SOLID MODELLING USING LINEAR OCTREE REPRESENTATION By

Total Page:16

File Type:pdf, Size:1020Kb

SOLID MODELLING USING LINEAR OCTREE REPRESENTATION By SOLID MODELLING USING LINEAR OCTREE REPRESENTATION By SHEUNG-LAI SUNNY HO B.Math (Hons.), University of Waterloo, 1983 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (DEPARTMENT OF COMPUTER SCIENCE) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA October 1985 © Sheung-Lai Sunny Ho, 1985 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of COH?0T£R SCIENCE The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date OCTOBER 2., Abstract Object representation is the backbone of any solid modelling system. Hierarchical spatial decompositions of objects called octrees introduced very efficient algorithms for boolean set operations and some restricted classes of geometric transformations. Linear octrees, a compact encoding of the octrees, result in a significant reduction of storage requirements, and lead to simpler algorithms for most modelling operations. This thesis investigates some properties of linear octrees with emphasis on object genera• tion. By interpreting linear octree node digits as binary numbers, some simple conversion and node trimming algorithms are found, which when combined with a node enumeration algorithm, generate the linear octrees of cuboidal volumes efficiently. A simple and uniform approach is devised to perform arbitrary geometric transformations by means of cuboid generation. Exper• iments shows these algorithms maintain the efficiency of special cases while degrading linearly with the number of intermediate nodes generated. ii Contents Abstract ii Contents iii List of Figures vi List of Tables vii Acknowledgement viii 1 Introduction 1 2 Object Representations 3 2.1 Solid Objects 3 2.2 Primitive Instancing 3 2.3 Boundary Representation 4 2.4 Spatial Enumeration 6 2.5 Octrees 6 S Linear Octree Representation 9 3.1 The Linear Octree 9 3.2 Terms and Notations 10 3.3 Basic Operations 12 3.3.1 Conversion of a node to its lowest and highest order voxel coordinates . 12 3.3.2 Conversion to the largest node from its lowest order voxel coordinate ... 13 3.3.3 Sequential node generation • • 13 3.3.4 Trimming against a lower bound • • 15 3.3.5 Trimming against an upper bound 16 3.3.6 Normalizing an object • • 17 3.4 Object Generation • • 17 3.4.1 Parametrically defined objects 17 3.4.2 Cuboid 18 iii 3.4.3 Ellipsoid 19 3.5 Other solids '. 20 4 Modelling Operations 21 4.1 Geometric Transformations 21 4.1.1 Translation 21 4.1.2 Scaling 23 4.1.3 Rotations 25 4.1.4 Compound Transformations 30 4.2 Boolean Set Operations 30 4.2.1 Union 31 4.2.2 Intersection 33 4.2.3 Difference 33 5 Implementation and Results 36 5.1 A Solid Modelling Package 36 5.2 Representation of Linear Octrees 37 5.2.1 Internal Representation 37 5.2.2 External Representation 38 5.2.3 Input/Output 39 5.2.4 Node Retrieval 40 5.2.5 Normalization 40 5.3 Operations on linear octree nodes 40 5.4 Modelling Operations 41 5.4.1 Translation 41 5.4.2 Scaling 42 5.4.3 Rotations 43 5.4.4 Normalization 43 5.4.5 Boolean Set Operations 44 5.5 Auxiliary Library Functions , 44 5.5.1 Object Generation 44 5.5.2 Rendering 45 5.6 User Commands 46 5.7 Results and Evaluation 46 6 Conclusion 51 6.1 Summary 51 6.2 Future Work 52 Bibliography 54 iv A The Solid Modelling Package 56 A.l The Linear Octree Library 56 A.2 User Programs 61 v List of Figures 2.1 Construction of an object by set operations on primitive instances 4 2.2 Unwanted edges produced from union of two objects 5 2.3 An "impossible" object from boundary representation 5 2.4 An object and its octree representation 7 3.1 Digit assignments for linear quadtrees and linear octrees 11 3.2 A circular disk of diameter 15 in a domain of resolution 4 consists of 54 nodes. 12 3.3 Conversion of octree nodes to their corner voxels 13 3.4 Conversion to octree nodes from their lowest order voxels 14 3.5 Node 2FFF trimmed by lower bound y = 10 15 3.6 Node 3FFF trimmed by upper bounds x = 10 (a), and x = 11 (b) 16 4.1 Translation of a node by different multiples of 2 22 4.2 Scaling a node by different factors 24 4.3 Severe fragmentation results for almost any angle of rotation 25 4.4 Holes and duplicates resulting from forward mapping 26 4.5 Re-sampling of pixels in target under backward mapping 27 4.6 Region occupied by a node of size d x d 28 4.7 Partition of 2FFF under expand(2FFF, 213F) 34 5.1 An overview of the solid modelling package 37 5.2 Data structure of an object 39 A.l Various stages in creating an