Amazon Location Service Developer Guide Amazon Location Service Developer Guide

Total Page:16

File Type:pdf, Size:1020Kb

Amazon Location Service Developer Guide Amazon Location Service Developer Guide Amazon Location Service Developer Guide Amazon Location Service Developer Guide Amazon Location Service: Developer Guide Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved. Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. Amazon Location Service Developer Guide Table of Contents What is Amazon Location Service? ....................................................................................................... 1 Key features .............................................................................................................................. 1 Related services ......................................................................................................................... 2 How Amazon Location Service Works ................................................................................................... 3 Overview ................................................................................................................................... 3 Maps ................................................................................................................................ 4 Places ............................................................................................................................... 4 Routes .............................................................................................................................. 5 Geofences ......................................................................................................................... 6 Trackers ............................................................................................................................ 6 Component definitions ............................................................................................................... 7 Maps ................................................................................................................................ 7 Places ............................................................................................................................... 7 Routes .............................................................................................................................. 8 Geofences ........................................................................................................................ 10 Trackers ........................................................................................................................... 11 Regions and endpoints .............................................................................................................. 12 Regions ........................................................................................................................... 12 Endpoints ........................................................................................................................ 12 Data providers ................................................................................................................................. 14 Esri ......................................................................................................................................... 14 Map styles ....................................................................................................................... 14 Coverage ......................................................................................................................... 20 Terms of use and data attribution ...................................................................................... 20 Error reporting ................................................................................................................. 21 HERE Technologies ................................................................................................................... 21 Map styles ....................................................................................................................... 21 Coverage ......................................................................................................................... 20 Terms of use and data attribution ...................................................................................... 22 Error reporting ................................................................................................................. 22 Common use cases ........................................................................................................................... 23 User engagement and geomarketing applications ......................................................................... 23 Asset tracking applications ........................................................................................................ 24 Delivery applications ................................................................................................................. 25 Getting started ................................................................................................................................ 27 Sign up for AWS ...................................................................................................................... 27 Manage access to your AWS resources ........................................................................................ 27 Grant access to Amazon Location Service .................................................................................... 28 Next steps ............................................................................................................................... 29 Accessing Amazon Location ............................................................................................................... 30 Allowing unauthenticated guest access using Amazon Cognito ....................................................... 30 Create an Amazon Cognito identity pool ............................................................................. 31 Using the Identity Pool from JavaScript .............................................................................. 35 Next steps ....................................................................................................................... 35 Using Amazon Location ..................................................................................................................... 36 Using maps ............................................................................................................................. 36 Display a map in your application ...................................................................................... 37 Geocoding, reverse geocoding, and searching .............................................................................. 70 Prerequisites .................................................................................................................... 70 Geocoding ....................................................................................................................... 73 Reverse geocoding ............................................................................................................ 76 Tutorial: Amazon Aurora PostgreSQL user-defined functions .................................................. 77 Calculating a route ................................................................................................................... 87 Prerequisites .................................................................................................................... 87 iii Amazon Location Service Developer Guide Calculate route ................................................................................................................ 90 Geofencing an area of interest ................................................................................................... 95 Step 1: Add geofences ...................................................................................................... 96 Step 2: Start tracking ....................................................................................................... 99 Step 3: Link a tracker to a geofence collection ................................................................... 103 Step 4: Evaluate device positions against geofences ............................................................ 104 Reacting to geofence events with EventBridge ........................................................................... 105 Create event rules .......................................................................................................... 105 Event examples .............................................................................................................. 106 Monitoring with CloudWatch .................................................................................................... 107 Metrics .......................................................................................................................... 108 View metrics .................................................................................................................. 109 Create CloudWatch alarms ..............................................................................................
