Astrometric Surveys: Solving the Milky Way Puzzle with Gaia A.G.A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Asteroseismology with Corot, Kepler, K2 and TESS: Impact on Galactic Archaeology Talk Miglio’S
Asteroseismology with CoRoT, Kepler, K2 and TESS: impact on Galactic Archaeology talk Miglio’s CRISTINA CHIAPPINI Leibniz-Institut fuer Astrophysik Potsdam PLATO PIC, Padova 09/2019 AsteroseismologyPlato as it is : a Legacy with CoRoT Mission, Kepler for Galactic, K2 and TESS: impactArchaeology on Galactic Archaeology talk Miglio’s CRISTINA CHIAPPINI Leibniz-Institut fuer Astrophysik Potsdam PLATO PIC, Padova 09/2019 Galactic Archaeology strives to reconstruct the past history of the Milky Way from the present day kinematical and chemical information. Why is it Challenging ? • Complex mix of populations with large overlaps in parameter space (such as Velocities, Metallicities, and Ages) & small volume sampled by current data • Stars move away from their birth places (migrate radially, or even vertically via mergers/interactions of the MW with other Galaxies). • Many are the sources of migration! • Most of information was confined to a small volume Miglio, Chiappini et al. 2017 Key: VOLUME COVERAGE & AGES Chiappini et al. 2018 IAU 334 Quantifying the impact of radial migration The Rbirth mix ! Stars that today (R_now) are in the green bins, came from different R0=birth Radial Migration Sources = bar/spirals + mergers + Inside-out formation (gas accretion) GalacJc Center Z Sun R Outer Disk R = distance from GC Minchev, Chiappini, MarJg 2013, 2014 - MCM I + II A&A A&A 558 id A09, A&A 572, id A92 Two ways to expand volume for GA • Gaia + complementary photometric information (but no ages for far away stars) – also useful for PIC! • Asteroseismology of RGs (with ages!) - also useful for core science PLATO (miglio’s talk) The properties at different places in the disk: AMR CoRoT, Gaia+, K2 + APOGEE Kepler, TESS, K2, Gaia CoRoT, Gaia+, K2 + APOGEE PLATO + 4MOST? Predicon: AMR Scatter increases towards outer regions Age scatter increasestowars outer regions ExtracGng the best froM GaiaDR2 - Anders et al. -
LISA, the Gravitational Wave Observatory
The ESA Science Programme Cosmic Vision 2015 – 25 Christian Erd Planetary Exploration Studies, Advanced Studies & Technology Preparations Division 04-10-2010 1 ESAESA spacespace sciencescience timelinetimeline JWSTJWST BepiColomboBepiColombo GaiaGaia LISALISA PathfinderPathfinder Proba-2Proba-2 PlanckPlanck HerschelHerschel CoRoTCoRoT HinodeHinode AkariAkari VenusVenus ExpressExpress SuzakuSuzaku RosettaRosetta DoubleDouble StarStar MarsMars ExpressExpress INTEGRALINTEGRAL ClusterCluster XMM-NewtonXMM-Newton CassiniCassini-H-Huygensuygens SOHOSOHO ImplementationImplementation HubbleHubble OperationalOperational 19901990 19941994 19981998 20022002 20062006 20102010 20142014 20182018 20222022 XMM-Newton • X-ray observatory, launched in Dec 1999 • Fully operational (lost 3 out of 44 X-ray CCD early in mission) • No significant loss of performances expected before 2018 • Ranked #1 at last extension review in 2008 (with HST & SOHO) • 320 refereed articles per year, with 38% in the top 10% most cited • Observing time over- subscribed by factor ~8 • 2,400 registered users • Largest X-ray catalogue (263,000 sources) • Best sensitivity in 0.2-12 keV range • Long uninterrupted obs. • Follow-up of SZ clusters 04-10-2010 3 INTEGRAL • γ-ray observatory, launched in Oct 2002 • Imager + Spectrograph (E/ΔE = 500) + X- ray monitor + Optical camera • Coded mask telescope → 12' resolution • 72 hours elliptical orbit → low background • P/L ~ nominal (lost 4 out 19 SPI detectors) • No serious degradation before 2016 • ~ 90 refereed articles per year • Obs -
The Rich Structure of the Nearby Stellar Halo Revealed by Gaia and RAVE Amina Helmi1, Jovan Veljanoski1, Maarten A
