Problem Drill 15: Liquids and Solids

Total Page:16

File Type:pdf, Size:1020Kb

Problem Drill 15: Liquids and Solids AP Chemistry - Problem Drill 15: Liquids and Solids Question No. 1 of 10 Instruction: (1) Read the problem statement and answer choices carefully (2) Work the problems on paper as needed (3) Pick the answer (4) Go back to review the core concept tutorial as needed. 1. The physical properties of melting point, boiling point, vapor pressure, evaporation, viscosity, surface tension, and solubility are related to the strength of attractive forces between molecules. These attractive forces are called intermolecular forces. There are four types of intermolecular forces. What intermolecular forces does H2O exhibit? A. London Dispersion Forces Question B. Dipole-Dipole Forces C. Hydrogen Bonding D. All of the above A. Incorrect. Water does have London Dispersion Forces, but there are also other intermolecular forces. B. Incorrect. Water does have Dipole-Dipole Forces, but there are also other intermolecular forces. C. Incorrect. Feedback Water does have Hydrogen Bonding Forces, but there are also other intermolecular forces. D. Correct! Good job! Water does have London Dispersion Forces, but there are also other intermolecular forces. ll molecules exhibit London Dispersion Forces. Water is a polar molecule with two hydrogen atoms bonded to a highly electronegative atom (oxygen). The asymmetrical distribution of lone pair electrons of oxygen combines with the asymmetrical distribution of the polar H-O bonds to give the water molecule a dipole, while polar H-O bonds enable hydrogen bonding. Solution The correct answer is (D). RapidLearningCenter.com Rapid Learning Inc. All Rights Reserved Question No. 2 of 10 Instructions: (1) Read the problem and answer choices carefully (2) Work the problems on paper as needed (3) Pick the answer (4) Go back to review the core concept tutorial as needed. 2. Pressure is the average force that materials (gas, liquid or solid) exert upon the surface, e.g. walls of a container or other confining boundary. Vapor pressure is the pressure of a vapor in thermodynamic equilibrium with its condensed phases in a closed container. All liquids and solids have a tendency to evaporate into a gaseous form, and all gases have a tendency to condense back to their liquid or solid form. How is vapor pressure affected by an increase of temperature? Question (A) Vapor Pressure increases. (B) Vapor Pressure decreases. (C) Vapor Pressure remains the same. (D) There is not predictable pattern. A. Correct! Good job! As temperature increases, the number of atoms with the minimum energy to vaporize increases. B. Incorrect. As temperature increases, the number of atoms with the minimum energy to vaporize increases. C. Incorrect. Feedback As temperature increases, the number of atoms with the minimum energy to vaporize increases. D. Incorrect. As temperature increases, the number of atoms with the minimum energy to vaporize increases. Vapor pressures are dependent only on temperature and nothing else. The vapor pressure of a liquid does not depend on the amount on the liquid in the container, be it one liter or thirty liters; at the same temperature, both samples will have the same vapor pressure. As temperature increases, the number of atoms with the minimum energy to vaporize increases. Vapor pressure increases. Solution The correct answer is (A). RapidLearningCenter.com Rapid Learning Inc. All Rights Reserved Question No. 3 of 10 Instructions: (1) Read the problem and answer choices carefully (2) Work the problems on paper as needed (3) Pick the answer (4) Go back to review the core concept tutorial as needed. 3. Hydrogen bonding can be formed intra- and intermolecularly, in the form of R- X-H …. X-R’, when a highly electronegative atom X such as F, O or N is bonded to a hydrogen atom. Hydrogen bonds tend to be stronger forces than dipole-dipole attractions between polar molecules. Which of the following molecules is likely to form an intermolecular hydrogen bond between themselves? (A) C6H5NO2 Question (B) CH3OH (C) CO2 (D) CH3F A. Incorrect. Nitrobenzene with –NO2 group has the electronegative atom N and O, but it does not have a hydrogen attached to an electronegative atom in order to form a hydrogen bond. B. Correct! Good job! Methanol has the electronegative atom O with two lone pairs and a hydrogen atom directly attached to it (hydroxyl group –OH). This enables the formation of an intermolecular hydrogen bond of two methanol molecules. C. Incorrect. Feedback Carbon dioxide, a non-polar species, has no hydrogen atom, therefore it is impossible to form any hydrogen bond. The non-polar molecules typically can’t have hydrogen bonds. D. Incorrect. Fluoromethane has the electronegative atom F but no hydrogen atom attached to F directly. There is no hydrogen bond between two fluoromethane molecules. Hydrogen