1412 Tang Pm 1

Total Page:16

File Type:pdf, Size:1020Kb

1412 Tang Pm 1 Int. J. Dev. Biol. 45: 549-555 (2001) Mouse PGC allocation and differentiation 549 The allocation and differentiation of mouse primordial germ cells TANIA E. TSANG1, POH-LYNN KHOO1, ROBYN V. JAMIESON1, SHEILA X. ZHOU1, SIEW-LAN ANG2, RICHARD BEHRINGER3 AND PATRICK P.L. TAM*,1 1Embryology Unit, Children’s Medical Research Institute, University of Sydney, Westmead, Australia, 2Institute of Genetics and Molecular and Cellular Biology, Illkirch, Strasbourg, France and 3Department of Molecular Genetics, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA ABSTRACT Analysis of the lineage potency of epiblast cells of the early-streak stage mouse embryo reveals that the developmental fate of the cells is determined by their position in the germ layer. Epiblast cells that are fated to become neuroectoderm can give rise to primordial germ cells (PGCs) and other types of somatic cells when they were transplanted to the proximal region of the epiblast. On the contrary, proximal epiblast cells transplanted to the distal region of the embryo do not form PGCs. Therefore, the germ line in the mouse is unlikely to be derived from a predetermined progenitor population, but may be specified as a result of tissue interactions that take place in the proximal epiblast of the mouse gastrula. The initial phase of the establishment of the PGC population requires, in addition to BMP activity emanating from the extraembryonic ectoderm, normal Lim1 and Hnf3β activity in the germ layers. The entire PGC population is derived from a finite number of progenitor cells and there is no further cellular recruitment to the germ line after gastrulation. The XX PGCs undergo X-inactivation at the onset of migration from the gut endoderm and re-activate the silenced X-chromosome when they enter the urogenital ridge. Germ cells that are localised ectopically in extragonadal sites do not re-activate the X-chromo- some, even when nearly all germ cells in the fetal ovary have restored full activity of both X- chromosomes. XXSxr germ cells can re-activate the X-chromosome in the sex-reversed testis, suggesting that the regulation of X-chromosome activity is independent of ovarian morpho- genesis. KEY WORDS: Primordial germ cells, allocation, mutant embryo, X-chromosome activity, sex reversal. Prologue Establishment of the germ cell lineage in the mouse Those of us who have had the privilege of working with Anne Primordial germ cells (PGCs) are the precursors of the oocytes McLaren or have visited her laboratory in the MRC Mammalian and spermatozoa. In the mouse, these cells can be distinguished Development Unit at University College London could recall from other embryonic cells by their strong tissue non-specific form vividly how we were captivated by Anne’s passion for the fascinat- of alkaline phosphatase (TNAP) activity on the cell membrane and ing biology of germ cell differentiation, regulation of X-chromo- peri-nuclear cytoplasmic inclusion (Ordzenski, 1967; Ginsburg et some activity and sex determination. After graduating from Anne’s al., 1990; Lawson and Hage, 1994). Cells displaying this unique laboratory, PPLT thought that he would move on to tackle other pattern of TNAP activity are first detected in the posterior region of questions on the developmental biology of the mouse, but soon the primitive streak (PS) and at the base of the allantoic bud of the found that he had to re-visit germ cells and gonad development late-streak stage embryo (Ordzenski, 1967; Ginsburg et al., 1990). many times since as a result of either an interesting discovery or mere serendipity. Our work presented in this review is the out- Abbreviations used in this paper: BMP, bone morphogenetic protein; ES, come of the active pursuit of a number of issues relating to the embryonic stem cells; ex-ect, extraembryonic ectoderm; PGC, primordial biology of the primordial germ cells at the Children’s Medical germ cell; PS, primitive streak; TNAP, tissue non-specific form of alkaline Research Institute. phosphatase. *Address correspondence to: Patrick P.L. Tam. Embryology Unit. Children’s Medical Research Institute, Locked Bag 23, Wentworthville, NSW 2145, Australia. FAX: +61-2-9681-2120. e-mail: [email protected] 0214-6282/2001/$25.00 © UBC Press Printed in Spain www.ijdb.ehu.es 550 T.E. Tsang et al. were found to be able to differentiate into cells that show the typical PGC pattern of TNAP activity. In the reciprocal transplan- tation, proximal epiblast, which presum- ably contains cells that can generate PGCs, colonized the host neural tissue but did not form PGC-like cells after they were grafted to the distal epiblast (Tam and Zhou, 1996; Table 1). These results provide compelling evidence that cells in the distal and the proximal epiblast are equally competent to form PGCs provided that they are placed in an environment