object 63 vi List of Tables 5.1 Badness of objects vs. badness of translation components 41 5.2 Execution times for object generations 48 5.3 Execution times for translation by (ta,t9,tz) 49 5.4 Execution times for scalings by (s„, s9, »x) 49 5.5 Execution times for rotations by $ degrees 50 5.6 Execution times for boolean set operations 50 vii Acknowledgement I would like to thank my supervisor, Dr. Gunther F. Schrack for his guidance and suggestions for this thesis, and to thank Dr. Robert J. Woodham for reading the final draft. The variety of computing facilities at UBC has added fun to the serious academic work. Spe• cial thanks are directed to all fellow graduate students who have been very helpful in answering questions. viii Chapter 1 Introduction Solid modelling refers to the theory and practice for computing the properties of and ma• nipulating solid objects represented by some abstract data structures. It is becoming popu• lar in many computer graphics applications. Evolving throughout the past decade, the tech• nology has now been transferred from the stage of research projects to production systems [REQU82,REQU83]. Areas such as engineering design, manufacturing, architecture, and medi• cal imagery are using solid modelling as a standard tool. In recent years, even the advertisement and movie industries are using the technology to achieve special effects. Object representation [REQU80] is the basic foundation of any solid modelling system. Un• til now, most systems used boundary representation and/or primitive instancing as their basic building blocks. Such schemes provide a good approximation of real solids and allow exact ge• ometric transformations, but make boolean set operations, a necessity in solid modelling, and geometric and topological property calculations somewhat difficult. To overcome these, a spa• tial enumeration scheme called octreet [JACK80,MEAG82] was introduced, which decomposes hierarchically the three-dimensional Euclidean space (2JS) and expresses the objects residing in it in the form of ordered 8-ary trees. However, octrees often require excessive amounts of 1 CHAPTER 1. INTRODUCTION 2 storage for their nodes and pointers even for moderately complex objects. The linear octree [GARG82] was devised to reduce the storage requirement dramatically by storing only the leaf nodes using a special encoding scheme. This thesis takes a different look at linear octrees to take full advantage of their mathemat• ical properties. Efficient algorithms were derived that extensively use bitwise operations. A complete set of modelling operations is also described. Chapter 2 gives a brief overview of var• ious solid representation schemes. Chapter 3 describes the linear octree as used in this thesis, on which new operations, such as node trimming, and object generation algorithms are derived. The standard geometric transformations—translation, (arbitrary) scaling, and rotations, which make use of the new object generation algorithms, are discussed in Chapter 4. Boolean set operations—union, intersection, and difference—and rendering techniques are also included for completeness. An experimental implementation is described in Chapter 5, along with some evaluations on the solid modelling package. Chapter 6 summarizes this work, lists unsolved problems, and suggests possible extensions and future work. Chapter 2 Object Representations 2.1 Solid Objects The primary interest of solid modelling is manipulation of solid "physical" objects. More precisely, these objects are subsets of E3 that are well-behaved, represent able, and occupy non-zero volume; curves and surfaces are not considered valid solids in this context. In addi• tion, boolean set operations are regularized so as to maintain closure. The following sections briefly outline 3ome of the common solid representation schemes and lists their advantages and disadvantages. A thorough survey can be found in [REQU80]. 2.2 Primitive Instancing Primitive solids such as cubes, spheres, and prisms can be represented easily and exactly by just a few parameters. Most mechanical parts can be constructed by applying set operations on instances of these primitives, such as the object in Figure 2.1. Set operations can be simplified since intersections of object surfaces can be solved analytically. However, the restricted class of solids makes primitive instancing difficult to extend to a wider range of applications. Production systems do not rely solely on primitive instancing, but rather include it as a means for input.