A&A 598, A58 (2017) Astronomy DOI: 10.1051/0004-6361/201629990 & c ESO 2017 Astrophysics A box full of chocolates: The rich structure of the nearby stellar halo revealed by Gaia and RAVE Amina Helmi1, Jovan Veljanoski1, Maarten A. Breddels1, Hao Tian1, and Laura V. Sales2 1 Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen, The Netherlands e-mail: [email protected] 2 Department of Physics & Astronomy, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA Received 1 November 2016 / Accepted 21 December 2016 ABSTRACT Context. The hierarchical structure formation model predicts that stellar halos should form, at least partly, via mergers. If this was a predominant formation channel for the Milky Way’s halo, imprints of this merger history in the form of moving groups or streams should also exist in the vicinity of the Sun. Aims. We study the kinematics of halo stars in the Solar neighbourhood using the very recent first data release from the Gaia mission, and in particular the TGAS dataset, in combination with data from the RAVE survey. Our aim is to determine the amount of substructure present in the phase-space distribution of halo stars that could be linked to merger debris. Methods. To characterise kinematic substructure, we measured the velocity correlation function in our sample of halo (low- metallicity) stars. We also studied the distribution of these stars in the space of energy and two components of the angular momentum, in what we call “integrals of motion” space. Results. The velocity correlation function reveals substructure in the form of an excess of pairs of stars with similar velocities, well above that expected for a smooth distribution. -
Data Mining in the Spanish Virtual Observatory. Applications to Corot and Gaia
Highlights of Spanish Astrophysics VI, Proceedings of the IX Scientific Meeting of the Spanish Astronomical Society held on September 13 - 17, 2010, in Madrid, Spain. M. R. Zapatero Osorio et al. (eds.) Data mining in the Spanish Virtual Observatory. Applications to Corot and Gaia. Mauro L´opez del Fresno1, Enrique Solano M´arquez1, and Luis Manuel Sarro Baro2 1 Spanish VO. Dep. Astrof´ısica. CAB (INTA-CSIC). P.O. Box 78, 28691 Villanueva de la Ca´nada, Madrid (Spain) 2 Departamento de Inteligencia Artificial. ETSI Inform´atica.UNED. Spain Abstract Manual methods for handling data are impractical for modern space missions due to the huge amount of data they provide to the scientific community. Data mining, understood as a set of methods and algorithms that allows us to recover automatically non trivial knowledge from datasets, are required. Gaia and Corot are just a two examples of actual missions that benefits the use of data mining. In this article we present a brief summary of some data mining methods and the main results obtained for Corot, as well as a description of the future variable star classification system that it is being developed for the Gaia mission. 1 Introduction Data in Astronomy is growing almost exponentially. Whereas projects like VISTA are pro- viding more than 100 terabytes of data per year, future initiatives like LSST (to be operative in 2014) and SKY (foreseen for 2024) will reach the petabyte level. It is, thus, impossible a manual approach to process the data returned by these surveys. It is impossible a manual approach to process the data returned by these surveys. -
Photometric Study of Two Near-Earth Asteroids in the Sloan Digital Sky Survey Moving Objects Catalog
University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2020 Photometric Study Of Two Near-Earth Asteroids In The Sloan Digital Sky Survey Moving Objects Catalog Christopher James Miko Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Miko, Christopher James, "Photometric Study Of Two Near-Earth Asteroids In The Sloan Digital Sky Survey Moving Objects Catalog" (2020). Theses and Dissertations. 3287. https://commons.und.edu/theses/3287 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. PHOTOMETRIC STUDY OF TWO NEAR-EARTH ASTEROIDS IN THE SLOAN DIGITAL SKY SURVEY MOVING OBJECTS CATALOG by Christopher James Miko Bachelor of Science, Valparaiso University, 2013 A Thesis Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Master of Science Grand Forks, North Dakota August 2020 Copyright 2020 Christopher J. Miko ii Christopher J. Miko Name: Degree: Master of Science This document, submitted in partial fulfillment of the requirements for the degree from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done and is hereby approved. ____________________________________ Dr. Ronald Fevig ____________________________________ Dr. Michael Gaffey ____________________________________ Dr. Wayne Barkhouse ____________________________________ Dr. Vishnu Reddy ____________________________________ ____________________________________ This document is being submitted by the appointed advisory committee as having met all the requirements of the School of Graduate Studies at the University of North Dakota and is hereby approved. -