that is conducive to germ cell formation. This raises the intriguing possibility that PGC formation is subject to local environ- mental influence/s that is/are unique to Fig. 1. (A,B) Localization of alkaline phosphatase the proximal epiblast. This mode of germ positive primordial germ cells (PGCs, white ar- line specification is consistent with the rowheads) in the hindgut endoderm and base of conjecture that germ cells are formed by the allantois of (A) ARC/s and (B) Lim1+/+ em- the interaction of pluripotent epiblast cells bryos. (C) Lim1+/- embryo showing PGCs in the with other non-germ line (i.e. somatic) hindgut (white arrowhead) and scattered in the cells in the early embryo (McLaren, 1981a). yolk sac (black arrowheads). (D) Lim1-/- embryo The existence of a functionally distinctive containing no PGCs in the hindgut or base of the population of germ-line cells throughout allantois (arrows). (E) Lim1-/- embryo with only a development has been postulated based few PGCs (arrowheads) and a poorly developed on the presence of cytoplasmic inclusions allantois (*). Scale bar, 50 µm. such as the nuage material, the Balbiani Clonal analysis of the lineage potency of epiblast cells has body and other similar sub-cellular structures in fertilized oocytes, revealed that some cells in the proximal epiblast of the pre- to early- blastomeres and germ cells of several mammalian embryos (de streak stage embryo can give rise to TNAP-expressing cells that Smedt et al, 2000). However, the ability to induce germ cell colonize the allantoic mesoderm and the hindgut endoderm. How- formation in epiblast cells of diverse prospective fates does not ever, descendants of these proximal epiblast cells do not contrib- support the concept of a pre-determined germ line in the mouse ute only to the presumptive PGCs but also to other somatic tissues embryo. such as the extraembryonic mesoderm. Furthermore, cells that Experimental analysis of the differentiation of germ cells in early may contribute descendants to the PGC population are not region- postimplantation mouse embryos is hampered by the paucity of alized to any area in the proximal epiblast. The localization of the reliable lineage markers for PGCs and/or their precursors. At- precursors of PGCs in the proximal epiblast suggests that only epiblast cells in this region of the early gastrula may possess the TABLE 1 germ-line potency. During development of the germ line, a POU domain gene, Oct4, has been shown to be specifically expressed THE COLONIZATION OF EXTRAEMBRYONIC AND EMBRYONIC in the PGCs and their descendants in the gonad (Scholer et al, TISSUES BY THE EPIBLAST AND EXTRAEMBRYONIC ECTODERM 1990; Pesce et al, 1998). The Oct4 gene is expressed widely in the AFTER TRANSPLANTATION TO THE EPIBLAST OF THE PRE- TO epiblast of the early gastrula and apparently shows no regionalization EARLY-STREAK STAGE MOUSE EMBRYO to the proximal epiblast. The activity of Oct4 gene, however, is Graft-derived cells Fraction of total graft-derived cells in differentially regulated by enhancer elements for general expres- Mean/embryo Total Extraembryonic Hindgut Ectodermb Posterior PGCsc sion in the epiblast and specific expression in the PGCs (Palmieri tissuesa mesoderm et al., 1994; Yeom et al, 1996). The lack of restriction of both the Proximal epiblast to proximal site (30 embryos) d PGC potency and the Oct4 expression pattern strongly suggests 77.2±10.3 2316 93.8% 0.9% 0.7% 0.5% 4.0% that in the mouse, there may not be a pre-determined germ line and Distal epiblast to proximal site (63 embryos) d the epiblast cells either acquire or retain the potency to differentiate 75.2±10.1 5329 90.6% 2.2% 0.9% 2.6% 3.7% into germ cells. Extraembryonic ectoderm to proximal site (27 embryos) The lack of a pre-determined population of PGC progenitors 85.2±12.0 2300 84.6% 4.0% 6.1% 4.7% 0.6% Distal epiblast to distal site (12 embryos) d implies that germ-cell formation is unlikely to be restricted to 70.5±17.0 846 0% 0% 96.7% 3.5% 0% subsets of epiblast cells. This idea has been verified by testing the Proximal epiblast to distal site (19 embryos) d ability of epiblast cells that are localized outside the proximal 57.2±14.6 1086 2.5% 0% 95.6% 1.4% 0.5% epiblast to form PGCs. Distal epiblast cells that normally display a aExtraembryonic mesoderm of the yolk sac, allantoic, chorion and amnion, and ectoderm of the neuroectodermal fate (Quinlan et al., 1995) were transplanted by amnion. bNeural ectoderm and surface ectoderm. clacZ-expressing cells that display the PGC- specific pattern of alkaline phosphatase activity (Ginsburg,et al., 1990; Lawson and Hage, 1994). d micro-manipulation to the proximal region of the epiblast. They Data from Tam and Zhou (1996). Mouse PGC allocation and differentiation 551 AB Fig. 2. Reduced population of primordial germ cells in (A) Lim1 and (B) Hnf3β mu- tant mouse embryos at different somite- stages.