bonds are electrostatic attractions between a hydrogen bearing a partially positive charge and another atom (usually O or N or F) bearing a partially negative charge. It is a strong intermolecular force by the relative positivity of a hydrogen atom attached to an electronegative atom. CH3OH has the hydroxyl hydrogen connected to the electronegative atom O. The two molecules can form a hydrogen bond as such: CH3O-H …. O(H)-CH3 Solution None of other molecules has the criteria needed to form a hydrogen bond. The correct answer is (B). RapidLearningCenter.com Rapid Learning Inc. All Rights Reserved Question No. 4 of 10 Instructions: (1) Read the problem and answer choices carefully (2) Work the problems on paper as needed (3) Pick the answer (4) Go back to review the core concept tutorial as needed. 4. Boiling point is the temperature at which a liquid boils at a fixed pressure, especially under standard atmospheric conditions. A compound’s boiling point is the point at which ____ and ____ are equal? (A) Liquid’s vapor pressure & atmospheric pressure. (B) Gas’s vapor pressure & atmospheric pressure. Question (C) Liquid’s vapor pressure & solid’s vapor pressure. (D) Liquid’s vapor pressure & gas’s vapor pressure. A. Correct! Good job! Boiling occurs when the liquid's vapor pressure equals the atmospheric pressure. B. Incorrect. Boiling occurs when the liquid's vapor pressure equals the atmospheric pressure. C. Incorrect. Feedback Boiling occurs when the liquid's vapor pressure equals the atmospheric pressure. D. Incorrect. Boiling occurs when the liquid's vapor pressure equals the atmospheric pressure. The boiling point of a substance is the temperature at which the vapor pressure of the liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. Boiling occurs when the liquid's vapor pressure equals the atmospheric pressure. The correct answer is (A). Solution RapidLearningCenter.com Rapid Learning Inc. All Rights Reserved Question No. 5 of 10 Instructions: (1) Read the problem and answer choices carefully (2) Work the problems on paper as needed (3) Pick the answer (4) Go back to review the core concept tutorial as needed. 5. Solids can be classified based on their nature of bonding, within and between their molecules. Which of the following statements has a WRONG match in definition? (A) Metallic solid (Zr)—metal atoms in closest packing with electrons in a large pool. (B) Network solid (Si)—closest packing of non-metal atoms with only physical attractions between atoms. Question (C) Molecular solid (N2O4)—covalent bonding within molecules with only physical attractions between molecules. (D) Ionic Solid (CaCO3)—Closest packing of ions that minimizes like-charged ion repulsions. A. Incorrect. Metallic bonding is metal atoms, closest packing, pool of electrons. B. Correct! Great job! Network bonding is non-metals atoms covalently bonded to the neighboring atoms, not non-metal atoms with only physical attractions. C. Incorrect. Molecular solids are covalent bonds within the molecules and physical IMF between Feedback them. D. Incorrect. Ionic solids are closest packing of ions to minimize like-charge repulsions. All of the pairings are correct except for the network solid. Network solids are not non-metal atoms with physical attractions. They are non-metals atoms that are covalently bonded to the neighboring atoms. The correct answer is (B). Solution RapidLearningCenter.com Rapid Learning Inc. All Rights Reserved Question No. 6 of 10 Instructions: (1) Read the problem and answer choices carefully (2) Work the problems on paper as needed (3) Pick the answer (4) Go back to review the core concept tutorial as needed. 6. The enthalpy of fusion or heat of fusion is the change in enthalpy resulting from heating a given quantity of a substance to change its state from a solid to a liquid. The temperature at which this occurs is the melting point. If 825 J are needed to melt a sample of ice, what mass was the sample? The heat of fusion of ice is 334 J/g. The heat of vaporization of ice is 2287 J/g. (A) 2.47 g Question (B) 0.405 g (C) 0.361 g (D) 2.77 g A. Correct. Good job! The heat needed to melt is the product of mass and heat of fusion. Convert to the proper units and rearrange the equation to solve the mass. The heat of vaporization is not needed for this calculation. B. Incorrect. The heat needed to melt is the product of mass and heat of fusion. Convert to the proper units and rearrange the equation to solve the mass. The heat of vaporization is not needed for this calculation. Check your algebra. C. Incorrect. Feedback The heat needed to melt is the product of mass and heat of fusion. Convert to the proper units and rearrange the equation to solve the mass. The heat of vaporization is not needed for this calculation. Check your algebra. D. Incorrect. The heat needed to melt is the product of mass and heat of fusion.