Will the Real Monster Black Hole Please Stand Up? 8 January 2015
Will the real monster black hole please stand up? 8 January 2015 how the merging of galaxies can trigger black holes to start feeding, an important step in the evolution of galaxies. "When galaxies collide, gas is sloshed around and driven into their respective nuclei, fueling the growth of black holes and the formation of stars," said Andrew Ptak of NASA's Goddard Space Flight Center in Greenbelt, Maryland, lead author of a The real monster black hole is revealed in this new new study accepted for publication in the image from NASA's Nuclear Spectroscopic Telescope Astrophysical Journal. "We want to understand the Array of colliding galaxies Arp 299. In the center panel, mechanisms that trigger the black holes to turn on the NuSTAR high-energy X-ray data appear in various and start consuming the gas." colors overlaid on a visible-light image from NASA's Hubble Space Telescope. The panel on the left shows NuSTAR is the first telescope capable of the NuSTAR data alone, while the visible-light image is pinpointing where high-energy X-rays are coming on the far right. Before NuSTAR, astronomers knew that the each of the two galaxies in Arp 299 held a from in the tangled galaxies of Arp 299. Previous supermassive black hole at its heart, but they weren't observations from other telescopes, including sure if one or both were actively chomping on gas in a NASA's Chandra X-ray Observatory and the process called accretion. The new high-energy X-ray European Space Agency's XMM-Newton, which data reveal that the supermassive black hole in the detect lower-energy X-rays, had indicated the galaxy on the right is indeed the hungry one, releasing presence of active supermassive black holes in Arp energetic X-rays as it consumes gas. -
The GAIA/CHEOPS Synergy
The GAIA/CHEOPS synergy Valerio Nascimbeni (INAF-OAPD) and the CHEOPS A1 working group CHEOPS Science workshop #3, Madrid 2015 Jun 17-19 Introduction GAIA is the most accurate (~10 μas) astrometric survey ever; it was launched in 2013 and is performing well (though some technical issues) Final catalog is expected in ≥2022, with a few intermediate releases starting from 2016 What planets (or planetary candidates) can GAIA provide to CHEOPS? This was investigated within the CHEOPS A1 WG, designed to 1) build an overview of available targets, 2) monitor present and future planet-search surveys, 3) establishing selection criteria for CHEOPS, 4) and proposing strategies to build the target list. CHEOPS Science workshop #3, Madrid 2015 Jun 17-19 The GAIA/CHEOPS synergy We started reviewing some recent works about the GAIA planet yield: ▶ Casertano+ 2008, A&A 482, 699. “Double-blind test program for astrometric planet detection with GAIA” ▶ Perryman+ 2014, Apj 797, 14. “Astrometric Exoplanet Detection with GAIA” ▶ Dzigan & Zucker 2012, ApJ 753, 1. “Detection of Transiting Jovian Exoplanets by GAIA Photometry” ▶ Sozzetti+ 2014, MNRAS 437, 497, “Astrometric detection of giant planets around nearby M dwarfs: the GAIA potential” ▶ Lucy 2014, A&A 571, 86. “Analysing weak orbital signals in GAIA data” ▶ Sahlmann+ 2015, MNRAS 447, 287. “GAIA's potential for the discovery of circumbinary planets” CHEOPS Science workshop #3, Madrid 2015 Jun 17-19 “Photometric” planets Challenges of GAIA planets discovered by photometry: ▶ GAIA's photometric detection of transiting planets will be limited by precision (1 mmag) and especially by the sparse sampling of the scanning law (Dzigan & Zucker 2012) ▶ Nearly all those planets will be VHJ (P < 3 d); only ~40 of them will be robustly detected and bright enough for CHEOPS (G < 12). -
1 Introduction