Recommended publications
  • Mapping Spatiotemporal Data to RDF: a SPARQL Endpoint for Brussels
    International Journal of Geo-Information Article Mapping Spatiotemporal Data to RDF: A SPARQL Endpoint for Brussels Alejandro Vaisman 1, * and Kevin Chentout 2 1 Instituto Tecnológico de Buenos Aires, Buenos Aires 1424, Argentina 2 Sopra Banking Software, Avenue de Tevuren 226, B-1150 Brussels, Belgium * Correspondence: [email protected]; Tel.: +54-11-3457-4864 Received: 20 June 2019; Accepted: 7 August 2019; Published: 10 August 2019 Abstract: This paper describes how a platform for publishing and querying linked open data for the Brussels Capital region in Belgium is built. Data are provided as relational tables or XML documents and are mapped into the RDF data model using R2RML, a standard language that allows defining customized mappings from relational databases to RDF datasets. In this work, data are spatiotemporal in nature; therefore, R2RML must be adapted to allow producing spatiotemporal Linked Open Data.Data generated in this way are used to populate a SPARQL endpoint, where queries are submitted and the result can be displayed on a map. This endpoint is implemented using Strabon, a spatiotemporal RDF triple store built by extending the RDF store Sesame. The first part of the paper describes how R2RML is adapted to allow producing spatial RDF data and to support XML data sources. These techniques are then used to map data about cultural events and public transport in Brussels into RDF. Spatial data are stored in the form of stRDF triples, the format required by Strabon. In addition, the endpoint is enriched with external data obtained from the Linked Open Data Cloud, from sites like DBpedia, Geonames, and LinkedGeoData, to provide context for analysis.
    [Show full text]
  • Identifying Locations of Social Significance: Aggregating Social Media Content to Create a New Trust Model for Exploring Crowd Sourced Data and Information
    Identifying Locations of Social Significance: Aggregating Social Media Content to Create a New Trust Model for Exploring Crowd Sourced Data and Information Al Di Leonardo, Scott Fairgrieve Adam Gribble, Frank Prats, Wyatt Smith, Tracy Sweat, Abe Usher, Derek Woodley, and Jeffrey B. Cozzens The HumanGeo Group, LLC Arlington, Virginia, United States {al,scott,adam,frank,wyatt,tracy,abe,derek}@thehumangeo.com Abstract. Most Internet content is no longer produced directly by corporate organizations or governments. Instead, individuals produce voluminous amounts of informal content in the form of social media updates (micro blogs, Facebook, Twitter, etc.) and other artifacts of community communication on the Web. This grassroots production of information has led to an environment where the quantity of low-quality, non-vetted information dwarfs the amount of professionally produced content. This is especially true in the geospatial domain, where this information onslaught challenges Local and National Governments and Non- Governmental Organizations seeking to make sense of what is happening on the ground. This paper proposes a new model of trust for interpreting locational data without a clear pedigree or lineage. By applying principles of aggregation and inference, it is possible to identify locations of social significance and discover “facts” that are being asserted by crowd sourced information. Keywords: geospatial, social media, aggregation, trust, location. 1 Introduction Gathering geographical data on populations has always constituted an essential element of census taking, political campaigning, assisting in humanitarian disasters/relief, law enforcement, and even in post-conflict areas where grand strategy looks beyond the combat to managing future peace. Warrior philosophers have over the millennia praised indirect approaches to warfare as the most effective means of combat—where influence and information about enemies and their supporters trumps reliance on kinetic operations to achieve military objectives.
    [Show full text]
  • A Review of Openstreetmap Data Peter Mooney* and Marco Minghini† *Department of Computer Science, Maynooth University, Maynooth, Co
    CHAPTER 3 A Review of OpenStreetMap Data Peter Mooney* and Marco Minghini† *Department of Computer Science, Maynooth University, Maynooth, Co. Kildare, Ireland, [email protected] †Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy Abstract While there is now a considerable variety of sources of Volunteered Geo- graphic Information (VGI) available, discussion of this domain is often exem- plified by and focused around OpenStreetMap (OSM). In a little over a decade OSM has become the leading example of VGI on the Internet. OSM is not just a crowdsourced spatial database of VGI; rather, it has grown to become a vast ecosystem of data, software systems and applications, tools, and Web-based information stores such as wikis. An increasing number of developers, indus- try actors, researchers and other end users are making use of OSM in their applications. OSM has been shown to compare favourably with other sources of spatial data in terms of data quality. In addition to this, a very large OSM community updates data within OSM on a regular basis. This chapter provides an introduction to and review of OSM and the ecosystem which has grown to support the mission of creating a free, editable map of the whole world. The chapter is especially meant for readers who have no or little knowledge about the range, maturity and complexity of the tools, services, applications and organisations working with OSM data. We provide examples of tools and services to access, edit, visualise and make quality assessments of OSM data. We also provide a number of examples of applications, such as some of those How to cite this book chapter: Mooney, P and Minghini, M.