Recommended publications
  • New Germline Specification Gene Found
    RIKEN Center for Developmental Biology (CDB) 2-2-3 Minatojima minamimachi, Chuo-ku, Kobe 650-0047, Japan New germline specification gene found July 15, 2008 – Germ cells diverge from their somatic counterparts fairly early during mammalian development, undergoing at least three processes: the repression of somatic genes, the reacquisition of the potential for pluripotency, and subsequent epigenetic reprogramming to a committed germline fate. The genetic factors involved in germline specification have been traced as far back as day 6.25 of embryonic development, when the gene Prdm1 (also known as Blimp1) is switched on in a handful of cells in the epiblast, in what is believed to be the first critical step in the pathway to determining germline fate. A recent genome-wide study of transcriptional dynamics in early germline progenitors by the Laboratory for Mammalian Germ Cell Biology (Mitinori Saitou; Team Leader) has revealed, however, that the network is more diverse than previously expected, with Prdm1 acting as a sort of conductor keeping this genetic orchestra in harmony. The expression of Prdm1 (Blimp1) (left) and Prdm14 (right) in embryonic day 7.0 embryos visualized by transgenic reporters. Note that Prdm14 is exclusive to the precursors of primordial germ cells, whereas Prdm1 is also expressed in the visceral endoderm. Now, Masashi Yamaji and others from the Saitou lab have discovered that a gene identified in their previous analysis, Prdm14, plays a critical role in the establishment of the germ cell lineage. In a study published in Nature Genetics, they report that this gene, a transcription factor expressed only in the germline, is necessary for two of the three hallmark events in the acquisition of germ cell fate.
    [Show full text]
  • Specification of the Germ Line* Susan Strome§, Department of Biology, Indiana University, Bloomington, in 47405-3700 USA
    Specification of the germ line* Susan Strome§, Department of Biology, Indiana University, Bloomington, IN 47405-3700 USA Table of Contents 1. Overview ...............................................................................................................................1 2. pie-1 and transcriptional repression ............................................................................................. 2 3. The MES proteins and regulation of chromatin .............................................................................. 3 4. P granules and regulation of RNA ............................................................................................... 5 5. mep-1 and avoiding germline specification ................................................................................... 6 6. Summary and future directions ................................................................................................... 7 7. References ..............................................................................................................................7 Abstract In C. elegans, the germ line is set apart from the soma early in embryogenesis. Several important themes have emerged in specifying and guiding the development of the nascent germ line. At early stages, the germline blastomeres are maintained in a transcriptionally silent state by the transcriptional repressor PIE-1. When this silencing is lifted, it is postulated that correct patterns of germline gene expression are controlled, at least in part, by MES-mediated
    [Show full text]
  • 723.Full.Pdf
    | WORMBOOK CELL FATE, SIGNALING, AND DEVELOPMENT Developmental Plasticity and Cellular Reprogramming in Caenorhabditis elegans Joel Rothman* and Sophie Jarriault†,1 *Department of MCD Biology and Neuroscience Research Institute, University of California, Santa Barbara, California 93111, and †IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Department of Development and Stem Cells, CNRS UMR7104, Inserm U1258, Université de Strasbourg, 67404 Illkirch CU Strasbourg, France ORCID IDs: 0000-0002-6844-1377 (J.R.); 0000-0003-2847-1675 (S.J.) ABSTRACT While Caenorhabditis elegans was originally regarded as a model for investigating determinate developmental programs, landmark studies have subsequently shown that the largely invariant pattern of development in the animal does not reflect irrevers- ibility in rigidly fixed cell fates. Rather, cells at all stages of development, in both the soma and germline, have been shown to be capable of changing their fates through mutation or forced expression of fate-determining factors, as well as during the normal course of development. In this chapter, we review the basis for natural and induced cellular plasticity in C. elegans. We describe the events that progressively restrict cellular differentiation during embryogenesis, starting with the multipotency-to-commitment transition (MCT) and subsequently through postembryonic development of the animal, and consider the range of molecular processes, including transcriptional and translational control systems, that contribute to cellular