ASTROPHYSICAL RESEARCH CONSORTIUM Principles of Operation for SDSS-V VERSION: v1.1 Approved by the ARC Board of Governors 1 Introduction Over the past 15 years, the Sloan Digital Sky Survey has carried out some of the most influential surveys in the history of astronomy. Through four prior epochs, called SDSS-I, II, III, and IV, the SDSS has provided world-leading data sets for a vast range of astrophysical research, including the study of extragalactic astrophysics, cosmology, the Milky Way, the solar system, and stars. The current SDSS-IV project is funded to operate through June 30, 2020. At that time, the 2.5-m Sloan Foundation Telescope at Apache Point Observatory (APO) and its instruments will remain a world-leading facility for wide-field spectroscopy, ready to pursue further state-of-the-art investigations of the Universe. The APOGEE South spectrograph recently commissioned for use at the 2.5-m du Pont Telescope at Las Campanas Observatory (LCO) provides a matching state-of-the-art capability in the Southern hemisphere. SDSS-V as currently envisaged is a five-year program to use these facilities at APO and LCO to execute the first-ever all-sky, multi-epoch survey involving both near-infrared and optical spectroscopy, with rapid response target allocation enabled by new fiber-positioning robots. SDSS-V consists of three survey components. The Milky Way Mapper will conduct infrared and optical spectroscopy of millions of stars to chart and interpret our Galaxy’s history, and to understand the astrophysics of stars and their relation to planets. The Black Hole Mapper will monitor quasars and X-ray sources from next-generation X-ray satellites to investigate the physics and evolution of supermassive black holes. -
The Most Dangerous Ieos in STEREO
EPSC Abstracts Vol. 6, EPSC-DPS2011-682, 2011 EPSC-DPS Joint Meeting 2011 c Author(s) 2011 The most dangerous IEOs in STEREO C. Fuentes (1), D. Trilling (1) and M. Knight (2) (1) Northern Arizona University, Arizona, USA, (2) Lowell Observatory, Arizona, USA ([email protected]) Abstract (STEREO-B) which view the Sun-Earth line using a suite of telescopes. Each spacecraft moves away 1 from the Earth at a rate of 22.5◦ year− (Figure 1). IEOs (inner Earth objects or interior Earth objects) are ∼ potentially the most dangerous near Earth small body Our search for IEOs utilizes the Heliospheric Imager population. Their study is complicated by the fact the 1 instruments on each spacecraft (HI1A and HI1B). population spends all of its time inside the orbit of The HI1s are centered 13.98◦ from the Sun along the the Earth, giving ground-based telescopes a small win- Earth-Sun line with a square field of view 20 ◦ wide, 1 dow to observe them. We introduce STEREO (Solar a resolution of 70 arcsec pixel− , and a bandpass of TErrestrial RElations Observatory) and its 5 years of 630—730 nm [3]. Images are taken every 40 minutes, archival data as our best chance of studying the IEO providing a nearly continuous view of the inner solar population and discovering possible impactor threats system since early 2007. The nominal visual limit- ing magnitude of HI1 is 13, although the sensitivity to Earth. ∼ We show that in our current search for IEOs in varies somewhat with solar elongation, and asteroids STEREO data we are capable of detecting and char- fainter than 13 can be seen near the outer edges. -
ARIEL – 13Th Appleton Space Conference PLANETS ARE UBIQUITOUS
Background image credit NASA ARIEL – 13th Appleton Space Conference PLANETS ARE UBIQUITOUS OUR GALAXY IS MADE OF GAS, STARS & PLANETS There are at least as many planets as stars Cassan et al, 2012; Batalha et al., 2015; ARIEL – 13th Appleton Space Conference 2 EXOPLANETS TODAY: HUGE DIVERSITY 3700+ PLANETS, 2700 PLANETARY SYSTEMS KNOWN IN OUR GALAXY ARIEL – 13th Appleton Space Conference 3 HUGE DIVERSITY: WHY? FORMATION & EVOLUTION PROCESSES? MIGRATION? INTERACTION WITH STAR? Accretion Gaseous planets form here Interaction with star Planet migration Ices, dust, gas ARIEL – 13th Appleton Space Conference 4 STAR & PLANET FORMATION/EVOLUTION WHAT WE KNOW: CONSTRAINTS FROM OBSERVATIONS – HERSCHEL, ALMA, SOLAR SYSTEM Measured elements in Solar system ? Image credit ESA-Herschel, ALMA (ESO/NAOJ/NRAO), Marty et al, 2016; André, 2012; ARIEL – 13th Appleton Space Conference 5 THE SUN’S PLANETS ARE COLD SOME KEY O, C, N, S MOLECULES ARE NOT IN GAS FORM T ~ 150 K Image credit NASA Juno mission, NASA Galileo ARIEL – 13th Appleton Space Conference 6 WARM/HOT EXOPLANETS O, C, N, S (TI, VO, SI) MOLECULES ARE IN GAS FORM Atmospheric pressure 0.01Bar H2O gas CO2 gas CO gas CH4 gas HCN gas TiO gas T ~ 500-2500 K Condensates VO gas H2S gas 1 Bar Gases from interior ARIEL – 13th Appleton Space Conference 7 CHEMICAL MEASUREMENTS TODAY SPECTROSCOPIC OBSERVATIONS WITH CURRENT INSTRUMENTS (HUBBLE, SPITZER,SPHERE,GPI) • Precision of 20 ppm can be reached today by Hubble-WFC3 • Current data are sparse, instruments not absolutely calibrated • ~ 40 planets analysed -
