Implicit, Formal, and Powerful Semantics in Geoinformation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mapping Spatiotemporal Data to RDF: a SPARQL Endpoint for Brussels
International Journal of Geo-Information Article Mapping Spatiotemporal Data to RDF: A SPARQL Endpoint for Brussels Alejandro Vaisman 1, * and Kevin Chentout 2 1 Instituto Tecnológico de Buenos Aires, Buenos Aires 1424, Argentina 2 Sopra Banking Software, Avenue de Tevuren 226, B-1150 Brussels, Belgium * Correspondence: [email protected]; Tel.: +54-11-3457-4864 Received: 20 June 2019; Accepted: 7 August 2019; Published: 10 August 2019 Abstract: This paper describes how a platform for publishing and querying linked open data for the Brussels Capital region in Belgium is built. Data are provided as relational tables or XML documents and are mapped into the RDF data model using R2RML, a standard language that allows defining customized mappings from relational databases to RDF datasets. In this work, data are spatiotemporal in nature; therefore, R2RML must be adapted to allow producing spatiotemporal Linked Open Data.Data generated in this way are used to populate a SPARQL endpoint, where queries are submitted and the result can be displayed on a map. This endpoint is implemented using Strabon, a spatiotemporal RDF triple store built by extending the RDF store Sesame. The first part of the paper describes how R2RML is adapted to allow producing spatial RDF data and to support XML data sources. These techniques are then used to map data about cultural events and public transport in Brussels into RDF. Spatial data are stored in the form of stRDF triples, the format required by Strabon. In addition, the endpoint is enriched with external data obtained from the Linked Open Data Cloud, from sites like DBpedia, Geonames, and LinkedGeoData, to provide context for analysis. -
A Tool for Identifying Attribute Correspondences in Heterogeneous Databases Using Neural Networks Q
Data & Knowledge Engineering 33 (2000) 49±84 www.elsevier.com/locate/datak SEMINT: A tool for identifying attribute correspondences in heterogeneous databases using neural networks q Wen-Syan Li a,*,1, Chris Clifton b,2 a C&C Research Laboratories, NEC USA, Inc., 110 Rio Robles, MS SJ100 San, Jose, CA 95134, USA b The MITRE Corporation, M/S K308, 202 Burlington Road, Bedford, MA 01730-1420, USA Received 23 February 1999; received in revised form 23 September 1999; accepted 11 November 1999 Abstract One step in interoperating among heterogeneous databases is semantic integration: Identifying relationships between attributes or classes in dierent database schemas. SEMantic INTegrator (SEMINT) is a tool based on neural networks to assist in identifying attribute correspondences in heterogeneous databases. SEMINT supports access to a variety of database systems and utilizes both schema information and data contents to produce rules for matching corresponding attributes automatically. This paper provides theoretical background and implementation details of SEMINT. Ex- perimental results from large and complex real databases are presented. We discuss the eectiveness of SEMINT and our experiences with attribute correspondence identi®cation in various environments. Ó 2000 Elsevier Science B.V. All rights reserved. Keywords: Heterogeneous databases; Database integration; Attribute correspondence identi®cation; Neural networks 1. Introduction Advances in information technology have lead to an explosion in the number of databases accessible to a user. Although these databases are generally designed to be self-contained, serving a limited application domain, the ability to integrate data from multiple databases enables many new applications. For example, corporate decision-makers have realized that the huge amount of information stored in information systems is not only operational data; but an asset that can, when integrated, be used to support decision-making. -
A Review of Openstreetmap Data Peter Mooney* and Marco Minghini† *Department of Computer Science, Maynooth University, Maynooth, Co
CHAPTER 3 A Review of OpenStreetMap Data Peter Mooney* and Marco Minghini† *Department of Computer Science, Maynooth University, Maynooth, Co. Kildare, Ireland, [email protected] †Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy Abstract While there is now a considerable variety of sources of Volunteered Geo- graphic Information (VGI) available, discussion of this domain is often exem- plified by and focused around OpenStreetMap (OSM). In a little over a decade OSM has become the leading example of VGI on the Internet. OSM is not just a crowdsourced spatial database of VGI; rather, it has grown to become a vast ecosystem of data, software systems and applications, tools, and Web-based information stores such as wikis. An increasing number of developers, indus- try actors, researchers and other end users are making use of OSM in their applications. OSM has been shown to compare favourably with other sources of spatial data in terms of data quality. In addition to this, a very large OSM community updates data within OSM on a regular basis. This chapter provides an introduction to and review of OSM and the ecosystem which has grown to support the mission of creating a free, editable map of the whole world. The chapter is especially meant for readers who have no or little knowledge about the range, maturity and complexity of the tools, services, applications and organisations working with OSM data. We provide examples of tools and services to access, edit, visualise and make quality assessments of OSM data. We also provide a number of examples of applications, such as some of those How to cite this book chapter: Mooney, P and Minghini, M. -