Recommended publications
  • Periodic Table and Bonding Notes 2
    Periodic Table and Bonding 1. Handout: Periodic Table and Bonding Notes 2. Periodic Properties and the Development of the Periodic Table 1. The first periodic table was arranged by Dimitri Mendeleev in 1869. 1. He was a professor of Chemistry. at the University of St. Petersburg in Russia and was confronted with the problem of how to teach about the various elements known at that time. He decided to organized the elements by arranging them into groups that reacted similarly. 2. He also noticed that various properties would repeat "periodically" so he arranged a table of elements order of atomic mass such that properties would change regularly if you moved across a row while maintaining groups with similar chemical properties in a column. 3. Go to: http://www.periodic.lanl.gov/mendeleev.htm to see a version of Mendeleev's first table. 2. Groups with similar properties 1. All the elements in a group (or column) are called families. 2. Group 8: The Noble Gases, don't react with other elements. 3. Group 1: The Alkali Earth Metals, all react with water in the following manner 2 Li + H2O ---> H2 + 2 LiOH 2 Na + H2O ---> H2 + 2 NaOH ... 2 Fr + H2O ---> H2 + 2 FrOH page 1 4. These are just a few examples of how Mendeleev organized the columns or families. 3. Periodic Properties 1. As you move across a row various properties change regularly click on the images below to see a visualization of the various properties. All of these images are from www.webelements.com, one of the best periodic table sites on the web.
    [Show full text]
  • คม 331 เคมีอนินทรีย์1 ปีการศึกษา 1-2561
    Chemical Bondings คม 331 เคมีอนินทรีย์ 1 ปีการศึกษา 1-2561 1. บทน า พันธะเคมี (Chemical Bondings) • พันธะเคมี → แรงดึงดูดระหว่างอะตอม โมเลกุล หรือไอออน ท าให้มีความเสถียรเพิ่มขึ้นกว่าเมื่อ อยู่เป็นอะตอม โมเลกุล หรือไอออนเดี่ยวๆ - หัวข้อ • พันธะเคมีเกิดจากการใช้อิเล็กตรอนวงนอก (valence e ) ได้แก่ (1) การให้-รับ valence e- หรือ (2) การใช้ valence e- ร่วมกันระหว่างคู่ที่เกิดพันธะ 1. บทน า 5. เรโซแนนซ์ • พันธะระหว่างอะตอมหรือไอออน มีความแข็งแรงมากกว่าพันธะระหว่างโมเลกุล 2. ประเภทของพันธะเคมี 6. ประจุฟอร์มอล • พันธะเคมี เป็นแรงดึงดูดที่แข็งแรงกว่าแรงทางเคมี 3. แรงระหว่างโมเลกุล 7. กฎ 18 อิเล็กตรอน • พันธะเคมีระหว่างอะตอมหรือไอออน ได้แก่ พันธะไอออนิก พันธะโควาเลนต์ และพันธะโลหะ 4. ทฤษฎีพันธะเคมี 8. พันธะ 3 อะตอม 2 อิเล็กตรอน → เกี่ยวข้องกับสมบัติทางเคมีหรือปฏิกิริยาเคมีของธาตุหรือสารประกอบ • พันธะระหว่างโมเลกุล ได้แก่ พันธะไฮโดรเจนและแรงแวนเดอร์วาลส์ → เกี่ยวข้องกับสมบัติ ทางกายภาพของสารมากกว่าสมบัติทางเคมี เนื้อหาบรรยาย รายวิชา คม 331 เคมีอนินทรีย์ 1 เนื้อหาบรรยาย รายวิชา คม 331 เคมีอนินทรีย์ 1 http://www.chemistry.mju.ac.th/wtms_documentAdminPage.aspx?bID=4093 อ.ดร.เพชรลดา กันทาดี อ.ดร.เพชรลดา กันทาดี 2 พันธะเคมี อาจารย์ ดร.เพชรลดา กันทาดี 1 Chemical Bondings Chemical Bondings 1. บทน า 2. ประเภทของพันธะเคมี • พันธะเคมีระหว่างอะตอม → ระยะระหว่างสองอะตอมจะต้องไม่ไกลเกินไปจนนิวเคลียสของ 1. พันธะไอออนิก (Ionic bond) สองอะตอมไม่ดึงดูดกัน และไม่ใกล้เกินไปจนเกิดแรงผลักระหว่างอิเล็กตรอนของสองนิวเคลียส - บางครั้งเรียกว่า พันธะอิเล็กโทรเวเลนซ์ (electrovalence bond) หรือพันธะ → ระยะที่เหมาะสมนี้ เรียกว่า ความยาวพันธะ ไฟฟ้าสถิตย์ (electrostatic bond)