Recommended publications
  • Finding Neighbors in a Forest: a B-Tree for Smoothed Particle Hydrodynamics Simulations
    Finding Neighbors in a Forest: A b-tree for Smoothed Particle Hydrodynamics Simulations Aurélien Cavelan University of Basel, Switzerland [email protected] Rubén M. Cabezón University of Basel, Switzerland [email protected] Jonas H. M. Korndorfer University of Basel, Switzerland [email protected] Florina M. Ciorba University of Basel, Switzerland fl[email protected] May 19, 2020 Abstract Finding the exact close neighbors of each fluid element in mesh-free computational hydrodynamical methods, such as the Smoothed Particle Hydrodynamics (SPH), often becomes a main bottleneck for scaling their performance beyond a few million fluid elements per computing node. Tree structures are particularly suitable for SPH simulation codes, which rely on finding the exact close neighbors of each fluid element (or SPH particle). In this work we present a novel tree structure, named b-tree, which features an adaptive branching factor to reduce the depth of the neighbor search. Depending on the particle spatial distribution, finding neighbors using b-tree has an asymptotic best case complexity of O(n), as opposed to O(n log n) for other classical tree structures such as octrees and quadtrees. We also present the proposed tree structure as well as the algorithms to build it and to find the exact close neighbors of all particles. arXiv:1910.02639v2 [cs.DC] 18 May 2020 We assess the scalability of the proposed tree-based algorithms through an extensive set of performance experiments in a shared-memory system. Results show that b-tree is up to 12× faster for building the tree and up to 1:6× faster for finding the exact neighbors of all particles when compared to its octree form.
    [Show full text]
  • Skip-Webs: Efficient Distributed Data Structures for Multi-Dimensional Data Sets
    Skip-Webs: Efficient Distributed Data Structures for Multi-Dimensional Data Sets Lars Arge David Eppstein Michael T. Goodrich Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science University of Aarhus University of California University of California IT-Parken, Aabogade 34 Computer Science Bldg., 444 Computer Science Bldg., 444 DK-8200 Aarhus N, Denmark Irvine, CA 92697-3425, USA Irvine, CA 92697-3425, USA large(at)daimi.au.dk eppstein(at)ics.uci.edu goodrich(at)acm.org ABSTRACT name), a prefix match for a key string, a nearest-neighbor We present a framework for designing efficient distributed match for a numerical attribute, a range query over various data structures for multi-dimensional data. Our structures, numerical attributes, or a point-location query in a geomet- which we call skip-webs, extend and improve previous ran- ric map of attributes. That is, we would like the peer-to-peer domized distributed data structures, including skipnets and network to support a rich set of possible data types that al- skip graphs. Our framework applies to a general class of data low for multiple kinds of queries, including set membership, querying scenarios, which include linear (one-dimensional) 1-dim. nearest neighbor queries, range queries, string prefix data, such as sorted sets, as well as multi-dimensional data, queries, and point-location queries. such as d-dimensional octrees and digital tries of character The motivation for such queries include DNA databases, strings defined over a fixed alphabet. We show how to per- location-based services, and approximate searches for file form a query over such a set of n items spread among n names or data titles.
    [Show full text]
  • Octree Generating Networks: Efficient Convolutional Architectures for High-Resolution 3D Outputs
    Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs Maxim Tatarchenko1 Alexey Dosovitskiy1,2 Thomas Brox1 [email protected] [email protected] [email protected] 1University of Freiburg 2Intel Labs Abstract Octree Octree Octree dense level 1 level 2 level 3 We present a deep convolutional decoder architecture that can generate volumetric 3D outputs in a compute- and memory-efficient manner by using an octree representation. The network learns to predict both the structure of the oc- tree, and the occupancy values of individual cells. This makes it a particularly valuable technique for generating 323 643 1283 3D shapes. In contrast to standard decoders acting on reg- ular voxel grids, the architecture does not have cubic com- Figure 1. The proposed OGN represents its volumetric output as an octree. Initially estimated rough low-resolution structure is gradu- plexity. This allows representing much higher resolution ally refined to a desired high resolution. At each level only a sparse outputs with a limited memory budget. We demonstrate this set of spatial locations is predicted. This representation is signifi- in several application domains, including 3D convolutional cantly more efficient than a dense voxel grid and allows generating autoencoders, generation of objects and whole scenes from volumes as large as 5123 voxels on a modern GPU in a single for- high-level representations, and shape from a single image. ward pass. large cell of an octree, resulting in savings in computation 1. Introduction and memory compared to a fine regular grid. At the same 1 time, fine details are not lost and can still be represented by Up-convolutional decoder architectures have become small cells of the octree.