    [Show full text]
  • Molecular Mechanisms of Pluripotency and Reprogramming
    Na et al. Stem Cell Research & Therapy 2010, 1:33 http://stemcellres.com/content/1/4/33 REVIEW Molecular mechanisms of pluripotency and reprogramming Jie Na1*, Jordan Plews2, Jianliang Li2, Patompon Wongtrakoongate2, Timo Tuuri2, Anis Feki3, Peter W Andrews2 and Christian Unger2* Defi ning pluripotent stem cells Abstract Discovery of pluripotent stem cells - embryonal carcinoma Pluripotent stem cells are able to form any terminally cells diff erentiated cell. They have opened new doors for Pluripotency is the potential of stem cells to give rise to experimental and therapeutic studies to understand any cell of the embryo proper. Th e study of pluripotent early development and to cure degenerative diseases stem cells from both mouse and human began with the in a way not previously possible. Nevertheless, study of teratocarcinomas, germ cell tumours that occur it remains important to resolve and defi ne the predominantly in the testis and constitute the most mechanisms underlying pluripotent stem cells, as that common cancer of young men. In 1954, Stevens and Little understanding will impact strongly on future medical [1] found that males of the 129 mouse strain developed applications. The capture of pluripotent stem cells in testicular teratocarcinomas at a signifi cant rate. Th is a dish is bound to several landmark discoveries, from fi nding opened the way for detailed studies of these the initial culture and phenotyping of pluripotent peculiar cancers, which may contain a haphazard array of embryonal carcinoma cells to the recent induction of almost any somatic cell type found in the developing pluripotency in somatic cells. On this developmental embryo [2].
    [Show full text]
  • Relevance of Ipsc-Derived Human PGC-Like Cells at the Surface of Embryoid Bodies to Prechemotaxis Migrating Pgcs
    Relevance of iPSC-derived human PGC-like cells at the PNAS PLUS surface of embryoid bodies to prechemotaxis migrating PGCs Shino Mitsunagaa, Junko Odajimaa, Shiomi Yawataa, Keiko Shiodaa, Chie Owaa, Kurt J. Isselbachera,1, Jacob H. Hannab, and Toshi Shiodaa,1 aMassachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, MA 02129; and bDepartment of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel Contributed by Kurt J. Isselbacher, October 11, 2017 (sent for review May 11, 2017; reviewed by Joshua M. Brickman and Erna Magnúsdóttir) Pluripotent stem cell-derived human primordial germ cell-like cells Although PSCs can produce cells resembling PGCs [primor- (hPGCLCs) provide important opportunities to study primordial dial germ cell-like cells (PGCLCs)] in cell culture (5–14), direct + germ cells (PGCs). We robustly produced CD38 hPGCLCs [∼43% of conversion of mouse PSCs to PGCLCs is inefficient (6). Hayashi FACS-sorted embryoid body (EB) cells] from primed-state induced et al. (6) generated cells resembling early epiblast [epiblast-like pluripotent stem cells (iPSCs) after a 72-hour transient incubation cells (EpiLCs)] from mouse PSCs and showed their strong ability in the four chemical inhibitors (4i)-naïve reprogramming medium to produce PGCLCs as cell aggregates in the presence of bone and showed transcriptional consistency of our hPGCLCs with morphogenetic protein 4 (Bmp4). In the absence of Bmp4, ro- hPGCLCs generated in previous studies using various and distinct + − bust PGCLC production can also be achieved by overexpression protocols. Both CD38 hPGCLCs and CD38 EB cells significantly of three transcription factors (TFs)—namely Prdm1, Prdm14, expressed PRDM1 and TFAP2C, although PRDM1 mRNA in CD38− and Tfap2c (7, 14)—or by a single TF Nanog (8) from exogenous cells lacked the 3′-UTR harboring miRNA binding sites regulating vectors.