    [Show full text]
  • Hidden Meaning
    FEATURES Microdata and Microformats Kit Sen Chin, 123RF.com Chin, Sen Kit Working with microformats and microdata Hidden Meaning Programs aren’t as smart as humans when it comes to interpreting the meaning of web information. If you want to maximize your search rank, you might want to dress up your HTML documents with microformats and microdata. By Andreas Möller TML lets you mark up sections formats and microdata into your own source code for the website shown in of text as headings, body text, programs. Figure 1 – an HTML5 document with a hyperlinks, and other web page business card. The Heading text block is H elements. However, these defi- Microformats marked up with the element h1. The text nitions have nothing to do with the HTML was originally designed for hu- for the business card is surrounded by meaning of the data: Does the text refer mans to read, but with the explosive the div container element, and <br/> in- to a person, an organization, a product, growth of the web, programs such as troduces a line break. or an event? Microformats [1] and their search engines also process HTML data. It is easy for a human reader to see successor, microdata [2] make the mean- What do programs that read HTML data that the data shown in Figure 1 repre- ing a bit more clear by pointing to busi- typically find? Listing 1 shows the HTML sents a business card – even if the text is ness cards, product descriptions, offers, and event data in a machine-readable LISTING 1: HTML5 Document with Business Card way.
    [Show full text]
  • What3words Geocoding Extensions and Applications for a University Campus
    WHAT3WORDS GEOCODING EXTENSIONS AND APPLICATIONS FOR A UNIVERSITY CAMPUS WEN JIANG August 2018 TECHNICAL REPORT NO. 315 WHAT3WORDS GEOCODING EXTENSIONS AND APPLICATIONS FOR A UNIVERSITY CAMPUS Wen Jiang Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton, N.B. Canada E3B 5A3 August 2018 © Wen Jiang, 2018 PREFACE This technical report is a reproduction of a thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering in the Department of Geodesy and Geomatics Engineering, August 2018. The research was supervised by Dr. Emmanuel Stefanakis, and support was provided by the Natural Sciences and Engineering Research Council of Canada. As with any copyrighted material, permission to reprint or quote extensively from this report must be received from the author. The citation to this work should appear as follows: Jiang, Wen (2018). What3Words Geocoding Extensions and Applications for a University Campus. M.Sc.E. thesis, Department of Geodesy and Geomatics Engineering Technical Report No. 315, University of New Brunswick, Fredericton, New Brunswick, Canada, 116 pp. ABSTRACT Geocoded locations have become necessary in many GIS analysis, cartography and decision-making workflows. A reliable geocoding system that can effectively return any location on earth with sufficient accuracy is desired. This study is motivated by a need for a geocoding system to support university campus applications. To this end, the existing geocoding systems were examined. Address-based geocoding systems use address-matching method to retrieve geographic locations from postal addresses. They present limitations in locality coverage, input address standardization, and address database maintenance.
    [Show full text]
  • PROBLEMATIC TAXIWAY GEOMETRY STUDY OVERVIEW January 2018 6
    DOT/FAA/TC-18/2 Problematic Taxiway Geometry Federal Aviation Administration William J. Hughes Technical Center Study Overview Aviation Research Division Atlantic City International Airport New Jersey 08405 January 2018 Final Report This document is available to the U.S. public through the National Technical Information Services (NTIS), Springfield, Virginia 22161. U.S. Department of Transportation Federal Aviation Administration NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the objective of this report. The findings and conclusions in this report are those of the author(s) and do not necessarily represent the views of the funding agency. This document does not constitute FAA policy. Consult the FAA sponsoring organization listed on the Technical Documentation page as to its use. This report is available at the Federal Aviation Administration William J. Hughes Technical Center’s Full-Text Technical Reports page: actlibrary.act.faa.gov in Adobe Acrobat portable document format (PDF). Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT/FAA/TC-18/2 4. Title and Subtitle 5. Report Date PROBLEMATIC TAXIWAY GEOMETRY STUDY OVERVIEW January 2018 6. Performing Organization Code ANG-E261 7. Author(s) 8. Performing Organization Report No. 1 2 3 Lauren Vitagliano , Garrison Canter , and Rachel Aland 9. Performing Organization Name and Address 10.