    [Show full text]
  • Evaluation of Spatial Trees for Simulation of Biological Tissue
    Evaluation of spatial trees for simulation of biological tissue Ilya Dmitrenok∗, Viktor Drobnyy∗, Leonard Johard and Manuel Mazzara Innopolis University Innopolis, Russia ∗ These authors contributed equally to this work. Abstract—Spatial organization is a core challenge for all large computation time. The amount of cells practically simulated on agent-based models with local interactions. In biological tissue a single computer generally stretches between a few thousands models, spatial search and reinsertion are frequently reported to a million, depending on detail level, hardware and simulated as the most expensive steps of the simulation. One of the main methods utilized in order to maintain both favourable algorithmic time range. complexity and accuracy is spatial hierarchies. In this paper, we In center-based models, movement and neighborhood de- seek to clarify to which extent the choice of spatial tree affects tection remains one of the main performance bottlenecks [2]. performance, and also to identify which spatial tree families are Performances in these bottlenecks are deeply intertwined with optimal for such scenarios. We make use of a prototype of the the spatial structure chosen for the simulation. new BioDynaMo tissue simulator for evaluating performances as well as for the implementation of the characteristics of several B. BioDynaMo different trees. The BioDynaMo project [3] is developing a new general I. INTRODUCTION platform for computer simulations of biological tissue dynam- The high pace of neuroscientific research has led to a ics, with a brain development as a primary target. The platform difficult problem in synthesizing the experimental results into should be executable on hybrid cloud computing systems, effective new hypotheses.
    [Show full text]
  • The Peano Software—Parallel, Automaton-Based, Dynamically Adaptive Grid Traversals
    The Peano software|parallel, automaton-based, dynamically adaptive grid traversals Tobias Weinzierl ∗ December 4, 2018 Abstract We discuss the design decisions, design alternatives and rationale behind the third generation of Peano, a framework for dynamically adaptive Cartesian meshes derived from spacetrees. Peano ties the mesh traversal to the mesh storage and supports only one element-wise traversal order resulting from space-filling curves. The user is not free to choose a traversal order herself. The traversal can exploit regular grid subregions and shared memory as well as distributed memory systems with almost no modifications to a serial application code. We formalize the software design by means of two interacting automata|one automaton for the multiscale grid traversal and one for the application- specific algorithmic steps. This yields a callback-based programming paradigm. We further sketch the supported application types and the two data storage schemes real- ized, before we detail high-performance computing aspects and lessons learned. Special emphasis is put on observations regarding the used programming idioms and algorith- mic concepts. This transforms our report from a \one way to implement things" code description into a generic discussion and summary of some alternatives, rationale and design decisions to be made for any tree-based adaptive mesh refinement software. 1 Introduction Dynamically adaptive grids are mortar and catalyst of mesh-based scientific computing and thus important to a large range of scientific and engineering applications. They enable sci- entists and engineers to solve problems with high accuracy as they invest grid entities and computational effort where they pay off most.