The Dynamic Duo: RAVE Complements Gaia 19 September 2016
The Dynamic Duo: RAVE complements Gaia 19 September 2016 "The Tycho-Gaia stars that were also serendipitously observed by RAVE contain the best proper motions and parallaxes recently released by Gaia and can now be combined with the radial velocities and stellar parameters from RAVE", says Andrea Kunder, lead author of the RAVE data release and astronomer at the Leibniz Institute for Astrophysics Potsdam (AIP), "So these stars can be used to probe the Milky Way more precisely than ever before. Just like wearing glasses allows you to see your surroundings in sharper view, the Gaia-RAVE data will allow the galaxy to be seen with more detail." Among existing spectroscopic surveys, RAVE easily boasts the largest overlap with the Tycho-Gaia astrometric solution catalogue. Screenshot from a movie flying through the RAVE stars from Data Release 5. Credit: K. Riebe, AIP The four previous data releases have been the foundation for a number of studies, which have especially advanced our understanding of the disk of the Milky Way. The fifth RAVE data release The new data release of the Radial Velocity includes not only the culminating RAVE Experiment (RAVE) is the fifth spectroscopic observations taken in 2013, but also also earlier release of a survey of stars in the southern discarded observations recovered from previous celestial hemisphere. It contains radial velocities years, resulting in an additional 30,000 RAVE for 520 781 spectra of 457 588 unique stars that spectra. were observed over ten years. With these measurements RAVE complements the first data For the new data release atmospheric parameters release of the Gaia survey published by the such as the effective temperature, surface gravity European Space Agency ESA last week by and metallicities have been refined using gravities providing radial velocities and stellar parameters, from asteroseismology and high-precison stellar like temperatures, gravities and metallicities of atmospheric parameters. -
A Remarkable Panoramic Space Telescope for the 2020'S
A Remarkable Panoramic Space Telescope for the 2020s Dr. Marc Postman (SB ’81, MIT) Space Telescope Science Institute How are stars and galaxies formed? How does the universe work? Astronomers ask big questions. Are we alone? WFIRST: Wide Field Infrared Survey Telescope Dark Energy, Dark Wide-Field Surveys of the Matter, and the Fate of the Universe Universe ? ? Technology Development for The full distribution of planets around stars Exploration of New Worlds National Academy of Sciences Astronomy & Astrophysics Decadal Survey (2010) DARK MATTER DARK ENERGY 26% 69% STARS, GAS, DUST, ALL WE CAN SEE 5% How do we know there is so much dark matter? And what could dark matter be? How do we know there is so much dark energy? And what is it? Do we need new physics? What new experiments do we need to run? What new observations do we need to make? Basic properties of dark matter… • Dark matter is likely a particle, the way protons and neutrons are particles. • These particles must be abundant. • Dark matter barely interacts, if at all, with other matter (except by gravity). • Dark matter does not emit light. • Dark matter is passing through each of us right now (about 3 x 10-7 micrograms every second)*. *Based on E. Siegel, Forbes We already know dark matter cannot be: • Black holes • Neutrinos • Dwarf planets • Cosmic dust • Squirrels https://xkcd.com/2186/ Cluster of galaxies We can measure the mass in a system by measuring orbital speeds and distances 60 50 Mercury 40 Venus 30 Earth Mars 20 Jupiter Orbital Velocity (km/s) Velocity Orbital 10