    [Show full text]
  • Geocoding and Buffering Addresses in Arcgis
    Spatial Structures in the Social Sciences Geocoding Geocoding and Buffering Addresses in ArcGIS INTRODUCTION Geocoding is the process of assigning location coordinates in a continuous, globlal reference system (Latitude and Longitude, for instance) to street addresses. While street addresses are an easy to understand way for us to make sense of locations in a local area there are many problems will using them for distinguishing locations in the world. Street addresses are generally considered location identifiers within a local reference system; furthermore, a street address system is often discrete, meaning it is only effective for positions that fall on the street network. For this reason the US street network has been digitized and coordinates (lat/long for instance) have been determined for the two points that specify individual line segments (smallest line segments possible). In addition to the global coordinates the street address range for each side of the street is also specified for that segment of the street network. Therefore, based on the known range of street addresses and lat/long coordinates a reasonable approximation can be made of the location of an address on a street in global coordinates. DATA and SHAPEFILES Geocodebuffer.zip can be downloaded from the S4 tutorials section of the training page (http://www.s4.brown.edu/S4/about.htm) It contains: 1) NOSchoolsaddrs.xls: Excel file of addresses of currently open schools in New Orleans 2) NOstreets.shp: a street file for all of Louisiana, the state in which you will be geocoding addresses. 3) Katrina_damage_all2.shp: a file displaying damage sustained across New Orleans from Katrina.
    [Show full text]
  • Resident Hotels Partners with What3words
    PRESS RELEASE 23rd April 2021 RESIDENT HOTELS PARTNERS WITH WHAT3WORDS ///times.solve.elaborate and ///many.wiser.hired are not lockdown scrabble attempts, they are unique three words guests can use to locate Resident Hotels via app, what3words In anticipation of a summer of city exploration, Resident Hotels has partnered with the global geocode app, what3words, to ensure that all guests can quickly and easily find each of The Resident hotels in London and Liverpool A recent study shows that over half of travellers (52%) spent more than an hour getting lost on their last trip.1 Now, The Resident’s guests will be able to pinpoint the exact location they need faster, more easily and without getting lost – leaving them stress free to enjoy a relaxing and comfortable stay. what3words, which has divided the world into 3mx3m squares, means the addresses are more precise than street addresses and more useful than dropping a pin in the centre of the building. This is a more reliable way of navigating and makes travelling in unfamiliar places easier and safer. 1 what3words Consumer Travel Survey based on 2,000 respondents in the UK and USA, aged 18+ Resident Hotels will be communicating each unique set of three words to guests on its pre- arrival communication, on TripAdvisor as well as being listed on the website pages for the four hotels in London and one in Liverpool. what3words is currently available in 40 languages. The app also works offline, which means that international travellers can use it to find each of The Resident hotels confidently.
    [Show full text]
  • Microformats: Empowering Your Markup for Web 2.0
    Microformats: Empowering Your Markup for Web 2.0 John Allsopp Microformats: Empowering Your Markup for Web 2.0 Copyright © 2007 by John Allsopp All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the copyright owner and the publisher. ISBN-13 (pbk): 978-1-59059814-6 ISBN-10 (pbk): 1-59059-814-8 Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1 Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail [email protected],or visit www.springeronline.com. For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail [email protected], or visit www.apress.com. The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in this work.
    [Show full text]
  • Rdfa Versus Microformats: Exploring the Potential for Semantic Interoperability of Mash-Up Personal Learning Environments
    RDFa versus Microformats: Exploring the Potential for Semantic Interoperability of Mash-up Personal Learning Environments Vladimir Tomberg, Mart Laanpere Tallinn University, Narva mnt. 25, 10120 Tallinn, Estonia [email protected], [email protected] Abstract. This paper addresses the possibilities for increasing semantic interoperability of mash-up learning environments through the use of automatically processed metadata associated with both learning resources and learning process. We analyze and compare potential of two competing technologies for this purpose: microformats and RDFa. 1 Introduction Mash-up Personal Learning Environments have become a fast developing trend in the world of technology-enhanced learning, partly because of their flexibility and lightweight integration features. Although it is quite easy to aggregate the RSS feeds from the blogs of learners, it is more difficult to get an overview of course and its learning activities. A course is not just a syllabus, it also involves various dynamic processes that can be described in many aspects. The course always has certain learning goals, a schedule that consists learning activities (assignments, discussions), registered participants like teachers and students, and different types of resources. It would be useful, if we would be able to extract such information also from mash-up personal learning environments (just like it can be done in traditional Learning Management Systems) and allow exchanging it between the course participants. Today for semantic tagging of Web content in general and learning content as special case various technologies are used. But there are no tools and ways exist for semantic annotation of learning process that takes place in a distributed network of mash-up personal learning environments.