    [Show full text]
  • The Skip Quadtree: a Simple Dynamic Data Structure for Multidimensional Data
    The Skip Quadtree: A Simple Dynamic Data Structure for Multidimensional Data David Eppstein† Michael T. Goodrich† Jonathan Z. Sun† Abstract We present a new multi-dimensional data structure, which we call the skip quadtree (for point data in R2) or the skip octree (for point data in Rd , with constant d > 2). Our data structure combines the best features of two well-known data structures, in that it has the well-defined “box”-shaped regions of region quadtrees and the logarithmic-height search and update hierarchical structure of skip lists. Indeed, the bottom level of our structure is exactly a region quadtree (or octree for higher dimensional data). We describe efficient algorithms for inserting and deleting points in a skip quadtree, as well as fast methods for performing point location and approximate range queries. 1 Introduction Data structures for multidimensional point data are of significant interest in the computational geometry, computer graphics, and scientific data visualization literatures. They allow point data to be stored and searched efficiently, for example to perform range queries to report (possibly approximately) the points that are contained in a given query region. We are interested in this paper in data structures for multidimensional point sets that are dynamic, in that they allow for fast point insertion and deletion, as well as efficient, in that they use linear space and allow for fast query times. Related Previous Work. Linear-space multidimensional data structures typically are defined by hierar- chical subdivisions of space, which give rise to tree-based search structures. That is, a hierarchy is defined by associating with each node v in a tree T a region R(v) in Rd such that the children of v are associated with subregions of R(v) defined by some kind of “cutting” action on R(v).
    [Show full text]
  • Hierarchical Bounding Volumes Grids Octrees BSP Trees Hierarchical
    Spatial Data Structures HHiieerraarrcchhiiccaall BBoouunnddiinngg VVoolluummeess GGrriiddss OOccttrreeeess BBSSPP TTrreeeess 11/7/02 Speeding Up Computations • Ray Tracing – Spend a lot of time doing ray object intersection tests • Hidden Surface Removal – painters algorithm – Sorting polygons front to back • Collision between objects – Quickly determine if two objects collide Spatial data-structures n2 computations 3 Speeding Up Computations • Ray Tracing – Spend a lot of time doing ray object intersection tests • Hidden Surface Removal – painters algorithm – Sorting polygons front to back • Collision between objects – Quickly determine if two objects collide Spatial data-structures n2 computations 3 Speeding Up Computations • Ray Tracing – Spend a lot of time doing ray object intersection tests • Hidden Surface Removal – painters algorithm – Sorting polygons front to back • Collision between objects – Quickly determine if two objects collide Spatial data-structures n2 computations 3 Speeding Up Computations • Ray Tracing – Spend a lot of time doing ray object intersection tests • Hidden Surface Removal – painters algorithm – Sorting polygons front to back • Collision between objects – Quickly determine if two objects collide Spatial data-structures n2 computations 3 Speeding Up Computations • Ray Tracing – Spend a lot of time doing ray object intersection tests • Hidden Surface Removal – painters algorithm – Sorting polygons front to back • Collision between objects – Quickly determine if two objects collide Spatial data-structures n2 computations 3 Spatial Data Structures • We’ll look at – Hierarchical bounding volumes – Grids – Octrees – K-d trees and BSP trees • Good data structures can give speed up ray tracing by 10x or 100x 4 Bounding Volumes • Wrap things that are hard to check for intersection in things that are easy to check – Example: wrap a complicated polygonal mesh in a box – Ray can’t hit the real object unless it hits the box – Adds some overhead, but generally pays for itself.
    [Show full text]
  • Spatial Partitioning and Functional Shape Matched Deformation
    SPATIAL PARTITIONING AND FUNCTIONAL SHAPE MATCHED DEFORMATION ALGORITHM FOR INTERACTIVE HAPTIC MODELING A dissertation presented to the faculty of the Russ College of Engineering and Technology of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Wei Ji November 2008 © 2008 Wei Ji. All Rights Reserved. 2 This dissertation titled SPATIAL PARTITIONING AND FUNCTIONAL SHAPE MATCHED DEFORMATION ALGORITHM FOR INTERACTIVE HAPTIC MODELING by WEI JI has been approved for the School of Electrical Engineering and Computer Science and the Russ College of Engineering and Technology by Robert L. Williams II Professor of Mechanical Engineering Dennis Irwin Dean, Russ College of Engineering and Technology 3 Abstract JI, WEI, Ph.D., November 2008, Computer Science SPATIAL PARTITIONING AND FUNCTIONAL SHAPE MATCHED DEFORMATION ALGORITHM FOR INTERACTIVE HAPTIC MODELING (161 pp.) Director of Dissertation: Robert L. Williams II This dissertation focuses on the fast rendering algorithms on real-time 3D modeling. To improve the computational efficiency, binary space partitioning (BSP) and octree are implemented on the haptic model. Their features are addressed in detail. Three methods of triangle assignment with the splitting plane are discussed. The solutions for optimizing collision detection (CD) are presented and compared. The complexities of these partition methods are discussed, and recommendation is made. Then the deformable haptic model is presented. In this research, for the haptic modeling, the deformation calculation is only related to the graphics process because the haptic rendering is invisible and non-deformable rendering saves much computation cost. To achieve the fast deformation computation in the interactive simulation, the functional shape matched deformation (FSMD) algorithm is proposed for the tangential and normal components of the surface deformation.