Hidden Meaning
FEATURES Microdata and Microformats Kit Sen Chin, 123RF.com Chin, Sen Kit Working with microformats and microdata Hidden Meaning Programs aren’t as smart as humans when it comes to interpreting the meaning of web information. If you want to maximize your search rank, you might want to dress up your HTML documents with microformats and microdata. By Andreas Möller TML lets you mark up sections formats and microdata into your own source code for the website shown in of text as headings, body text, programs. Figure 1 – an HTML5 document with a hyperlinks, and other web page business card. The Heading text block is H elements. However, these defi- Microformats marked up with the element h1. The text nitions have nothing to do with the HTML was originally designed for hu- for the business card is surrounded by meaning of the data: Does the text refer mans to read, but with the explosive the div container element, and <br/> in- to a person, an organization, a product, growth of the web, programs such as troduces a line break. or an event? Microformats [1] and their search engines also process HTML data. It is easy for a human reader to see successor, microdata [2] make the mean- What do programs that read HTML data that the data shown in Figure 1 repre- ing a bit more clear by pointing to busi- typically find? Listing 1 shows the HTML sents a business card – even if the text is ness cards, product descriptions, offers, and event data in a machine-readable LISTING 1: HTML5 Document with Business Card way. -
Microformats: Empowering Your Markup for Web 2.0
Microformats: Empowering Your Markup for Web 2.0 John Allsopp Microformats: Empowering Your Markup for Web 2.0 Copyright © 2007 by John Allsopp All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the copyright owner and the publisher. ISBN-13 (pbk): 978-1-59059814-6 ISBN-10 (pbk): 1-59059-814-8 Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1 Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail [email protected],or visit www.springeronline.com. For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail [email protected], or visit www.apress.com. The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in this work. -
Rdfa Versus Microformats: Exploring the Potential for Semantic Interoperability of Mash-Up Personal Learning Environments
RDFa versus Microformats: Exploring the Potential for Semantic Interoperability of Mash-up Personal Learning Environments Vladimir Tomberg, Mart Laanpere Tallinn University, Narva mnt. 25, 10120 Tallinn, Estonia [email protected], [email protected] Abstract. This paper addresses the possibilities for increasing semantic interoperability of mash-up learning environments through the use of automatically processed metadata associated with both learning resources and learning process. We analyze and compare potential of two competing technologies for this purpose: microformats and RDFa. 1 Introduction Mash-up Personal Learning Environments have become a fast developing trend in the world of technology-enhanced learning, partly because of their flexibility and lightweight integration features. Although it is quite easy to aggregate the RSS feeds from the blogs of learners, it is more difficult to get an overview of course and its learning activities. A course is not just a syllabus, it also involves various dynamic processes that can be described in many aspects. The course always has certain learning goals, a schedule that consists learning activities (assignments, discussions), registered participants like teachers and students, and different types of resources. It would be useful, if we would be able to extract such information also from mash-up personal learning environments (just like it can be done in traditional Learning Management Systems) and allow exchanging it between the course participants. Today for semantic tagging of Web content in general and learning content as special case various technologies are used. But there are no tools and ways exist for semantic annotation of learning process that takes place in a distributed network of mash-up personal learning environments. -
Web Service Semantics - WSDL-S