    [Show full text]
  • Guide to Sentinel-1 Geocoding
    Issue: 1.10 Date: 26.03.2019 Guide to S-1 Geocoding Ref: UZH-S1-GC-AD Page 1 / 42 Guide to Sentinel-1 Geocoding Supported by: à Versions up to 1.05: Sentinel-1 Mission Performance Centre (S1MPC) ESRIN Contract No. CLS-DAR-DF-13-041 à Versions 1.06 through 1.10: Subcontract from Telespazio/Vega IDEAS+ Authors: David Small & Adrian Schubert Distribution List Name Affiliation Nuno Miranda ESA-ESRIN David Small UZH-RSL Adrian Schubert UZH-RSL Peter Meadows BAE Guillaume Hajduch CLS Issue: 1.10 Date: 26.03.2019 Guide to S-1 Geocoding Ref: UZH-S1-GC-AD Page 2 / 42 Document Change Record Issue Date Page(s) Description of the Change 0.5 11.07.2017 all Initial Draft Issue 0.7 14.08.2017 Extended discussion of S-1 bistatic residual correction Replaced Figure 5 with S-1 example 0.9 25.08.2017 Corrected some corrupt equation objects; formatting fixes; clari- fied sections on azimuth bistatic corrections. Various minor clar- ifications and corrections spanning the document. 0.91 01.09.2017 Minor edits in response to comments from P. Meadows (BAE) 0.92 01.09.2017 UZH logo added; small correction to Fig. 1 0.95 01.02.2018 New section 4.6.8 added, comparing “out-of-the-box” S-1 prod- uct geolocation accuracy with UZH post-processed accuracy. 1.0 13.02.2018 Edits made to address comments from ESA. 1.01 01.03.2018 Added discussion in section 4.6.8; Final edits made to text flow; added column with ALE requirement to Table 11 and references to S-1 Product Definition and two recent technical notes on pre- cise geocoding.
    [Show full text]
  • 3Geonames (Slides)
    2/3/2019 Geocode: A Geolocation Code 3geonames dot org An open source Geocoding system for the simple communication of locations with a resolution of 1 m BRUSSELS-VOT-SHOOY 3071531887023 50.812375,4.38073 ERVIN RUCI Fosdem Université libre de Bruxelles Campus du I hit my laptop's keyboard repeatedly for fun and prot Solbosch Avenue Franklin D. Roosevelt 50 1050 Bruxelles Belgium https://3geonames.org/fosdem.html#slide=1 1/32 2/3/2019 Geocode: A Geolocation Code Location Codes From X,Y to Z M L S, Geohash, Mapcodes, Plus codes, O P C, N A C, XADDRESS, What3words, Zippr, MapTags, OkHi, Geokey, FB ... https://3geonames.org/fosdem.html#slide=1 2/32 2/3/2019 Geocode: A Geolocation Code Address Codes Alphanumeric string sets created by humans for communicating locations with other humans. https://3geonames.org/fosdem.html#slide=1 3/32 2/3/2019 Geocode: A Geolocation Code Where were we? | FRANKLIN ROOSEVELT | Brussels | | Franklin Rooseveltlaan | Brussel | | Avenue Franklin Roosevelt | Ville de Bruxelles | Permunations e.g., Avenue Franklin D. Roosevelt 50 1050 Bruxelles Belgium or Avenue Franklin Roosevelt - Franklin Rooseveltlaan 50 1050 Brussel Belgium or Avenue Franklin D. Roosevelt 50 1050 Brussels Belgium https://geocode.xyz/Avenue Franklin D. Roosevelt 50 Brussel Belgium BRUSSELS-AAX-MONTESE / BRUSSELS-NILWK / 50.81136,4.38176 https://3geonames.org/fosdem.html#slide=1 4/32 2/3/2019 Geocode: A Geolocation Code Geocode A hashing function for locations. G{Latitude,Longitude + 3 Geo Names} = Geocode. https://3geonames.org/fosdem.html#slide=1 5/32 2/3/2019 Geocode: A Geolocation Code Some Geocode use cases VOICE GEOCODING SYSTEMS POST CODE SYSTEMS INDOOR NAVIGATION The robots are coming - autonomous vehicle Better Alphanumeric string sets for the Using store names instead of geonames navigation &more unaddressed and/or ambiguously addressed world.
    [Show full text]