    [Show full text]
  • 1 2 3 1 2 3 This Paper Presents the Design, Implementation and Evaluation of the Etree, a Database-Oriented Method for Large
    ETREE — A DATABASE-ORIENTED METHOD FOR GENERATING LARGE OCTREE MESHES ¡ ¢ Tiankai Tu David R. O’Hallaron Julio C. Lopez´ £ Computer Science Department, [email protected] ¤ Computer Science Department and Electrical and Computer Engineering Department, [email protected] ¥ Electrical and Computer Engineering Department, [email protected] Carnegie Mellon University, Pittsburgh, PA, U.S.A. ABSTRACT ¦¨§ © § ! ©#"$&%'© () * ()+,-© ./012/*#3 © ./4.56§ 87:9<;77:%=> -,$? @A.$© B0()§!.+85C.$D*#-"/ ./3@[email protected]() §4"/!,© .$&HJIK3!D( © L©#BM© .8( $ L$L.EG.18 -,$? F N3 E:3!FO 5C.$(P*#* .E./ :,© ./! Q?RFS3 :R!© !"§ -,$? $ /HUT03! WV¨.X -,$? $ E:§! ©#S3 ¨YZ§!*#© !BQS+3 /+$[§!\]@^ .©# !_)$) N.`§ a.E,+ 6.$X!© bHcT0a©#.+3 EUdV=.WV¨. VJE:§! ©#S3 'Ye$3!.B2+© "f-©#.$F)* .EB$*g?*#$ E©#!" .h/ + =§!K E©#*i!B).$5j() §)"/ ,-©#.$&H]kc* ©#()© R 2$$* 3-© ./X 3 "/"$ N ¨§-¨§ a`()§ .+)© 6GlgE© 2f V6R>.5m"/!,© " 2f:RF*#"$h.E() §! hn<op qGrQ\sVU©t§OuBqp v ()© *#* © ./w* ()+ ,x¨.$M)()().R+@W* © ()©tB ( $E,§ © nNu-yz {F\6x:H |[}+~ih/ Ki/-}+}0M}B]j}+-}}'Cj}+ i/-}+}'j4&&C!BCmmCi/¨ Cjfjj]-}+} 1. INTRODUCTION ( $b/a©t= ./ © ? * `. N.`*#"$Q() §! ].$ E./+2f© ./ $* !© b+ Hm¯j-"/`( $© G()().$R)E$ E©t© `E$F .2+©#!K5C@ 5E© 2f>EB$E,§ X5C.$ § >!,1 N.BJ./°!© bH±`4© !@ ¦¨§ © D© $L_E©t©#!"w()./()5.D§ X() §O"/ ,-©#.$ EB BN/I²§!./3!"/§! 3!( $bf ©tD .$ ©#?!* [.M N$( E.$()(3 !©tdRHaQ© bFEB $E© WRw© Q_ * .+!© !"G> !© Eh *#"$ $()./3! K.$5¨ -,X© .[()().R>-Q, Q§ !@ ? ©tU© a * 3 ()()© !"!%VU©t§F"/© "/$?R+ U.$5' N.$,"/B2/© *? * !./$E,§F( $© G()().$RD, N5C`,- H 5.3 !QD§
    [Show full text]
  • High Quality Interactive Rendering of Massive Point Models Using Multi-Way Kd-Trees
    High Quality Interactive Rendering of Massive Point Models using Multi-way kd-Trees Prashant Goswami Yanci Zhang Renato Pajarola Enrico Gobbetti University of Zurich Sichuan University University of Zurich CRS4 Switzerland China Switzerland Italy goswami@ifi.uzh.ch [email protected] [email protected] [email protected] Abstract—We present a simple and efficient technique for sized nodes. Since all blocks are equal sized, on-board out-of-core multiresolution construction and high quality visu- memory management is particularly simple and effective. alization of large point datasets. The method introduces a novel The presented approach results in fast pre-processing and hierarchical LOD data organization based on multi-way kd-trees that simplifies memory management and allows controlling the high quality rendering of massive point clouds at hundreds LOD tree’s height. The technique is incorporated in a full end- of millions of splats/second on modern GPUs, improving to-end system, which is evaluated on complex models made of the quality vs. performance ratio compared to previous large hundreds of millions of points. point data rendering methods. Keywords-point based rendering; gpu-based; multi-way kd- tree; II. RELATED WORK While the use of points as rendering primitives has been I. INTRODUCTION introduced as early as in [1], [2], only over the last decade they have reached the significance of fully established ge- Modern 3D scanning systems can generate massive data ometry and graphics primitives, see also [3]–[5]. Several sets with hundreds of millions of points. Despite the ad- techniques have since been proposed for improving upon vances in point-based modeling and rendering, these models the display quality, LOD rendering, as well as for efficient can still be a challenge to be processed and in particular out-of-core rendering of large point models.