    [Show full text]
  • Competition of Van Der Waals and Chemical Forces on Gold–Sulfur Surfaces and Nanoparticles
    Downloaded from orbit.dtu.dk on: Oct 01, 2021 Competition of van der Waals and chemical forces on gold–sulfur surfaces and nanoparticles Reimers, Jeffrey R.; Ford, Michael J.; Marcuccio, Sebastian M.; Ulstrup, Jens; Hush, Noel S. Published in: Nature Reviews. Chemistry Link to article, DOI: 10.1038/s41570-0017 Publication date: 2017 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Reimers, J. R., Ford, M. J., Marcuccio, S. M., Ulstrup, J., & Hush, N. S. (2017). Competition of van der Waals and chemical forces on gold–sulfur surfaces and nanoparticles. Nature Reviews. Chemistry, 1(2), [0017]. https://doi.org/10.1038/s41570-0017 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. REVIEW ARTICLE: Competition of van der Waals and chemical forces on gold-sulfur surfaces and nanoparticles Jeffrey R. Reimers1,2, Michael J. Ford2, Sebastian M. Marcuccio3,4, Jens Ulstrup5, and Noel S.
    [Show full text]
  • Learn Chemistry in an Hour
    Fascinating Education Script Learn Chemistry in an Hour Lesson: Learn Chemistry in an Hour Slide 1: Introduction Slide Slide 2: Why Chemistry first? To my way of thinking, chemistry should be taught before biology, physics, and even earth science. Biology is in large part chemistry of the cell. The forces of physics stem from the forces between protons, neutrons, and electrons. Earth science makes a lot more sense once students understand how elements combined to form the earth’s crust, and how the chemical properties of each geologic structure govern the forces within the earth’s crust. In the next hour or so we will cover the fundamental key to chemistry, which is this: there are about 100 different types of atoms in the world. Atoms bond to other atoms to make molecules, but they only use four different ways to bond to each other. Each of the four bonds produces a characteristic property in the molecule. So, by understanding the four bonds, you understand why water at room temperature is liquid, why oil and water don’t mix, why metals are shiny, and so on. The rest of chemistry that we’ll touch on is how to measure the number, mass, volume, pressure, and temperature of molecules, what happens when you change one of these variables, and how molecules swap atoms in chemical reactions. If you’re a parent, this lesson will enable you to follow -- and even guide -- your child’s progress through chemistry. If you’re a student, the next hour will give you a heads up and a head start.
