates recruitment of TAB2 and its binding to transforming growth factor beta-activated kinase 1 (TAK1), which, in turn, enables the direct TRAF6–TAK1 interaction and promotes TAK1 ubiquitination. The binding of TRAF6 to TAK1 and the induction of TAK1 ubiquitination and activation are indispensable for TRAF6-regulated cardiac remodelling. Taken together, we define TRAF6 as an essential molecular switch leading to cardiac hypertrophy in a TAK1-dependent manner. 1 Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China. 2 Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China. 3 Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China.
    [Show full text]