    [Show full text]
  • Evolution of Predetermined Germ Cells in Vertebrate Embryos: Implications for Macroevolution
    EVOLUTION & DEVELOPMENT 5:4, 414–431 (2003) Evolution of predetermined germ cells in vertebrate embryos: implications for macroevolution Andrew D. Johnson,a,b,* Matthew Drum,b Rosemary F. Bachvarova,c Thomas Masi,b Mary E. White,d and Brian I. Crotherd aDivision of Genetics, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK bDepartment of Biological Science, Florida State University, Tallahassee, FL 32306, USA cDepartment of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA dDepartment of Biological Science, Southeastern Louisiana University, Hammond, LA 70402, USA *Author for correspondence (e-mail: [email protected]) SUMMARY The germ line is established in animal embryos To determine which mechanism is ancestral to the tetrapod with the formation of primordial germ cells (PGCs), which give lineage and to understand the pattern of inheritance in higher rise to gametes. Therefore, the need to form PGCs can act as vertebrates, we used a phylogenetic approach to analyze a developmental constraint by inhibiting the evolution of basic morphological processes in both groups and correlated embryonic patterning mechanisms that compromise their these with mechanisms of germ cell determination. Our results development. Conversely, events that stabilize the PGCs indicate that regulative germ cell determination is a property of may liberate these constraints. Two modes of germ cell embryos retaining ancestral embryological processes, determination exist in animal embryos: (a) either PGCs are whereas predetermined germ cells are found in embryos predetermined by the inheritance of germ cell determinants with derived morphological traits. These correlations (germ plasm) or (b) PGCs are formed by inducing signals suggest that regulative germ cell formation is an important secreted by embryonic tissues (i.e., regulative determination).
    [Show full text]
  • Trajectory Mapping of the Early Drosophila Germline Reveals Controls of Zygotic Activation and Sex Differentiation
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.11.292573; this version posted September 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Trajectory Mapping of the Early Drosophila Germline Reveals Controls of Zygotic Activation and Sex Differentiation Hsing-Chun Chen1, Yi-Ru Li1, Hsiao Wen Lai1, Hsiao Han Huang1, Sebastian D. Fugmann1,2,4, Shu Yuan Yang1,2,3* 1Department and 2Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333 Taiwan 3Departmen of Gynecology and 4Nephrology, Linkou Chang Gung Memorial Hospital, Kweishan, Taoyuan 333 Taiwan *To whom correspondence should be directed: [email protected] Abstract Germ cells in D. melanogaster are specified maternally shortly after fertilization and are transcriptionally quiescent until their zygotic genome is activated to sustain further development. To understand the molecular basis of this process, we analyzed the progressing transcriptomes of early male and female germ cells at the single-cell level between germline specification and coalescence with somatic gonadal cells. Our data comprehensively covered zygotic activation in the germline genome, and analyses on genes that exhibit germline-restricted expression revealed that polymerase pausing and differential RNA stability are important mechanisms that establish gene expression differences between the germline and soma. In addition, we observed an immediate bifurcation between the male and female germ cells as zygotic transcription begins. The main difference between the two sexes is an elevation in X chromosome expression in females relative to males signifying incomplete dosage compensation with a few select genes exhibiting even higher expression increases.