Wright State University CORE Scholar The Ohio Center of Excellence in Knowledge- Kno.e.sis Publications Enabled Computing (Kno.e.sis) 4-2005 Web Service Semantics - WSDL-S Rama Akkiraju Joel Farrell John A. Miller Wright State University - Main Campus Meenakshi Nagarajan Wright State University - Main Campus Amit P. Sheth Wright State University - Main Campus, [email protected] See next page for additional authors Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis Part of the Bioinformatics Commons, Communication Technology and New Media Commons, Databases and Information Systems Commons, OS and Networks Commons, and the Science and Technology Studies Commons Repository Citation Akkiraju, R., Farrell, J., Miller, J. A., Nagarajan, M., Sheth, A. P., & Verma, K. (2005). Web Service Semantics - WSDL-S. https://corescholar.libraries.wright.edu/knoesis/69 This Report is brought to you for free and open access by the The Ohio Center of Excellence in Knowledge-Enabled Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis Publications by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. Authors Rama Akkiraju, Joel Farrell, John A. Miller, Meenakshi Nagarajan, Amit P. Sheth, and Kunal Verma This report is available at CORE Scholar: https://corescholar.libraries.wright.edu/knoesis/69 Web Service Semantics - WSDL-S Technical Note Version 1.0 April, 2005 Authors (alphabetically): Rama Akkiraju, IBM Research Joel Farrell, IBM Software Group John Miller, LSDIS Lab, University of Georgia Meenakshi Nagarajan, LSDIS Lab, University of Georgia Marc -Thomas Schmidt, IBM Software Group Amit Sheth, LSDIS Lab, University of Georgia Kunal Verma, LSDIS Lab, University of Georgia Copyright Notice Copyright© 2005 International Business Machines Corporation and University of Georgia. -
Geospatial Semantics Yingjie Hu GSDA Lab, Department of Geography, University of Tennessee, Knoxville, TN 37996, USA
Geospatial Semantics Yingjie Hu GSDA Lab, Department of Geography, University of Tennessee, Knoxville, TN 37996, USA Abstract Geospatial semantics is a broad field that involves a variety of research areas. The term semantics refers to the meaning of things, and is in contrast with the term syntactics. Accordingly, studies on geospatial semantics usually focus on understanding the meaning of geographic entities as well as their counterparts in the cognitive and digital world, such as cognitive geographic concepts and digital gazetteers. Geospatial semantics can also facilitate the design of geographic information systems (GIS) by enhancing the interoperability of distributed systems and developing more intelligent interfaces for user interactions. During the past years, a lot of research has been conducted, approaching geospatial semantics from different perspectives, using a variety of methods, and targeting different problems. Meanwhile, the arrival of big geo data, especially the large amount of unstructured text data on the Web, and the fast development of natural language processing methods enable new research directions in geospatial semantics. This chapter, therefore, provides a systematic review on the existing geospatial semantic research. Six major research areas are identified and discussed, including semantic interoperability, digital gazetteers, geographic information retrieval, geospatial Semantic Web, place semantics, and cognitive geographic concepts. Keywords: geospatial semantics, semantic interoperability, ontology engineering, digital gazetteers, geographic information retrieval, geospatial Semantic Web, cognitive geographic concepts, qualitative reasoning, place semantics, natural language processing, text mining, spatial data infrastructures, location-based social networks 1. Introduction The term semantics refers to the meaning of expressions in a language, and is in contrast with the term syntactics. -
Microformats, Metadata
Microformats, Metadata April 29, 2013 1 Introduction 1.1 Content • What are microformats? • Why to use microformats? • How to replace microformats? • Advantages of microformats to own markup. • Disadvantages of microformats.. • Common used microformats • Microformats design patterns. • Resources on microformats. 1.2 What are microformats? • The way how to add simple markup into human readable information to allow computer processing. { acquiring data from documents { indexing { searching { storing { cross-referencing • Microformats are elements of a semantic markup using a plain old semantic (X)HTML (POSH) { Why has been the HTML designed at CERN (Conseil Europ´eenpour la Recherche Nucl´eaire(http://dg-rpc.web.cern.ch/dg-rpc/Scale. html)) v in the year 1991? 1 1.3 Example of Microformat <ol class='xoxo'> <li>Prvn´ıbod <ol> <li>Podbod a</li> <li>Podbod b</li> </ol> </li> <li>Druh´ybod <ol compact="compact"> <li>Podbod c</li> <li>Podbod d</li> </ol> </li> </ol> 1.4 Why to use microformats? Microformats combines some trends: • next logical step in web-design and information architecture progress • the manner how can people and organisations publish semantically rich content without dependency on centralized services • "agreement", that the traditional meta data either failed or their adoption took too long, so there has been a need of a different solution. { microformats use the meta data. :-) • Use of (X)HTML for data. 1.5 How can be microformats replaced? (1) • Including data in own formating in a different namespace { XHTML + Voice Profile (http://www.voicexml.org/specs/multimodal/ x+v/12/) { (X)HTML + SVG { XLink { XHTML+RDF { ... 1.6 How can be microformats replaced? (2) • Advantages: { easy visualisation (direct support in browsers, using CSS for exam- ple), { independent on centralized services. -