    [Show full text]
  • Statistical Optimization of Octree Searches
    Statistical optimization of octree searches RENER CASTRO,THOMAS LEWINER,HELIO´ LOPES,GEOVAN TAVARES AND ALEX BORDIGNON Department of Mathematics — Pontif´ıcia Universidade Catolica´ — Rio de Janeiro — Brazil frener, tomlew, lopes, tavares, [email protected]. Abstract. This work emerged from the following observation: usual search procedures for octrees start from the root to retrieve the data stored at the leaves. But since the leaves are the farthest nodes to the root, why start from the root? With usual octree representations, there is no other way to access a leaf. However, hashed octrees allow direct access to any node, given its position in space and its depth in the octree. Search procedures take the position as an input, but the depth remains unknown. This work proposes to estimate the depth of an arbitrary node through a statistical optimization of the average cost of search procedures. Since the highest costs of these algorithms are obtained when starting from the root, this method improves on both the memory footprint by the use of hashed octrees, and execution time through the proposed optimization. Keywords: Octree. Hashing. Quadtree. Geometric Modelling. Data Structures. top down x 104 bottom up 8 statistical 6 1 8 18 4 # leaves Search time 2 0 12 3 4 5 6 7 8 9 10 level Figure 1: Since the leaves are the farthest nodes to the root, why start from the root to look for the leaves? An optimal initial level greatly reduces the search costs: (left) an octree refined to separate each vertex of the Stanford bunny; (middle) the histogram of the number of octree leaves per depth; (right) cost of searching for a leaf starting from different depths.
    [Show full text]
  • Comparison of Nearest-Neighbor-Search Strategies and Implementations for Efficient Shape Registration
    Journal of Software Engineering for Robotics 3(1), March 2012, 2-12 ISSN: 2035-3928 Comparison of nearest-neighbor-search strategies and implementations for efficient shape registration Jan Elseberg1,∗ Stephane´ Magnenat2 Roland Siegwart2 Andreas Nuchter¨ 1 1 Automation Group, Jacobs University Bremen gGmbH, 28759 Bremen, Germany 2 Autonomous Systems Lab, ETH Zurich,¨ Switzerland ∗[email protected] Abstract—The iterative closest point (ICP) algorithm is one of the most popular approaches to shape registration currently in use. At the core of ICP is the computationally-intensive determination of nearest neighbors (NN). As of now there has been no comprehensive analysis of competing search strategies for NN. This paper compares several libraries for nearest-neighbor search (NNS) on both simulated and real data with a focus on shape registration. In addition, we present a novel efficient implementation of NNS via k-d trees as well as a novel algorithm for NNS in octrees. Index Terms—shape registration, nearest neighbor search, k-d tree, octree, data structures 1 INTRODUCTION point can be avoided by employing spatial data structures. The average runtime of NNS is then usually in the order Shape registration is the problem of finding the rigid trans- of O(n log m) but is still by far the most computationally formation that, given two shapes, transforms one onto the expensive part of shape registration. This paper gives a other. The given shapes do not need to be wholly identical. comprehensive empirical analysis of NNS algorithms in the As long as a partial overlap is possible, shape registration domain of 3-dimensional shape matching.
    [Show full text]