    [Show full text]
  • Introduction to Organic Compounds
    Chapter 2 Introduction to organic compounds Nomenclature Physical properties Conformation Organic compounds Ch 2 #2 in Organic Chemistry 1 hydrocarbons [RH] alkanes alkenes alkynes alkyl halides [RX] ethers [ROR’] alcohols [ROH] amines [RNH2] in Org Chem 2 aromatic comp’ds carbonyl comp’ds Alkanes Ch 2 #3 saturated hydrocarbons saturated ~ all single bonds; no multiple bond [= or ≡] hydrocarbon [HC] ~ contains only C and H <cf> carbohydrate homologs general formula ~ CnH2n+2 differs by CH2 (methylene) paraffins non-polar, hydrophobic Ch 2 #4 Constitutional isomers Ch 2 #5 isomers [異性質體] same composition, different structure (and shape) constitutional isomer = structural isomer = skeletal isomer two or more compounds with the same molecular formula [composition] different structural formula [connectivity] e.g. C H O 2 6 H H H H H C C O H H C O C H H H H H eg C4H10 Constitutional isomers in alkanes Ch 2 #6 straight-chain vs branched alkanes ‘iso’ ~ C bonded to 1 H and 2 methyls [CH3] neopentane Ch 2 #7 # of possible isomers as # of atoms C20H42 has 366,319 isomers! drawn? calculated? nomenclature ~ naming common name = trivial name systematic name = IUPAC name Alkyl substituents [groups] Ch 2 #8 R ~ alkyl R with =, alkenyl; R with ≡, alkynyl RH is alkane, and If R covers alkyl, alkenyl, and alkynyl, RH is HC. Isomeric alkyls Ch 2 #9 propyl n ~ normal, commonly omitted (n-)propyl ~ CH3CH2CH2- isopropyl ~ (CH3)2CH- butyl CH3 sec- (or s-) tert- or t- Degree of substitution of carbon CH3 H3C CH3 H3C CH C C C CH3 primary [1°] H H carbon 2 2 secondary [2°] tertiary [3°] quaternary [4°] carbon carbon carbon Ch 2 #10 primary hydrogen? pentyl pentyl isopentyl tert-pentyl IUPAC name perferred sec-? sec-? neopentyl Ch 2 #11 commonly used alkyl groups OH isobutyl alcohol NH2 sec-butylamine (Systematic) nomenclature of alkanesCh 2 #12 1.
    [Show full text]
  • CBSE 12 & IIT-JEE Chem Survival Guide-Bonds & Structure by Prof
    CBSE Standard 12 Chemistry Survival Guide - Bonds & Structure by Prof. Subhashish Chattopadhyay SKMClasses Bangalore Useful for IIT-JEE, I.Sc. PU-II, Boards, IGCSE IB AP-Chemistry and other exams Spoon Feeding Types of Bonds and Structure Simplified Knowledge Management Classes Bangalore My name is Subhashish Chattopadhyay . I have been teaching for IIT-JEE, Various International Exams ( such as IMO [ International Mathematics Olympiad ], IPhO [ International Physics Olympiad ], IChO [ International Chemistry Olympiad ] ), IGCSE ( IB ), CBSE, I.Sc, Indian State Board exams such as WB-Board, Karnataka PU-II etc since 1989. As I write this book in 2016, it is my 25 th year of teaching. I was a Visiting Professor to BARC Mankhurd, Chembur, Mumbai, Homi Bhabha Centre for Science Education ( HBCSE ) Physics Olympics camp BARC Campus. CBSE Standard 12 Chemistry Survival Guide - Bonds & Structure by Prof. Subhashish Chattopadhyay SKMClasses Bangalore Useful for IIT-JEE, I.Sc. PU-II, Boards, IGCSE IB AP-Chemistry and other exams CBSE Standard 12 Chemistry Survival Guide - Bonds & Structure by Prof. Subhashish Chattopadhyay SKMClasses Bangalore Useful for IIT-JEE, I.Sc. PU-II, Boards, IGCSE IB AP-Chemistry and other exams I am Life Member of … - IAPT ( Indian Association of Physics Teachers ) - IPA ( Indian Physics Association ) - AMTI ( Association of Mathematics Teachers of India ) - National Human Rights Association - Men’s Rights Movement ( India and International ) - MGTOW Movement ( India and International ) And also of IACT ( Indian Association of Chemistry Teachers ) The selection for National Camp ( for Official Science Olympiads - Physics, Chemistry, Biology, Astronomy ) happens in the following steps …. 1 ) NSEP ( National Standard Exam in Physics ) and NSEC ( National Standard Exam in Chemistry ) held around 24 rth November.