    [Show full text]
  • Small Rnas in Germline Development
    CHAPTER SIX Small RNAs in Germline Development Matthew S. Cook*,†,‡,1, Robert Blelloch*,†,‡ * Department of Urology, University of California, San Francisco, California, USA †Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, USA ‡Center for Reproductive Sciences, University of California, San Francisco, California, USA 1Corresponding author: e-mail address: [email protected] Contents 1. Introduction: Germline Development and Small Regulatory RNAs 160 1.1 Germ cell life cycle and posttranscriptional regulation of gene expression 160 1.2 Small RNAs 167 2. Small RNAs in Germ Cells 172 2.1 Small RNAs in PGC specification and migration 177 2.2 Small RNAs in PGC gonad colonization and early differentiation 180 2.3 Small RNAs in spermatogenesis 183 2.4 Small RNAs in oogenesis 186 3. Small RNAs in Germ Cell Tumor Formation 189 3.1 miRNAs, siRNAs, and piRNAs in GCTs 190 4. Conclusion 191 Acknowledgments 192 References 192 Abstract One of the most important and evolutionarily conserved strategies to control gene expression in higher metazoa is posttranscriptional regulation via small regulatory RNAs such as microRNAs (miRNAs), endogenous small interfering RNAs (endo-siRNAs), and piwi-interacting RNAs (piRNAs). Primordial germ cells, which are defined by their toti- potent potential and noted for their dependence on posttranscriptional regulation by RNA-binding proteins, rely on these small regulatory RNAs for virtually every aspect of their development, including specification, migration, and differentiation into com- petent gametes. Here, we review current knowledge of the roles miRNAs, endo-siRNAs, and piRNAs play at all stages of germline development in various organisms, focusing on studies in the mouse.
    [Show full text]
  • Germ Cell Speci Fi Cation
    Chapter 2 Germ Cell Speci fi cation Jennifer T. Wang and Geraldine Seydoux Abstract The germline of Caenorhabditis elegans derives from a single founder cell, the germline blastomere P4 . P4 is the product of four asymmetric cleavages that divide the zygote into distinct somatic and germline (P) lineages. P4 inherits a spe- cialized cytoplasm (“germ plasm”) containing maternally encoded proteins and RNAs. The germ plasm has been hypothesized to specify germ cell fate, but the mechanisms involved remain unclear. Three processes stand out: (1) inhibition of mRNA transcription to prevent activation of somatic development, (2) translational regulation of the nanos homolog nos-2 and of other germ plasm mRNAs, and (3) establishment of a unique, partially repressive chromatin. Together, these processes ensure that the daughters of P4 , the primordial germ cells Z2 and Z3, gastrulate inside the embryo, associate with the somatic gonad, initiate the germline transcrip- tional program, and proliferate during larval development to generate ~2,000 germ cells by adulthood. Keywords Germ plasm • Polarity • Germ granules • Cell fate • Transcriptional repression • Germline blastomeres • Primordial germ cells • P lineage • Maternal RNA J. T. Wang • G. Seydoux (*) Department of Molecular Biology and Genetics , Howard Hughes Medical Institute, Center for Cell Dynamics, Johns Hopkins School of Medicine , 725 North Wolfe Street, PCTB 706 , Baltimore , MD 21205 , USA e-mail: [email protected] T. Schedl (ed.), Germ Cell Development in C. elegans, Advances in Experimental 17 Medicine and Biology 757, DOI 10.1007/978-1-4614-4015-4_2, © Springer Science+Business Media New York 2013 18 J.T. Wang and G. Seydoux 2.1 Introduction to the Embryonic Germ Lineage (P Lineage) 2.1.1 Embryonic Origin of the Germline P4 arises in the 24-cell stage from a series of four asymmetric divisions starting in the zygote (P0 ) (Fig.
    [Show full text]
  • The Extragonadal Germ Cell Tumor Paradigm
    International Journal of Molecular Sciences Review To Be or Not to Be a Germ Cell: The Extragonadal Germ Cell Tumor Paradigm Massimo De Felici 1,*, Francesca Gioia Klinger 1 , Federica Campolo 2 , Carmela Rita Balistreri 3 , Marco Barchi 1 and Susanna Dolci 1,* 1 Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; [email protected] (F.G.K.); [email protected] (M.B.) 2 Department of Experimental Medicine, University of Rome La Sapienza, 00161 Rome, Italy; [email protected] 3 Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90133 Palermo, Italy; [email protected] * Correspondence: [email protected] (M.D.F.); [email protected] (S.D.) Abstract: In the human embryo, the genetic program that orchestrates germ cell specification in- volves the activation of epigenetic and transcriptional mechanisms that make the germline a unique cell population continuously poised between germness and pluripotency. Germ cell tumors, neo- plasias originating from fetal or neonatal germ cells, maintain such dichotomy and can adopt either pluripotent features (embryonal carcinomas) or germness features (seminomas) with a wide range of phenotypes in between these histotypes. Here, we review the basic concepts of cell specification, mi- gration and gonadal colonization of human primordial germ cells (hPGCs) highlighting the analogies of transcriptional/epigenetic programs between these two cell types. Keywords: germ cell tumor; primordial germ cells; germline; EG cells Citation: De Felici, M.; Klinger, F.G.; Campolo, F.; Balistreri, C.R.; Barchi, M.; Dolci, S. To Be or Not to Be a Germ Cell: The Extragonadal Germ Cell Tumor Paradigm.