An Approach to Manage Semantic Heterogeneity in Unstructured P2P Information Retrieval Systems Thomas Cerqueus, Sylvie Cazalens, Philippe Lamarre
An Approach to Manage Semantic Heterogeneity in Unstructured P2P Information Retrieval Systems Thomas Cerqueus, Sylvie Cazalens, Philippe Lamarre To cite this version: Thomas Cerqueus, Sylvie Cazalens, Philippe Lamarre. An Approach to Manage Semantic Hetero- geneity in Unstructured P2P Information Retrieval Systems. IEEE International Conference on Peer- to-Peer Computing, Sep 2012, Tarragona, Spain. pp.178. hal-00731848 HAL Id: hal-00731848 https://hal.archives-ouvertes.fr/hal-00731848 Submitted on 13 Sep 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License An Approach to Manage Semantic Heterogeneity in Unstructured P2P Information Retrieval Systems Thomas Cerqueus Sylvie Cazalens Philippe Lamarre LINA, UMR 6241 INRIA Sophia - LINA, UMR 6241 INSA-Lyon, LIRIS, UMR 5205, F69621 University of Nantes, France University of Nantes, France University of Lyon - CNRS, France [email protected] [email protected] [email protected] Abstract—In unstructured information retrieval P2P systems, concepts. The entities of an ontology may be used to annotate semantic heterogeneity comes from the use of different ontolo- a peers’ documents. This is a simple way to provide a uniform gies. -
The Resource Description Framework and Its Schema Fabien Gandon, Reto Krummenacher, Sung-Kook Han, Ioan Toma
The Resource Description Framework and its Schema Fabien Gandon, Reto Krummenacher, Sung-Kook Han, Ioan Toma To cite this version: Fabien Gandon, Reto Krummenacher, Sung-Kook Han, Ioan Toma. The Resource Description Frame- work and its Schema. Handbook of Semantic Web Technologies, 2011, 978-3-540-92912-3. hal- 01171045 HAL Id: hal-01171045 https://hal.inria.fr/hal-01171045 Submitted on 2 Jul 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Resource Description Framework and its Schema Fabien L. Gandon, INRIA Sophia Antipolis Reto Krummenacher, STI Innsbruck Sung-Kook Han, STI Innsbruck Ioan Toma, STI Innsbruck 1. Abstract RDF is a framework to publish statements on the web about anything. It allows anyone to describe resources, in particular Web resources, such as the author, creation date, subject, and copyright of an image. Any information portal or data-based web site can be interested in using the graph model of RDF to open its silos of data about persons, documents, events, products, services, places etc. RDF reuses the web approach to identify resources (URI) and to allow one to explicitly represent any relationship between two resources. -
Resolution of Semantic Heterogeneity in Database Schema Integration Using Formal Ontologies
Information Technology and Management 6, 97–122, 2005 2005 Springer Science + Business Media, Inc.. Manufactured in The Netherlands. Resolution of Semantic Heterogeneity in Database Schema Integration Using Formal Ontologies FARSHAD HAKIMPOUR [email protected] Geographic Information Analysis Division, Department of Geography, University of Zurich, Winterthurerstr. 190, Zurich, Switzerland ∗ ANDREAS GEPPERT [email protected] Credit Suisse, Zurich, Switzerland Abstract. This paper addresses the problem of handling semantic heterogeneity during database schema integration. We focus on the semantics of terms used as identifiers in schema definitions. Our solution does not rely on the names of the schema elements or the structure of the schemas. Instead, we utilize formal ontologies consisting of intensional definitions of terms represented in a logical language. The ap- proach is based on similarity relations between intensional definitions in different ontologies. We present the definitions of similarity relations based on intensional definitions in formal ontologies. The extensional consequences of intensional relations are addressed. The paper shows how similarity relations are discov- ered by a reasoning system using a higher-level ontology. These similarity relations are then used to derive an integrated schema in two steps. First, we show how to use similarity relations to generate the class hierarchy of the global schema. Second, we explain how to enhance the class definitions with attributes. This approach reduces the cost of generating or re-generating global schemas for tightly-coupled federated databases. Keywords: database integration, schema integration, formal ontologies, semantic heterogeneity In many domains, the number of data providers and amounts of available data is increas- ing. Data consumers require consistent views of the data available from heterogeneous data sources.