    [Show full text]
  • 1974 D Answer: CH4 - Weak London Dispersion (Van Der Waals) Forces, H2S - London Forces + Dipole-Dipole Interactions
    1974 D Answer: CH4 - weak London dispersion (van der Waals) forces, H2S - London forces + dipole-dipole interactions NH3 - London + dipole + hydrogen bonding 1979 D Answer: (a) Butane is nonpolar; chloroethane is polar. Intermolecular forces of attraction in liquid chloroethane are larger due to dipole-dipole attraction; thus a higher boiling point for chloroethane. (b) Both chloroethane and acetone are polar. However, acetone forms hydrogen bonds to water much more effectively than chloroethane does, resulting in greater solubility of acetone in water. (c) Butane is non-polar and cannot form hydrogen bonds; 1-propanol is polar and can form hydrogen bonds. 1-propanol can interact with water by both dipole-dipole forces and hydrogen bonds. Butane can interact with water by neither means. Thus, 1-propanol is much more soluble. (d) Acetone molecules are attracted to each other by van der Waals attraction and dipole-dipole attraction. 1-propanol molecules show these two types of attraction. However, 1-propanol can also undergo hydrogen bonding. This distinguishing feature results in the higher boiling point of 1-propanol. 1988 D Answer: (a) Xe and Ne are monatomic elements held together by London dispersion (van der Waals) forces. The magnitude of such forces is determined by the number of electrons in the atom. A Xe atom has more electrons than a neon atom has. (Size of the atom was accepted but mass was not.) (b) The electrical conductivity of copper metal is based on mobile valence electrons (partially filled bands). Copper chloride is a rigid ionic solid with the valence electrons of copper localized in individual copper(II) ions.
    [Show full text]
  • Intermolecular Forces
    Intermolecular Forces Chemistry 35 Fall 2000 Intermolecular Forces n What happens to gas phase molecules when subjected to increased pressure? n Volume occupied by gas decreases (IGL) n At higher pressures: get negative deviations from IGL -due to intermolecular attraction (Van deWaals Equation) n At a high enough pressure: ABRUPT decrease (100x or more) in volume Phase Transition: Gas ® Liquid -due to intermolecular attractive forces 2 1 Electrostatic Attraction n All based on electrostatic attraction, but not strong enough to be considered a chemical bond n Recall: Ionic Bonds -electrostatic attraction between two ions: Na+ Cl- Bond strength varies with: -charge on ions -distance (r) separating ions -force varies with 1/r2 -bond energy (force acting over a distance r) then varies with 1/r -ionic bond energies: very large (300 - 600 kJ/mol) 3 Ion-Dipole Interactions n Ions can have electrostatic interactions with polar molecules: Both attractive and repulsive forces are operative here -lower energy interaction (10 - 20 kJ/mol) -energy drops off as 1/r2 4 2 Dipole-Dipole Interactions n Polar molecules can have electrostatic interactions with other polar molecules: Again, both attractive and repulsive forces are operative here -even lower energy interaction (1 - 5 kJ/mol) -energy drops off as 1/r3 5 London Dispersion Force n How, then, can there be intermolecular attraction between nonpolar molecules? n nonpolar species (including ALL atoms) can have an instantaneous or momentary dipole n This can then induce a dipole on an adjacent species,
    [Show full text]
  • WO 2013/185114 A2 12 December 2013 (12.12.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/185114 A2 12 December 2013 (12.12.2013) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 38/36 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US20 13/044842 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, 7 June 2013 (07.06.2013) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/657,685 8 June 2012 (08.06.2012) US (84) Designated States (unless otherwise indicated, for every 61/759,817 1 February 20 13 (01.02.2013) US kind of regional protection available): ARIPO (BW, GH, 61/801,603 15 March 2013 (15.03.2013) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, 61/829,775 31 May 2013 (3 1.05.2013) US UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (71) Applicant: BIOGEN IDEC MA INC.
    [Show full text]
  • Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint
    Chem. Rev. 1988, 88, 899-926 899 Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint ALAN E. REED‘ Instltul fur Organische Chemie der Universltat Erlangen-Nurnberg, Henkestrasse 42, 8520 Erlangen, Federal Republic of Germany LARRY A. CURTISS” Chemical Technology Division/Meterials Science and Technology Program, Argonne National Laboratoty, Argonne, Illinois 60439 FRANK WEINHOLD” Theoretical Chemlshy Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 Received November 10, 1987 (Revised Manuscript Received February 16, 1988) Contents D. Chemisorption 917 E. Relationships between Inter- and 918 I. Introduction 899 Intramolecular Interactions 11. Natural Bond Orbital Analysis 902 IV. Relationship of Donor-Acceptor and 919 A. Occupancy-Weighted Symmetric 902 Electrostatic Models Orthogonalization A. Historical Overview 919 8. Natural Orbitals and the One-Particle 903 B. Relationship to Kitaura-Morokuma Analysis 920 Density Matrix C. Semiempirical Potential Functions 92 1 C. Atomic Eigenvectors: Natural Atomic 904 V. Concluding Remarks 922 Orbitals and Natural Population Analysis D. Bond Eigenvectors: Natural Hybrids and 904 Natural Bond Orbitals E. Natural Localized Molecular Orbitals 905 1. Introdud/on F. Hyperconjugative Interactions in NBO 906 The past 15 years has witnessed a golden age of Analysis discovery in the realm of “van der Waals chemistry”. II I. Intermolecular Donor-Acceptor Models Based 906 The vm der wads bonding regimelies at the interface on NBO Analysis between two well-studied interaction types: the A. H-Bonded Neutral Complexes 906 short-range, strong (chemical) interactions of covalent 1. Water Dimer 906 type, and-the long-range, weak (physical) interactions 2. OC.-HF and COv-HF 908 of dispersion and multipole type.