    [Show full text]
  • The Endoderm Specifies the Mesodermal Niche for the Germline in Drosophila Via Delta-Notch Signaling Tishina C
    DEVELOPMENT AND STEM CELLS RESEARCH ARTICLE 1259 Development 138, 1259-1267 (2011) doi:10.1242/dev.056994 © 2011. Published by The Company of Biologists Ltd The endoderm specifies the mesodermal niche for the germline in Drosophila via Delta-Notch signaling Tishina C. Okegbe1,2 and Stephen DiNardo1,2,* SUMMARY Interactions between niche cells and stem cells are vital for proper control over stem cell self-renewal and differentiation. However, there are few tissues where the initial establishment of a niche has been studied. The Drosophila testis houses two stem cell populations, which each lie adjacent to somatic niche cells. Although these niche cells sustain spermatogenesis throughout life, it is not understood how their fate is established. Here, we show that Notch signaling is necessary to specify niche cell fate in the developing gonad. Surprisingly, our results indicate that adjacent endoderm is the source of the Notch-activating ligand Delta. We also find that niche cell specification occurs earlier than anticipated, well before the expression of extant markers for niche cell fate. This work further suggests that endoderm plays a dual role in germline development. The endoderm assists both in delivering germ cells to the somatic gonadal mesoderm, and in specifying the niche where these cells will subsequently develop as stem cells. Because in mammals primordial germ cells also track through endoderm on their way to the genital ridge, our work raises the possibility that conserved mechanisms are employed to regulate germline niche formation. KEY WORDS: Drosophila, Gonadogenesis, Notch, Endoderm, Niche INTRODUCTION elegans germline, the distal tip cell (DTC) functions as the niche Interactions of tissue-specific stem cells with their local micro- (Kimble and White, 1981; Berry et al., 1997).
    [Show full text]
  • Germ Cell Derivation from Pluripotent Stem Cells for Understanding in Vitro Gametogenesis
    cells Review Germ Cell Derivation from Pluripotent Stem Cells for Understanding In Vitro Gametogenesis Tae-Kyung Hong †, Jae-Hoon Song † , So-Been Lee † and Jeong-Tae Do * Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; [email protected] (T.-K.H.); [email protected] (J.-H.S.); [email protected] (S.-B.L.) * Correspondence: [email protected]; Tel.: +82-2-450-3673 † These authors contributed equally to this work. Abstract: Assisted reproductive technologies (ARTs) have developed considerably in recent years; however, they cannot rectify germ cell aplasia, such as non-obstructive azoospermia (NOA) and oocyte maturation failure syndrome. In vitro gametogenesis is a promising technology to overcome infertility, particularly germ cell aplasia. Early germ cells, such as primordial germ cells, can be relatively easily derived from pluripotent stem cells (PSCs); however, further progression to post- meiotic germ cells usually requires a gonadal niche and signals from gonadal somatic cells. Here, we review the recent advances in in vitro male and female germ cell derivation from PSCs and discuss how this technique is used to understand the biological mechanism of gamete development and gain insight into its application in infertility. Keywords: germ cell; gametogenesis; pluripotent stem cell; infertility Citation: Hong, T.-K.; Song, J.-H.; Lee, S.-B.; Do, J.-T. Germ Cell 1. Introduction Derivation from Pluripotent Stem Mammalian cells are divided into somatic and germ cells according to their roles. Cells for Understanding In Vitro Somatic cells are involved in the homeostasis and survival of the body, whereas germ Gametogenesis.
    [Show full text]