    [Show full text]
  • Weak, Noncovalent Interactions in an Aqueous Environment
    Chem 352 - Lecture 2 Weak, Noncovalent Interactions in an Aqueous Environment Question of the Day: “If non-covalent interactions are so weak, why are they so important to the creation, functioning, and maintenance of biological systems?” Introduction Concept: Weak, noncovalent interactions are critically important determinants of biomolecular structure, stability, and function. Chem 352, Lecture 2 - Weak, Noncovalent Interactions 2 Introduction Concept: Weak, noncovalent interactions are critically important determinants of biomolecular structure, stability, and function. We will be focusing our attention on, ✦ Being able to describe and recognize the weak, noncovalent interactions. Chem 352, Lecture 2 - Weak, Noncovalent Interactions 2 Introduction Concept: Weak, noncovalent interactions are critically important determinants of biomolecular structure, stability, and function. We will be focusing our attention on, ✦ Being able to describe and recognize the weak, noncovalent interactions. ✦ Being able to explain the role that water plays in influencing these interactions. Chem 352, Lecture 2 - Weak, Noncovalent Interactions 2 Introduction Concept: Weak, noncovalent interactions are critically important determinants of biomolecular structure, stability, and function. We will be focusing our attention on, ✦ Being able to describe and recognize the weak, noncovalent interactions. ✦ Being able to explain the role that water plays in influencing these interactions. ✦ As well as recognizing the role that pH plays in influencing these interactions. Chem 352, Lecture 2 - Weak, Noncovalent Interactions 2 Importance of Noncovalent Interactions Importance of Non-covalent Interactions Here are a couple of examples of how weak, noncovalent interactions influence the structures of proteins and nucleic acids. Chem 352, Lecture 2 - Weak, Noncovalent Interactions 4 Importance of Non-covalent Interactions Here are a couple of examples of how weak, noncovalent interactions influence the structures of proteins and nucleic acids.
    [Show full text]
  • Intermolecular Forces
    Oakland Schools Chemistry Resource Unit Intermolecular Forces Brook R. Kirouac David A. Consiglio, Jr. Southfield‐Lathrup High School Southfield Public Schools Bonding: Intermolecular Forces Content Statements: C2.2: Chemical Potential Energy Potential energy is stored whenever work must be done to change the distance between two objects. The attraction between the two objects may be gravitational, electrostatic, magnetic, or strong force. Chemical potential energy is the result of electrostatic attractions between atoms. C3.3: Heating Impacts Heating increases the kinetic (translational, rotational, and vibrational) energy of the atoms composing elements and the molecules or ions composing compounds. As the kinetic (translational) energy of the atoms, molecules, or ions increases, the temperature of the matter increases. Heating a sample of a crystalline solid increases the kinetic (vibrational) energy of the atoms, molecules, or ions. When the kinetic (vibrational) energy becomes great enough, the crystalline structure breaks down, and the solid melts. C4.3: Properties of Substances Differences in the physical and chemical properties of substances are explained by the arrangement of the atoms, ions, or molecules of the substances and by the strength of the forces of attraction between the atoms, ions, or molecules. C4.4: Molecular Polarity The forces between molecules depend on the net polarity of the molecule as determined by shape of the molecule and the polarity of the bonds. C5.4: Phase/Change Diagrams Changes of state require a transfer of energy. Water has unusually high-energy changes associated with its changes of state. Content Expectations: C2.1c: Compare qualitatively the energy changes associated with melting various types of solids in terms of the types of forces between the particles in the solid.
    [Show full text]